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Abstract
An SIRS model is developed to account for precautionary measures and immunity
loss. The existence and stability of equilibria are studied. It is shown that
precautionary measures can induce Hopf bifurcations leading to the occurrence of
cyclical behavior. The model is then extended to a two-patch scenario to explore how
disease spread patterns are influenced by dispersal (travel). Theoretical analyses
establish the stability of the disease-free equilibrium, the basic reproduction number,
and thresholds related to travel rates. The persistence of the system, as well as the
existence of boundary and endemic equilibria, are also discussed. Using Hopf
bifurcation theory, we further examine the interaction between nonlinear incidence
functions, travel rates, and precaution delay effects in shaping the stability of the
endemic equilibrium. The findings reveal a strong connection between reduced
infection rates due to precaution and the emergence of Hopf bifurcations,
emphasizing the importance of timely and accurate disease information in curbing
the spread of diseases. Additionally, the study highlights the significant impact of
different infection force functions on equilibrium stability, underscoring the critical
role of precautionary measures in disease transmission mechanisms. The results also
show the diverse effects of travel rates on disease spread, suggesting that restricting
travel may not always lead to favorable outcomes. This underscores the necessity for
governments to consider multiple factors comprehensively in their efforts to prevent
and control diseases.
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1 Introduction
During the outbreak of an infectious disease such as SARS and COVID-19, especially
when no vaccines or effective treatments are yet available, non-pharmaceutical inter-
ventions (NPIs) are the natural choices in reducing the transmission of the disease
[4, 11, 25, 29, 47]. Common NPIs include wearing masks, maintaining social distance,
restricting travel, quarantine, isolation, and lockdowns. Studies have demonstrated that
NPIs were effective in controlling COVID-19 when case numbers and transmission rates
were relatively low. Many studies have demonstrated that timely government intervention
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is crucial in controlling the spread of disease, and early action during an outbreak signifi-
cantly accelerates the transition to a disease-free state [14–16, 37]. Saha et al. [37] demon-
strated that government actions, combined with clinical treatments, serve as an effective
control pair. Their study illustrated that implementing both strategies together leads to a
significant reduction in the disease burden. Dutta et al. [14] highlighted the importance
of social and governmental interventions in disease dynamics, emphasizing the value of
nonlinear dynamical modeling in epidemiological systems. Their findings showed that
government policies and pharmaceutical treatments are seen as the most effective con-
trol pair, and their simultaneous implementation significantly reduces the disease burden.
Dutta et al. [15] focused on factors such as varying susceptibility, government interven-
tions, social behavior, and public responses. They explored time-based strategies for man-
aging behaviors and treatments by framing the problem as an optimal control challenge.
Their analysis of periodic transmission rates revealed the significant impact of vaccination
rates and transmission patterns on the long-term dynamics of the disease. Dutta et al. [16]
explored the dynamics of transmission of diseases through asymptomatic carriers of the
disease to consider a societal and environmental perspective. Their study emphasized the
substantial impact that social behavior and governmental action have on disease transmis-
sion. However, government intervention and implementing NPIs can be quite challenging
in practice due to their economic costs and the influence of social media, which can some-
times disseminate delayed and/or false information.

Timely and accurate media reports can significantly enhance public health knowledge
and raise awareness about disease conditions. For example, a study by Chao et al. [8]
demonstrated that timely access to public health information from official sources and
reduced exposure to new media are beneficial for preventing and controlling COVID-19.
Similarly, Iyamu et al. [26] found that individuals using social media are more likely to
believe in the effectiveness of masks in preventing the spread of the novel coronavirus
compared to those who do not use social media. Wang et al. [45] emphasized that both
scientific and non-scientific events can substantially impact health beliefs on Twitter. Ad-
ditionally, Du et al. [13] highlighted the crucial role of social media in accessing, sharing,
and disseminating epidemic information during outbreaks of infectious diseases. This in-
formation is vital for raising public awareness of infection risks and for encouraging pre-
ventive measures to reduce transmission.

To better understand how media coverage affects the spread of infectious disease, there
has been some mathematical modeling work. For instance, Liu et al. [31] used a nonlinear
incidence rate function β0 = βe–α1E–α2I–α3H to characterize the psychological impact on
social behavior for exposed class (E), infected class (I), and hospitalized class (H). Liu and
Cui [32] proposed a model using a nonconstant transmission rate β(I) = β1 –β2

I
m+I . Cui et

al. [12] suggested the contact rate as c(I) = c1 – c2f (I), where c1 represents the maximum
contact rate between susceptible and infected individuals, c2 represents the reduction in
contact rate due to media coverage, and f (I) satisfies the conditions f (0) = 0, f ′(I) ≥ 0, and
limI→∞ f (I) = 1. Mummert and Weiss [34] studied the impact of social isolation on disease
transmission and analyzed the effects of three types of media influence functions (denoted
as f ) and media reporting delays on transmission. Song and Xiao [40] investigated an SIR
model that incorporates media delay, employing the nonlinear infectious force βe–αI(t–τ ).
Their findings suggested that the delayed media significantly impacts the transmission dy-
namics of infectious diseases. Misra et al. [33] assumed that the growth rate of awareness is
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proportional to the number of infected individuals and formulated an SIAM model incor-
porating an awareness variable due to media coverage. Huo and Yang [28] considered fac-
tors related to media coverage and integrated the factor e–αM into the characterization of
the transmission rate, where this factor represents the extent to which behavioral changes
influenced by reading disease-related information impact the transmission rate. Sharma
et al. [38] explored the impact of media-driven awareness on reducing disease prevalence
through an SIRS infectious disease model. Furthermore, Zhou et al. [51] treated the aware-
ness change driven by media coverage as an independent compartment and proposed an
ordinary differential equation model parameterized with media data. Their results indi-
cated that the contact rate, transmission probability, and progression rate from the latent
period to the symptomatic stage were three key parameters.

The implementation of NPIs, together with the massive media coverage, will greatly
raise the awareness of the public about the spread of infection so that the public will be-
come more precautious and less social. Consequently, precaution due to NPIs and media
coverage will lead to the behavioral change of the susceptible individuals, and only prac-
tically susceptible individuals may make contacts with the infectious individuals and thus
become possibly infected [9, 10].

The aforementioned studies have demonstrated that precaution is one important factor
that influences the spread, prevention, and control of infectious diseases. For some infec-
tious diseases, such as influenza, COVID-19, and HBV, recovered individuals may only
gain temporary immunity, and they may become susceptible again when the immunity
is lost [5, 43, 46]. Immunity loss is therefore another important factor to be incorporated
into modeling for those infectious diseases, which could result in very complicated disease
dynamics [27, 35, 48].

With highly developed transportation and fast growing economy, travel/movements
between countries, cities, and communities have become more and more frequent and
convenient. Even during the course of an epidemic, banning travel is almost impossi-
ble. Thus dispersal is another important factor affecting the spread and control of infec-
tious diseases. Mathematical models concerning different patches via dispersal become
the natural choice to explore how dispersal affects disease dynamics. Since Hethcote’s
work [24] in 1976, which considered a two-patch infectious disease model with popula-
tion dispersal, numerous studies on patchy infectious diseases have been conducted (see
[1–3, 6, 17–21, 30, 36] and the references therein). For example, Saha et al. [36] analyzed
the influence of the dispersal of susceptible and recovered individuals on epidemic dynam-
ics using deterministic and fractional order systems in a two-patch environment. They
found that higher dispersal towards one patch significantly controls the infection level in
the other patch. Their study revealed an increase in the number of recovery cases in both
patches through optimal control. Additionally, the implementation of public awareness
significantly reduces infection levels, even if people disperse at a comparatively higher
rate.

Several disease models incorporating precaution and dispersal have been proposed in
the literature. Sun et al. [41] investigated a two-patch SIS model, in which the infection
rate β(Ii) = ai – bifi(Ii) was used, where fi(Ii) represents the reduction in the transmission
rate due to media-reported cases in each region. The results indicated that accurate media
reporting can alleviate the burden of the epidemic and shorten the duration of disease out-
breaks. Sun et al. [42] examined a two-patch SIR model that incorporates travel between
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patches and behavioral changes of susceptible individuals due to past disease surveillance
information. The analysis suggests that the model demonstrates rich dynamical behavior,
influenced by various factors such as patch migration, media surveillance information,
and time delays in disease development.

To the best of our knowledge, no work has been carried out to explore the joint impacts
of precaution, immunity loss, and dispersal on disease dynamics to help control the spread
of infectious diseases. In this work, we will use a two-patch SIRS model to examine how
precaution, immunity loss, and dispersal jointly affect the disease dynamics.

The rest of this paper is organized as follows. We propose and study a single-patch
SIRS model with precaution in Sect. 2. The model is then extended to a two-patch
SIRS model with dispersal between two patches in Sect. 3. Its dynamics is also studied
in Sect. 3. Numerical simulations are carried out in Sect. 4. We conclude our work in
Sect. 5.

2 A single-patch SIRS model and its dynamics
In this section, we present an SIRS (Susceptible-Infectious-Recovered-Susceptible) model
that incorporates precaution and immunity loss. The population is divided into three dis-
joint classes: susceptible (S), infectious (I), and recovered (R). The model assumes that
recruitment into the susceptible class occurs at a constant rate A > 0. The natural death
rate is denoted by d > 0, and the disease-induced death rate is ε ≥ 0. Infectious individuals
recover at a constant rate γ > 0. Additionally, recovered individuals lose their immunity
and become susceptible again at a rate α > 0. If α = 0, the system simplifies to an SIR epi-
demic model with permanent immunity.

Following the studies by Cui et al. [12] and Sun et al. [41], precaution is characterized
by the infection rate β(I) = β̂ – β̃f (I), where β̂ ≥ β̃ > 0 represents the maximum infection
rate and the reduction in infection rate due to precaution, respectively. If the parameter
β̃ = 0, the incidence rate simplifies to a bilinear form, meaning no precautionary measures
are present in the model; and as a result, such measures will not influence the model’s
dynamics. Moreover, we assume that there is a response delay τ , that is, the infection
force is modeled by β(I(t – τ ))I , which depends on the number of infectious individuals
at τ time units ago. Thus, the term τ , along with β̂ , β̃ , and the function f (I), is used to
capture the public’s precautionary measures in response to the spread of infection. The
model can then be described by the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dS(t)
dt = A – dS(t) – β(I(t – τ ))I(t)S(t) + αR(t),

dI(t)
dt = β(I(t – τ ))I(t)S(t) – (γ + ε + d)I(t),

dR(t)
dt = γ I(t) – αR(t) – dR(t),

(2.1)

where β(I(t – τ )) = β̂ – β̃f (I(t – τ )).
Incorporating the notion that people’s awareness of disease prevention amplifies as the

number of infected individuals increases but the rate of growth for this awareness dimin-
ishes as infection cases escalate, we can refine the function f (I) so that f (0) = 0, f ′(I) > 0,
f ′′(I) ≤ 0, and limI→∞ f (I) = 1. Then β(0) = β̂ , β ′(I) = –β̃f ′(I) < 0, β ′′(I) = –β̃f ′′(I) ≥ 0, and
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limI→∞ β(I) = β̂ – β̃ . Typical f (I) may have the following forms:

f (I) = 1 – e–hI , (2.2)

f (I) =
In

k + In , n > 0. (2.3)

Let C = C([–τ , 0],R) be the Banach space consisting of all continuous functions defined
on [–τ , 0]. Its positive cone is C+ = {φ ∈ C : φ(θ ) ≥ 0, θ ∈ [–τ , 0]}, where φt ∈ C is defined
as φt(θ ) = φ(t + θ ). The associated initial condition is

φ = (φ1,φ2,φ3) ∈ X := C+ × C+ × C+. (2.4)

Theorem 2.1 System (2.1), subject to the initial condition (2.4), globally possesses a unique
solution. Furthermore, the variables S(t), I(t), and R(t) remain nonnegative for t ≥ 0. Addi-
tionally, the total population N(t) = S(t)+ I(t)+R(t) is bounded and falls within the interval
[min{ A

d+ε
, N(0)}, max{A

d , N(0)}].

The proof is standard and is thus omitted.
For system (2.1), the disease-free equilibrium (DFE) is E0 = ( A

d , 0, 0). By the next gener-
ation matrix method [44, 50], we find the basic reproduction number

R1
0 =

β̂A
d(γ + ε + d)

. (2.5)

Theorem 2.2 The DFE E0 is globally asymptotically stable (GAS) if R1
0 < 1, and it is un-

stable if R1
0 > 1.

The proof is similar to [9, Theorem 3.1] and is given in Appendix A.

Theorem 2.3 If R1
0 > 1, then there exists a unique endemic equilibrium E∗, and it is locally

asymptotically stable (LAS) when τ = 0.

Proof If R1
0 > 1, then it follows directly from the equilibrium equations that there is a

unique endemic equilibrium (EE), E∗ = ( γ +ε+d
β(I∗) , I∗, γ

α+d I∗), where I∗ is the unique solution
of the following equation:

A –
(
γ + ε + d –

αγ

α + d

)
I =

d(γ + ε + d)

β(I)
.

Linearizing (2.1) at E∗, we obtain the characteristic equation

J(λ, τ ) = λ3 + p2λ
2 + p1λ + p0 – (λ + d)(λ + α + d)β ′(I∗)I∗S∗e–λτ = 0, (2.6)

where

p2 = α+2d+β(I∗)I∗, p1 = d(α+d)+(d+α+a)β(I∗)I∗, p0 =
(

(ε +d)(α+d)+dγ
)
β(I∗)I∗.
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At τ = 0, we have

J(λ, 0) = λ3 + p̄2λ
2 + p̄1λ + p̄0,

where

p̄2 = α + 2d + β(I∗)I∗ – β ′(I∗)I∗S∗ > 0,

p̄1 = d(α + d) + (d + α + a)β(I∗)I∗ – (α + 2d)β ′(I∗)I∗S∗ > 0,

p̄0 =
(

(ε + d)(α + d) + dγ
)
β(I∗)I∗ – d(α + d)β ′(I∗)I∗S∗ > 0.

By a straightforward calculation, we know that p̄2p̄1 – p̄0 > 0. (The detailed calculation is
presented in Appendix B.) The local stability of E∗ then follows from the Routh–Hurwitz
criterion. �

Next, we explore the occurrence of possible Hopf bifurcation as τ increases. Note that
J(0, τ ) = p0 – d(α + d)β ′(I∗)I∗S∗e–λτ > 0 for τ ≥ 0. This implies that λ = 0 is not an eigen-
value. The EE E∗ may lose its stability as τ increases only if there is a pair of purely imagi-
nary eigenvalues λ = ±ωi with ω > 0. Substituting λ = ωi, ω > 0 into J(λ, τ ) = 0 gives

J(ωi, τ ) = –p2ω
2 + p0 –

(
d(α + d) – ω2)β ′(I∗)I∗S∗ cos(ωτ ) – (α + 2d)

× ωβ ′(I∗)I∗S∗ sin(ωτ )

– ω3i + p1ωi – (α + 2d)ωβ ′(I∗)I∗S∗ cos(ωτ )i +
(
d(α + d) – ω2)

× β ′(I∗)I∗S∗ sin(ωτ )i.

From which we get

cos(ω̄τ ) =
(p0 – p2ω̄

2)
(
d(α + d) – ω̄2) + (p1 – ω̄2)(α + 2d)ω̄2

(
d(α + d) – ω̄2

)2 + (α + 2d)2ω̄2

1
β ′(I∗)I∗S∗

:= C1, (2.7)

sin(ω̄τ ) =
(p0 – p2ω̄

2)(α + 2d)ω̄ – (p1 – ω̄2)
(
d(α + d) – ω̄2)ω̄

(
d(α + d) – ω̄2

)2 + (α + 2d)2ω̄2

1
β ′(I∗)I∗S∗

:= C2, (2.8)

where ω̄ =
√

x and x is a positive root (if it exists) of the following equation:

H(x) := x3 + q2x2 + q1x + q0 = 0, (2.9)

with

q2 = (p2)2 – 2p1 –
(
β ′(I∗)I∗S∗

)2,

q1 = (p1)2 – 2p0p2 – (α2 + 2dα + 2d2)
(
β ′(I∗)I∗S∗

)2,

q0 = (p0)2 – d2(α + d)2(β ′(I∗)I∗S∗
)2.
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For this ω̄, there exists a sequence τ n, n = 0, 1, 2, . . . , given by

τ n = τ 0 +
2nπ

ω̄
, τ 0 =

⎧
⎨

⎩

arccos C1
ω̄

, C2 ≥ 0,

2π–arccos C1
ω̄

, C2 < 0,
(2.10)

such that (2.7) and (2.8) hold. A straightforward calculation also shows that

sign
(dλ

dτ

∣
∣
∣
τ=τn

)
= sign

(H(x)

dx

∣
∣
∣
x=(ω̄)2

)
.

Theorem 2.4 If Eq. (2.9) has a positive root x̄ satisfying H ′(x̄) 
= 0, then system (2.1) under-
goes a Hopf bifurcation at E∗ when τ = τ n, where τ n(n = 0, 1, . . .) are determined by (2.10).

3 Our two-patch SIRS model
In this section, we couple Model (2.1) with dispersal by extending Model (2.1) to a two-
patch setting. More specifically, we assume all individuals traveling between two patches
do not change their disease states, that is, susceptibles (infectives/recovered) who traveled
from one patch to the other are still susceptible (infectious/recovered). The flow chart is
presented in Fig. 1. Patch specified disease states and parameters are labeled with subscript
i (i = 1, 2). The travel rates from patch j to patch i are assumed to be mS

ij > 0, mI
ij ≥ 0, mR

ij > 0,
i, j = 1, 2.

Our two-patch SIRS model is then described by the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1(t)
dt = A1 – d1S1(t) – β1(I1(t – τ ))I1(t)S1(t) + α1R1(t) – mS

21S1(t) + mS
12S2(t),

dI1(t)
dt = β1(I1(t – τ ))I1(t)S1(t) – (γ1 + ε1 + d1)I1(t) – mI

21I1(t) + mI
12I2(t),

dR1(t)
dt = γ1I1(t) – α1R1(t) – d1R1(t) – mR

21R1(t) + mR
12R2(t),

dS2(t)
dt = A2 – d2S2(t) – β2(I2(t – τ ))I2(t)S2(t) + α2R2(t) – mS

12S2(t) + mS
21S1(t),

dI2(t)
dt = β2(I2(t – τ ))I2(t)S2(t) – (γ2 + ε2 + d2)I2(t) – mI

12I2(t) + mI
21I1(t),

dR2(t)
dt = γ2I2(t) – α2R2(t) – d2R2(t) – mR

12R2(t) + mR
21R1(t),

(3.1)

Figure 1 The flow chart of our two-patch SIRS model
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where βi(Ii(t – τ )) = β̂i – β̃ifi(Ii(t – τ )). The associated initial condition is

φ = (φ1,φ2,φ3,φ4,φ5,φ6) ∈ X := C+ × C+ × C+ × C+ × C+ × C+. (3.2)

The well-posedness of our model is given by the following theorem with proof provided
in Appendix C.

Theorem 3.1 System (3.1)–(3.2) possesses a unique solution, which is nonnegative. The
total population N(t) =

∑2
i=1(Si + Ii + Ri) is bounded satisfying

N(t) ∈
[

min

{
A1 + A2

max{d1 + ε1, d2 + ε2} , N(0)

}

, max

{
A1 + A2

min{d1, d2} , N(0)

}]

.

3.1 The disease-free equilibrium and the basic reproduction number
The disease-free equilibrium E0 = (S̄1, 0, R̄1, S̄2, 0, R̄2) satisfies the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A1 – (d1 + mS
21)S̄1 + mS

12S̄2 = –α1R̄1,

A2 – (d2 + mS
12)S̄2 + mS

21S̄1 = –α2R̄2,

(α1 + d1 + mR
21)R̄1 = mR

12R̄2,

(α2 + d2 + mR
12)R̄2 = mR

21R̄1.

(3.3)

From the last two equations, we deduce that if R̄1 = 0, then R̄2 = 0, and vice versa. More-
over, if R̄1 
= 0 and R̄2 
= 0, it follows that

(α1 + d1 + mR
21)(α2 + d2 + mR

12) = mR
12mR

21,

which is impossible. Therefore R̄1 = R̄2 = 0 and hence

⎧
⎨

⎩

A1 + mS
12S̄2 = (d1 + mS

21)S̄1,

A2 + mS
21S̄1 = (d2 + mS

12)S̄2.
(3.4)

This yields

S̄1 =
A1(d2 + mS

12) + A2mS
12

d1d2 + d1mS
12 + d2mS

21
> 0, S̄2 =

A1mS
21 + A2(d1 + mS

21)

d1d2 + d1mS
12 + d2mS

21
> 0. (3.5)

Thus, there is a unique disease-free equilibrium (DFE), which is E0 = (S̄1, 0, 0, S̄2, 0, 0) with
S̄1 and S̄2 given by (3.5).

To determine the basic reproduction number, using the next generation matrix method
[44, 50], we get

F =

(
β̂1S̄1 0

0 β̂2S̄2

)

and V =

(
a1 + mI

21 –mI
12

–mI
21 a2 + mI

12

)

,
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where ai = γi + εi + di and βi(0) = βi1 for i = 1, 2. By a direct calculation, we get

FV –1 =
1

a1a2 + a1mI
12 + a2mI

21

(
β̂1S̄1(a2 + mI

12) β̂1S̄1mI
12

β̂2S̄2mI
21 β̂2S̄21(a1 + mI

21)

)

.

Hence, the basic reproduction number R0 is given by

R0 = ρ{FV –1} =
β̂1S̄1(a2 + mI

12) + β̂2S̄2(a1 + mI
21) +

√



2(a1a2 + a1mI
12 + a2mI

21)
, (3.6)

where


 =
(
β̂1S̄1(a2 + mI

12) – β̂2S̄2(a1 + mI
21)

)2 + 4β̂1S̄1mI
12β̂2S̄2mI

21

=
(
β̂1S̄1mI

12 + β̂2S̄2mI
21

)2 +
(
β̂1S̄1a2 – β̂2S̄2a1

)2.

Then from [50] we have the following theorem.

Theorem 3.2 The disease-free equilibrium E0 is locally asymptotically stable (LAS) when
R0 < 1, and it is unstable when R0 > 1.

Theorem 3.3 If the travel rates are the same, mY
ij = m, Y ∈ {S, I, R}, i, j = 1, 2, i 
= j, then the

disease-free equilibrium E0 is globally asymptotically stable provided R0 < 1.

Proof Set Ni(t) = Si(t) + Ii(t) + Ri(t), i = 1, 2. From system (3.1), we have

⎧
⎨

⎩

dN1(t)
dt = A1 – d1N1(t) – mN1(t) + mN2(t) – ε1I1,

dN2(t)
dt = A2 – d2N2(t) – mN2(t) + mN1(t) – ε2I2.

(3.7)

This implies that

lim
t→∞ sup S1(t) ≤ lim

t→∞ sup N1(t) ≤ A1(d2 + m) + A2m
d1d2 + d1m + d2m

= S̄1,

lim
t→∞ sup S2(t) ≤ lim

t→∞ sup N2(t) ≤ A2(d1 + m) + A1m
d1d2 + d1m + d2m

= S̄2.

Therefore, for sufficiently small η > 0, there exists T > 0 such that Si(t) ≤ S̄i + η, i = 1, 2.
Thus, from the second and fifth equations of system (3.1), we have

(
I ′

1(t)
I ′

2(t)

)

≤ (F – V + ηB)

(
I1(t)
I2(t)

)

,

where B = diag(β̂1, β̂2). From [44], we see that R0 < 1 implies that both eigenvalues of
F – V have negative real parts. Thus, for sufficiently small η > 0, both eigenvalues of F –
V + ηB also have negative real parts. This implies that the unique equilibrium (0, 0) of the
following linear system

(
i′1(t)
i′2(t)

)

= (F – V + ηB)

(
i1(t)
i2(t)

)

(3.8)
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is globally asymptotically stable. Hence

lim
t→∞ ik(t) = 0, k = 1, 2.

It then follows from a comparison that lim
t→∞ Ik(t) = 0, k = 1, 2.

Thus, the third and sixth equations of system (2.1) lead to a limiting system
⎧
⎨

⎩

dR1(t)
dt = –α1R1(t) – d1R1(t) – mR1(t) + mR2(t),

dR2(t)
dt = –α2R2(t) – d2R2(t) – mR2(t) + mR1(t),

(3.9)

which yields Ri(t) → 0, i = 1, 2 as t → ∞.
Therefore, the first and fourth equations of system (2.1) lead to Si(t) → S̄i, i = 1, 2, as

t → ∞, as it has a limiting system
⎧
⎨

⎩

dS1(t)
dt = A1 – d1S1(t) – mS1(t) + mS2(t),

dS2(t)
dt = A2 – d2S2(t) – mS2(t) + mS1(t).

(3.10)

By the theory of asymptotically autonomous systems [7], every solution of system (3.1)
with a nonnegative initial condition (3.2) converges to E0 as t → ∞, provided that R1

0 < 1.
The proof is complete. �

3.2 Existence of boundary equilibria EB
1 and EB

2
In this subsection, we consider the existence of boundary equilibria of system (3.1), de-
noted by EB

1 = (Ŝ1, 0, Ŝ2, R̂1, Î2, R̂2) and EB
2 = (S̃1, Ĩ1, R̃1, S̃2, 0, R̃2).

From system (3.1), it is easy to find that there are no boundary equilibria if mI
12 > 0 or

mI
21 > 0. Next we consider the case mI

12 = mI
21 = 0. A direct examination reveals that the

equilibrium point EB
1 , representing the presence of the disease only in patch 2, is deter-

mined by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ŝ2 = a2
β2(Î2)

,

R̂1 = mR
12γ2

(α1+d1)(α2+d2)+(α1+d1)mR
12+(α2+d2)mR

21
Î2 := c1 Î2,

R̂2 = α1+d1+mR
21

mR
12

R̂1 = α1+d1+mR
21

mR
12

c1 Î2 := c2 Î2,

Ŝ1 = A1
d1+mS

21
+ α1

d1+mS
21

R̂1 + mS
12

d1+mS
21

Ŝ2 = A1
d1+mS

21
+ α1c1

d1+mS
21

Î2 + mS
12

d1+mS
21

a2
β2(Î2)

,

(3.11)

where Î2 is a positive root of the equation

A2 +
A1mS

21

d1 + mS
21

–

(

a2 – α2c2 –
α1c1mS

21

d1 + mS
21

)

Î2 =
(d1d2 + d1mS

12 + d2mS
21)

d1 + mS
21

a2

β2(Î2)
. (3.12)

After lengthy calculations, it is found that a2 – α2c2 – α1c1mS
21

d1+mS
21

> 0. Hence, the left-hand side

of (3.12) is a decreasing function of Î2. Meanwhile, since β2(Î2) is a decreasing function of
Î2, the right-hand side of (3.12) is an increasing function of Î2. Therefore, a solution exists
only when

A2 +
A1mS

21

d1 + mS
21

>
(d1d2 + d1mS

12 + d2mS
21)

d1 + mS
21

a2

β2(0)
.
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That is, R̃2
0 > 1, where

R̃2
0 := S̄2

β̂2

a2
. (3.13)

Define

R̃1
0 := S̄1

β̂1

a1
. (3.14)

Similarly, we can obtain that the condition of the existence and uniqueness of EB
2 is R̃1

0 > 1.
Summarizing the above analysis, we get the following result.

Theorem 3.4 If mI
12 = mI

21 = 0, then there exists a unique boundary equilibrium EB
1 if and

only if R̃2
0 > 1; while EB

2 exists and is unique if and only if R̃1
0 > 1. Further, there are no

boundary equilibria if mI
12 > 0 or mI

21 > 0.

For system (3.1) with mI
21 = mI

12 = 0, (3.6) yields

R0 = max
{
R̃1

0, R̃2
0
}

. (3.15)

Then we have the following result.

Corollary 3.5 Consider system (3.1) with mI
21 = mI

12 = 0. If R0 ≤ 1, then neither EB
1 nor EB

2

exists.

3.3 Existence of the endemic equilibrium
3.3.1 Uniform persistence of system (3.1) with mI

12mI
21 > 0

Theorem 3.6 Let X0 = {φ ∈ X : φ2(0) + φ4(0) > 0}. If R0 > 1, then there exists a real num-
ber δ > 0 such that any solution (S1(t;φ), I1(t;φ), R1(t;φ), S2(t;φ), I2(t;φ), R2(t;φ)) of system
(3.1) with φ ∈ X0 when mI

21 > 0 and mI
12 > 0 satisfies

lim inf
t→∞ (S1(t,φ), I1(t,φ), R1(t,φ), S2(t,φ), I2(t,φ), R2(t,φ)) ≥ (δ, δ, δ, δ, δ, δ).

Moreover, system (3.1) has an endemic equilibrium in X0.

Proof Set ∂X0 = X \ X0. Thus ∂X0 = {φ ∈ X : φ2(0) = φ4(0) = 0}.
As per convention, let us denote the solution semiflow of system (3.1) as �(t) : X → X.

Here, �(t)φ = xt(·;φ) for every φ ∈ X and t ≥ 0. Consequently, �(t) is deemed asymptoti-
cally smooth for t ≥ τ [22] and exhibits point dissipativity (cf. Theorem 3.1). Thus, a global
attractor exists for �(t) within X. Furthermore, deduced from the proof of Theorem 3.1,
�(t)(X0) remains within X0 for t ≥ 0.

Let M = {E0}. It is easy to show that M is an isolated invariant set in ∂X0. By the proof of
Theorem 3.3, ∀φ ∈ M∂ := {φ ∈ ∂X0 : �(t)(φ) ∈ ∂X0, t ≥ 0}, its omega limit set ω(φ) ⊂ M.

Now, assuming R0 > 1, by the persistence theory [22], �(t) is uniformly persistent con-
cerning X0 if we can demonstrate that W s(M)∩X0 = ∅, where W s(M) represents the stable
set associated with M.
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Let us consider the contrary scenario where there exists ψ = (ψ1,ψ2,ψ3,ψ4,ψ5,ψ6) ∈ X0

such that the solution tends to E0 as t approaches infinity. In this case, for any given ε > 0,
there exists a sufficiently large T such that

S̄1 – ε < S1(t;ψ) < S̄1 + ε, 0 ≤ I1(t;ψ) < ε, 0 ≤ R1(t;ψ) < ε,

S̄2 – ε < S2(t;ψ) < S̄2 + ε, 0 ≤ I2(t;ψ) < ε, 0 ≤ R2(t;ψ) < ε

for all t > T . Thus, for t > T + τ ,

I ′
1(t) ≥ β1(ε)(S̄1 – ε)I1(t) – a1I1(t) – mI

21I1(t) + mI
12I2(t),

I ′
2(t) ≥ β2(ε)(S̄2 – ε)I2(t) – a2I2(t) – mI

12I2(t) + mI
21I1(t).

(3.16)

By the continuity of βi, for sufficiently small ε > 0, βi(ε) is sufficiently close to βi1. There-
fore, if R0 = ρ(FV –1) > 1, then for those ε, ρ(FεV –1) > 1, where

Fε =

(
β1(ε)(S̄1 – ε) 0

0 β2(ε)(S̄2 – ε)

)

.

Consider that Fε –V possesses two real eigenvalues λ1 > λ2. From the condition ρ(FεV –1) >
1, it follows that λ1 > 0. Furthermore, λ1 corresponds to an eigenvector (1, v1)T , while λ2

corresponds to an eigenvector (1, –v2)T , where v1 > 0 and v2 > 0.
By comparison, for equation (3.16), we have

(
I ′

1(t)
I ′

2(t)

)

≥
(

i′1(t)
i′2(t)

)

= (Fε – V )

(
i1(t)
i2(t)

)

with
(

i1(0)

i2(0)

)

=

(
I1(0)

I2(0)

)

.

So,

(
I1(t)
I2(t)

)

≥
(

i1(t)
i2(t)

)

= C1eλ1t

(
1
v1

)

+ C2eλ2t

(
1

–v2

)

with

C1 =
v2I1(0) + I2(0)

v1 + v2
> 0, C2 =

v1I1(0) – I2(0)

v1 + v2
.

Consequently, as t approaches infinity, both I1(t) and I2(t) diverge towards infinity, leading
to a contradiction. Thus, W s(M) ∩ X0 = ∅ when R0 > 1.

To ensure the practical persistence of �(t), inspired by [49, Example 1.3.1], we define a
generalized distance function for the semiflow �(t) as follows:

p(φ) = min{φ2(0),φ4(0)},∀φ ∈ X.
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It can be readily verified that W s(M) ∩ p–1(0,∞) = ∅. Therefore, according to [49, Theo-
rem 1.3.2], there exists a real number δ > 0 such that lim inft→∞ p(�(t)φ) ≥ (δ, δ, δ, δ, δ, δ).

In other words, for any solution (S1(t,φ), I1(t,φ), R1(t,φ), S2(t,φ), I2(t,φ), R2(t,φ)) of sys-
tem (3.1) with φ ∈ X0, we have

lim inf
t→∞ (S1(t,φ), I1(t,φ), R1(t,φ), S2(t,φ), I2(t,φ), R2(t,φ)) ≥ (δ, δ, δ, δ, δ, δ).

Moreover, as per [49, Theorem 1.3.11], system (3.1) possesses a coexistence equilibrium
in X0, which qualifies as an endemic equilibrium (given mI

21 > 0 and mI
12 > 0). �

3.3.2 Endemic equilibria of system (3.1) with mI
12 = mI

21 = 0
In this section, we consider the case where the infectives do not travel, i.e., mI

12 =
mI

21 = 0. We will delve into the existence and uniqueness of the EE, denoted as E∗ =
(S∗

1, I∗
1 , R∗

1, S∗
2, I∗

2 , R∗
2) in this particular case. For the EE E∗, from the second and fifth equa-

tions of system (3.1), we have

S∗
1 =

a1

β1(I∗
1 )

, S∗
2 =

a2

β2(I∗
2 )

.

And from the third and sixth equations of system (3.1), we get

R∗
1 =

b2γ1I∗
1 + mR

12γ2I∗
2

b1b2 – mR
12mR

21
:= r11I∗

1 + r12I∗
2 , R∗

2 =
mR

21γ1I∗
1 + b1γ2I∗

2

b1b2 – mR
12mR

21
:= r21I∗

1 + r22I∗
2 ,

where b1 = α1 + d1 + mR
21, b2 = α2 + d2 + mR

12.
Substituting them into the other two equations of system (3.1), we get

⎧
⎨

⎩

A1 – d1
a1

β1(I∗1 ) + (α1r11 – a1)I∗
1 + α1r12I∗

2 – mS
21

a1
β1(I∗1 ) + mS

12
a2

β2(I∗2 ) = 0,

A2 – d2
a2

β2(I∗2 ) + (α2r22 – a2)I∗
2 + α2r21I∗

1 – mS
12

a2
β2(I∗2 ) + mS

21
a1

β1(I∗1 ) = 0.

That is,
⎧
⎪⎨

⎪⎩

α2r21I∗
1 + mS

21
a1

β1(I∗1 ) = a2(d2+mS
12)

β2(I∗2 ) + (a2 – α2r22)I∗
2 – A2,

α1r12I∗
2 + mS

12
a2

β2(I∗2 ) = a1(d1+mS
21)

β1(I∗1 ) + (a1 – α1r11)I∗
1 – A1.

(3.17)

If R0 ≤ 1, then our next result shows that there is no EE.

Lemma 3.7 Consider system (3.1) with mI
12 = mI

21 = 0. If R0 ≤ 1, then system (3.1) does
not admit an EE.

Proof If there exists an EE, from system (3.1) we obtain

d1S∗
1 + d2S∗

2 + (ε1 + d1)I∗
1 + (ε2 + d2)I∗

2 + d1R1 + d2R2 = A1 + A2.

This implies that d1S∗
1 + d2S∗

2 < A1 + A2. Meanwhile, by the definitions of S̄i, i = 1, 2, we
have d1S̄1 + d2S̄1 = A1 + A2. When mI

12 = mI
21 = 0, we get

R0 = max
{

S̄1
β̂1

a1
, S̄2

β̂2

a2

}
.
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And hence, if R0 ≤ 1, then

S̄1 ≤ a1

β̂1
, S̄2 ≤ a2

β̂2
.

As βi(i = 1, 2) are decreasing functions, we have

S̄1 <
a1

β1(I∗
1 )

= S∗
1, S̄2 <

a2

β2(I∗
2 )

= S∗
2.

Thus,

d1S∗
1 + d2S∗

2 > d1S̄1 + d2S̄1 = A1 + A2,

which is a contradiction. �

To consider the existence of EE when R0 > 1, we define

R(1,2)
0 =

A1β̂1

a1(d1 + mS
21)

+
a2mS

12β̂1

a1(d1 + mS
21)β̂2

, (3.18)

R(2,1)
0 =

A2β̂2

a2(d2 + mS
12)

+
a1mS

21β̂2

a2(d2 + mS
12)β̂1

. (3.19)

To better sort out the conditions on the existence of equilibria, we introduce the following
lemmas and omit their proof (readers can refer to the proofs of Lemmas 4.8–4.10 in [42]).

Lemma 3.8 R̃1
0 > R(1,2)

0 if and only if R̃2
0 > 1; R̃2

0 > R(2,1) if and only if R̃1
0 > 1.

Lemma 3.9 If R0 ≤ 1, there are three cases:
(i) If R̃1

0 > 1 and R̃2
0 ≤ 1, then R(1,2)

0 > 1 and R(2,1)
0 < 1;

(ii) If R̃1
0 ≤ 1 and R̃2

0 > 1, then R(1,2)
0 < 1 and R(2,1)

0 > 1;
(iii) If R̃1

0 > 1 and R̃2
0 > 1, then either R(1,2)

0 > 1 or R(2,1)
0 > 1.

Let

x1 = u1(I1) := α2r21I1 + mS
21

a1

β1(I1)
, I1 ∈ [0,∞), (3.20)

x2 = u2(I2) := α1r12I2 + mS
12

a2

β2(I2)
, I2 ∈ [0,∞). (3.21)

It is easy to show that u1 and u2 are increasing functions. So, I1 = u–1
1 (x1), x1 ∈

[
mS

21a1
β1(0) ,∞

)
;

and I2 = u–1
2 (x2), x2 ∈

[
mS

12a2
β2(0) ,∞

)
.

Then, equations (3.17) define the following two functions:

x1 = g2(x2) :=
a2(d2 + mS

12)

β2(u–1
2 (x2))

+ (a2 – α2r22)u–1
2 (x2) – A2, x2 ∈

[mS
12a2

β2(0)
,∞

)
, (3.22)

x2 = g1(x1) :=
a1(d1 + mS

21)

β1(u–1
1 (x1))

+ (a1 – α1r11)u–1
1 (x1) – A1, x1 ∈

[mS
21a1

β1(0)
,∞

)
. (3.23)
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The function x1 = g2(x2) passes through the point
(

a2(d2+mS
12)

β2(0) – A2, mS
21a1

β1(0)

)
in the plane

x1-x2. Meanwhile, the function x2 = g1(x1) passes through the point
(

mS
12a2

β2(0) , a1(d1+mS
21)

β1(0) –

A1

)
in the same plane x1-x2.

We can define

G1(x1) = g2
(
g1(x1)

)
– x1. (3.24)

And for this function, if g1

(
mS

21a1
β1(0)

)
≥ a2mS

12
β2(0) that is equal to R(1,2)

0 ≤ 1, set x1 ∈
[

mS
21a1

β1(0) ,∞
)

.

Otherwise, if g1

(
mS

21a1
β1(0)

)
< a2mS

12
β2(0) that is equal to R(1,2)

0 > 1, set x1 ∈
[

g–1
1

(
mS

12a2
β2(0)

)
,∞

)
.

Lemma 3.10 g1(x1) and g2(x2) and G1(x1) are all increasing functions.

The proof of Lemma 3.10 is presented in Appendix D.
Thus, G1(x1) = 0 has at most one root. Consequently, the two curves x1 = g2(x2) and

x2 = g1(x1) have at most one intersection point in the first quadrant of the plane x1x2. So,
in order to have an EE, it is needed that G1

(
mS

21a1
β1(0)

)
< 0; otherwise, there does not exist an

EE. Moreover, for an EE, it is required that x∗
1 = u1(I∗

1 ) > mS
21a1

β1(0) , x∗
2 = u2(I∗

2 ) > mS
12a2

β2(0) .

Lemma 3.11 Assume R(1,2)
0 ≤ 1. If G1

(
mS

21a1
β1(0)

)
≥ 0, then there does not exist an EE; if

G1

(
mS

21a1
β1(0)

)
< 0, then there exists a unique EE.

Proof If G1

(
mS

21a1
β1(0)

)
< 0, then set the only intersection point as P̃ = (x̃1, x̃2) with x̃1 > mS

21a1
β1(0) .

This implies g2(g1(x̃1)) = x̃1 and x̃2 = g1(x̃1). Then, according to the monotonicity of g1, we
get x̃2 = g1(x̃1) > g1

(
mS

21a1
β1(0)

)
. Note that g1

(
mS

21a1
β1(0)

)
= a1(d1+mS

21)
β1(0) – A1 and g1

(
mS

21a1
β1(0)

)
≥ a2mS

12
β2(0)

is equal to R(1,2)
0 ≤ 1. So, there must be x̃2 > mS

12a2
β2(0) . �

Similarly, we can define

G2(x2) = g1
(
g2(x2)

)
– x2. (3.25)

And, if g2

(
mS

12a2
β2(0)

)
≥ a1mS

21
β1(0) that is equal to R(2,1)

0 ≤ 1, then set x2 ∈
[

mS
12a2

β2(0) ,∞
)

. Otherwise,

if g2

(
mS

12a2
β2(0)

)
< a1mS

21
β1(0) that is equal to R(2,1)

0 > 1, then set x2 ∈
[
g–1

2

(
mS

21a1
β1(0)

)
,∞

)
.

We can prove that G2(x2) is an increasing function. The following lemma also holds.

Lemma 3.12 Assume R(2,1)
0 ≤ 1. If G2

(
mS

12a2
β2(0)

)
≥ 0, there does not exist an EE; if

G2

(
mS

12a2
β2(0)

)
< 0, there exists a unique EE.

We further have the following results.

Lemma 3.13 If R(1,2)
0 > 1 and R(2,1)

0 > 1, there exists a unique EE.

Proof If R(1,2)
0 > 1 and R(2,1)

0 > 1. According to the definitions of G1(x1) and G2(x2), in
this case, we only need to consider under the given conditions x1 ≥ g–1

1

(
mS

12a2
β2(0)

)
and x2 ≥

g–1
2

(
mS

21a1
β1(0)

)
.
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Firstly, from R(1,2)
0 > 1 and R(2,1)

0 > 1, that is, g2

(
mS

12a2
β2(0)

)
< mS

21a1
β1(0) and g1

(
mS

21a1
β1(0)

)
< mS

12a2
β2(0) ,

we get

mS
21a1

β1(0)
< g–1

1

(
mS

12a2

β2(0)

)

.

So,

G1

(

g–1
1

(mS
12a2

β2(0)

))

= g2

(

g1

(

g–1
1

(mS
12a2

β2(0)

)))

– g–1
1

(mS
12a2

β2(0)

)

= g2

(
mS

12a2

β2(0)

)

– g–1
1

(mS
12a2

β2(0)

)
< 0.

This implies that the two curves x1 = g2(x2) and x2 = g1(x1) have one intersection point
denoted by P̃ = (x̃1, x̃2) with x̃1 > g–1

1

(
mS

12a2
β2(0)

)
and x̃2 > g–1

2

(
mS

21a1
β1(0)

)
.

Secondly, note that g1 and g2 are increasing functions. We know that x̃1 = g2(x̃2) > mS
21a1

β1(0)

and x̃2 = g2(x̃1) > mS
12a2

β2(0) . This completes the proof. �

Lemma 3.14 If R(1,2)
0 ≤ 1 and G1

(
mS

21a1
β1(0)

)
≤ 0, then R(2,1)

0 > 1. If R(2,1)
0 ≤ 1 and

G2

(
mS

12a2
β2(0)

)
≤ 0, then R(1,2)

0 > 1.

Proof Note that G1

(
mS

21a1
β1(0)

)
≤ 0 is equivalent to

g2

(

g1

(
mS

21a1

β1(0)

))

≤ mS
21a1

β1(0)
.

Note also that R(1,2)
0 ≤ 1 ⇔ mS

12a2
β2(0) ≤ g1

(
mS

21a1
β1(0)

)
. Thus

a2(d2 + mS
12)

β2(0)
– A2 = g2

(
mS

12a2

β2(0)

)

≤ mS
21a1

β1(0)
,

that is, R(2,1)
0 > 1.

Similarly, we can prove the second part of this lemma. �

Theorem 3.15 When R0 > 1, there exists a unique EE if one of the following conditions
holds:

(i) R(1,2)
0 > 1 and R(2,1)

0 > 1;
(ii) R(1,2)

0 ≤ 1, R(2,1)
0 > 1, and G1

(
mS

21a1
β1(0)

)
< 0;

(iii) R(1,2)
0 > 1, R(2,1)

0 ≤ 1, and G2

(
mS

12a2
β2(0)

)
< 0.

With the above results, we summarize the existence of equilibria of system (3.1) with
mI

12 = mI
21 = 0 in Table 1.

3.4 Stability of E∗ at a special case
We have shown that if mI

12mI
21 > 0 and R0 > 1, then system (3.1) has at least one endemic

equilibrium E∗ and the boundary equilibria EB
1 and EB

2 do not exist; If mI
12 = mI

21 = 0 and
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Table 1 The existence of equilibria whenmI
21 =mI

12 = 0. Notation is as follows: × (does not exist); �
(exists); US (unstable); LAS (locally asymptotically stable). R̃1

0, R̃2
0 are defined in (3.13) and (3.14).R0,

R(1,2)
0 ,R(2,1)

0 , G1, and G2 are defined in (3.6), (3.18), (3.19), (3.24), and (3.25), respectively

E0 EB1 EB2 E∗

R0 < 1 R̃1
0 < 1, R̃2

0 < 1 LAS × × ×
R0 = 1 � × × ×
R0 > 1 R̃1

0 > 1, R̃2
0 ≤ 1 R(1,2)

0 > 1,R(2,1)
0 < 1 US × � ×

R̃1
0 ≤ 1, R̃2

0 > 1 R(1,2)
0 < 1,R(2,1)

0 > 1 US � × ×
R̃1

0 > 1, R̃2
0 > 1 R(1,2)

0 > 1,R(2,1)
0 > 1 US � � �

R(1,2)
0 ≤ 1,R(2,1)

0 > 1 G1

(
mS
21a1

β1(0)

)

≥ 0 US � � ×

G1

(
mS
21a1

β1(0)

)

< 0 US � � �

R(1,2)
0 > 1,R(2,1)

0 ≤ 1 G2

(
mS
12a2

β2(0)

)

≥ 0 US � � ×

G2

(
mS
12a2

β2(0)

)

< 0 US � � �

R0 > 1, then boundary equilibria EB
1 and EB

2 exist and there is a unique EE E∗ if one of the
conditions in Theorem 3.15 is satisfied. The stability analysis of the EE E∗ of system (3.1) is
quite complex in general. Next we consider the stability of the EE at a special homogeneous
case with

Ai = A, βi(I) = β̂ – β̃f (I), di = d, εi = ε, γi = γ ,

αi = α, mY
ij = mY , Y ∈ {S, R}, mI

ij = 0. (3.26)

For this special case, we get

R̃1
0 = R̃2

0 = R0 = R1
0 =

Aβ̂

ad
<

Aβ̂ + amS

ad + amS = R(1,2)
0 = R(2,1)

0 .

It follows from Theorem 3.15 that there is a unique EE if R0 > 1.

Theorem 3.16 If R1
0 > 1, then system (3.1) with (3.26) admits a unique endemic equilib-

rium E∗, which is locally asymptotically stable when τ = 0.

Proof Linearizing system (3.1) at E∗, we obtain the characteristic equation

L(λ, τ ) = L̂(λ, τ )L̃(λ, τ ) = 0, (3.27)

where

L̂(λ, τ ) = λ3 + l̂12λ
2 + l̂11λ + l̂10 – (λ2 + l̂21λ + l̂20)β ′(I∗)I∗S∗e–λτ

with

l̂12 = α + 2d + 2mS + β(I∗)I∗ + 2mI + 2mR > 0,

l̂11 = (d + 2mS)(α + d + 2mR + 2mI) + β(I∗)I∗(a + 2mI + α + d + 2mR)

+ 2mI(α + d + 2mR) > 0,



Sun et al. Advances in Continuous and Discrete Models          (2025) 2025:3 Page 18 of 29

l̂10 = 2mI(d + 2mS)(α + d + 2mR) + β(I∗)I∗ (
(ε + d + 2mI)(α + d + 2mR) + γ (d + 2mR)

)

> 0.

l̂21 = α + 2d + 2mR + 2mS > 0,

l̂20 = (d + 2mS)(α + d + 2mR) > 0

and

L̃(λ, τ ) = λ3 + l̃12λ
2 + l̃11λ + l̃10 – (λ2 + l̃21λ + l̃20)β ′(I∗)I∗S∗e–λτ

with

l̃12 = α + 2d + β(I∗)I∗ > 0, l̃11 = d(α + d) + β(I∗)I∗(a + α + d) > 0,

l̃10 = β(I∗)I∗ ((ε + d)(α + d) + dγ ) > 0, l̃21 = α + 2d > 0, l̃20 = d(α + d) > 0.

When τ = 0, we obtain

L̂(λ, 0) = λ3 + l̂0
12λ

2 + l̂0
11λ + l̂0

10, L̃(λ, 0) = λ3 + l̃0
12λ

2 + l̃0
11λ + l̃0

10

with (note that β(·) < 0)

l̂0
12 = l̂12 – β ′(I∗)I∗S∗ > 0, l̂0

11 = l̂11 – l̂21β
′(I∗)I∗S∗ > 0, l̂0

10 = l̂10 – l̂20β
′(I∗)I∗S∗ > 0.

l̃0
12 = l̃12 – β ′(I∗)I∗S∗ > 0, l̃0

11 = l̃11 – l̃21β
′(I∗)I∗S∗ > 0, l̃0

10 = l̃10 – l̃20β
′(I∗)I∗S∗ > 0.

By a straightforward calculation, we know that l̂0
12 l̂0

11 – l̂0
10 > 0 and l̃0

12 l̃0
11 – l̃0

10 > 0. Thus,
all roots of L̂(λ, 0) = 0 and L̃(λ, 0) = 0 have negative real parts, and hence E∗ is locally
asymptotically stable. �

In examining the potential for system (3.1) to undergo a Hopf bifurcation as τ increases,
it is noteworthy that when τ ≥ 0,

L̂(0, τ ) = l̂10 – l̂20β
′(I∗)I∗S∗ > 0, L̃(0, τ ) = l̃10 – l̃20β

′(I∗)I∗S∗ > 0.

Thus L(0, τ ) = L̂(0, τ )L̃(0, τ ) > 0, which implies that λ = 0 is not an eigenvalue. There-
fore, our investigation aims to ascertain whether pairs of purely imaginary roots exist for
L̂(λ, τ ) = 0 or L̃(λ, τ ) = 0 as τ increases. To achieve this objective, we substitute λ = ωi,
ω > 0 into them, respectively.

Set μ = β ′(I∗)I∗S∗. For L̂(ωi, τ ) = 0, by separating the real and imaginary parts, we obtain

cos(ω̂τ ) =
(l̂10 – l̂12ω̂

2)
(
l̂20 – ω̂2) + (l̂11 – ω̂2)l̂21ω̂

2

(
l̂20 – ω̂2

)2 + l̂2
21ω̂

2

1
μ

:= Ĉ1, (3.28)

sin(ω̂τ ) =
(l̂10 – l̂12ω̂

2)l̂21ω̂ – (l̂11 – ω̂2)
(
l̂20 – ω̂2)ω̂

(
l̂20 – ω̂2

)2 + l̂2
21ω̂

2

1
μ

:= Ĉ2, (3.29)
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where ω̂ =
√

x and x is a positive root (if it exists) of the following equation:

Ĥ(x) := x3 + q̂2x2 + q̂1x + q̂0 = 0 (3.30)

with

q̂2 = l̂2
12 – 2l̂11 – μ2, q̂1 = l̂2

11 – 2l̂10 l̂12 + 2l̂20μ
2 – l̂2

21μ
2, q̂0 = l̂2

10 – l̂2
20μ

2.

Then there exists a sequence τ̂ n, n = 0, 1, 2, . . . , given by

τ̂ n = τ̂ 0 +
2nπ

ω̂
, τ̂ 0 =

{
arccos Ĉ1

ω̂
, Ĉ2 ≥ 0

2π–arccos Ĉ1
ω̂

, Ĉ2 < 0
(3.31)

at which L̂(λ, τ ) = 0 admits a pair of purely imaginary roots ±ω̂i.
Similarly, for L̃(ωi, τ ) = 0, we obtain

cos(ω̃τ ) =
(l̃10 – l̃12ω̃

2)
(
l̃20 – ω̃2) + (l̃11 – ω̃2)l̃21ω̃

2

(
l̃20 – ω̃2

)2 + l̃2
21ω̃

2

1
μ

:= C̃1 (3.32)

sin(ω̃τ ) =
(l̃10 – l̃12ω̃

2)l̃21ω̃ – (l̃11 – ω̃2)
(
l̃20 – ω̃2)ω̃

(
l̃20 – ω̃2

)2 + l̃2
21ω̃

2

1
μ

:= C̃2. (3.33)

Squaring and adding both equations, we see that ω̃ =
√

x satisfies

H̃(x) := x3 + q̃2x2 + q̃1x + q̃0 = 0 (3.34)

with

q̃2 = l̃2
12 – 2l̃11 – μ2, q̃1 = l̃2

11 – 2l̃10 l̃12 + 2l̃20μ
2 – l̃2

21μ
2, q̃0 = l̃2

10 – l̃2
20μ

2.

If Eq. (3.34) has a positive root, then there exists a sequence τ̃ n, n = 0, 1, 2, . . . , given by

τ̃ n = τ̃ 0 +
2nπ

ω̃
, τ̃ 0 =

{
arccos C̃1

ω̃
, C̃2 ≥ 0,

2π–arccos C̃1
ω̃

, C̃2 < 0,
(3.35)

at which L̃(ωi, τ̃ n) = 0.
Further, we can directly verify the transversality condition by the following lemma.

Lemma 3.17 sign
(

dλ
dτ

∣
∣
∣
τ=τ̂n

)
= sign

(
Ĥ(x)
dx

∣
∣
∣
x=(ω̂)2

)
and sign

(
dλ
dτ

∣
∣
∣
τ=τ̃n

)
= sign

(
H̃(x)
dx

∣
∣
∣
x=(ω̃)2

)
,

where τ̂ n and τ̃ n are given by (3.31) and (3.35), respectively.

Theorem 3.18 Consider system (3.1) with (3.26). If Eq. (3.30) has a positive root x̂ with
Ĥ ′(x̂) 
= 0 (or Eq. (3.34) has a positive root x̃ satisfying H̃ ′(x̃) 
= 0), then Hopf bifurcation
occurs at τ = τ̂ n (or τ = τ̃ n), n = 0, 1, . . . .



Sun et al. Advances in Continuous and Discrete Models          (2025) 2025:3 Page 20 of 29

4 Numerical simulations
We first carry out some numerical simulations for system (2.1). To facilitate comparison
with the findings presented in [40–42], we adopt specific parameters as follows:

A = 0.2, β̂ = 1, d = 0.2, ε = 0.1,γ = 0.05,α = 0.06 (4.1)

and set β̃ = θβ̂ , θ ∈ (0, 1]. For convenience, we label Model (2.1) as Model-I for f given
in (2.2) and Model-II for f given in (2.3) with k = κ S̄ and n = 1, respectively. That is, in
Model-I,

β(I) = β̂ – θ
(
1 – e–hI)β̂ ,

and in Model-II,

β(I) = β̂ – θβ̂
I

κ S̄ + I
.

We examine how precaution related parameters affect the disease dynamics. That is, θ ,
h for Model-I and θ , κ for Model-II. It follows from the expression of R1

0 that β̃ does not
affect the value of R1

0. But as we will see, β̃ does influence the stability of the EE.
With (4.1), the basic reproduction number is R1

0 = 2.8571. For Model-I with θ = 0.9
and h = 3.5, we obtain E∗ = (0.6512, 0.2061, 0.0396) and a Hopf bifurcation occurs at τ =
τ 0,+ ≈ 14.574. The EE E∗ is stable for τ ∈ [0, 14.574) and is unstable for τ > τ 0,+ (see the
bifurcation diagram presented in the left panel of Fig. 2).

For Model-II with θ = 0.9 and κ = 0.03, the EE is E∗ = (0.8940, 0.0626, 0.0120) and the
first Hopf bifurcation value is τ ≈ 9.759. The bifurcation diagram presented in the right
panel of Fig. 2 indicates that the EE is stable for τ ∈ [0, 9.759) and a stable periodic solution
may appear for τ > 0.759.

Next we sketch the regions in parameter space to determine whether a Hopf bifurca-
tion occurs for some critical values of τ . We restrict the parameter ranges as θ ∈ [0.6, 1],
h ∈ [2.5, 3.5] and κ ∈ [0.01, 0.45]. The stability region is depicted in Fig. 3, where the
yellow-colored region indicates that E∗ is stable for all τ ≥ 0, while the blue-colored re-
gion represents the case where the EE E∗ becomes unstable as τ surpasses the critical value
τ 0,+. It is seen from Fig. 3 that a higher value of θ , which corresponds to a higher value of

Figure 2 Left: Bifurcation diagram of Model-I with h = 3.5; Right: Bifurcation diagram of Model-II with κ = 0.03.
The parameters are A = 0.2, β̂ = 1, d = 0.2, ε = 0.1, γ = 0.05, α = 0.06, and θ = 0.9, resulting inR1

0 = 2.8571
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Figure 3 The stable regions of the endemic equilibrium. Left: Model-I; Right: Model-II. The endemic
equilibrium E∗ is stable for τ ≥ 0 in the yellow-colored region, while in the blue-colored region, the endemic
equilibrium is stable for τ ∈ [0,τ 0,+) and a Hopf bifurcation occurs at τ = τ 0,+

Figure 4 The influence of travel rates on the Hopf bifurcation values τ 0,+. Left: Model-III with θ = 0.9, h = 3.5;
Right: Model-IV with θ = 0.9 and κ = 0.01 in the special case (3.26) with parameters given in (4.1) andmI = 0,
where bothmS andmR fall within the range [0.001, 0.601]

β̃ , is associated with a greater likelihood of the occurrence of Hopf bifurcation leading to
cyclical behavior in disease incidence.

Next we carry out numerical simulations for Model-III and Model-IV, which correspond
to Model-I and Model-II in a two-patch environment, respectively. For the special case
(3.26) with parameter values given in (4.1), if R0 > 1, then EB

1 , EB
2 , and E∗ exist. It can

be seen that the travel rates mS and mR do not affect the value of E∗. However, they do
influence the values of τ̂ n and those of EB

1 and EB
2 . Moreover, travel rates also influence

the occurrence of Hopf bifurcations. To illustrate this, we set mS , mR both in the range
of [0.001, 0.601] and numerically calculate the values of τ 0,+ for Model-III with θ = 0.9,
h = 3.5, and Model-IV with θ = 0.9 and κ = 0.01 in Fig. 4. This implies that travel rates do
influence the stability of E∗ when τ > 0.

Next we fix mR = 0.01 and τ = 15 to explore the impact of mS on the solutions of system
(3.26) for different values of mS , specifically mS = 0, 0.02, 0.04, 0.06. At these parameter
settings, both Model-III and Model-IV exhibit periodic oscillations, as depicted in Fig. 5.
It is evident that mS significantly influences both the amplitude and phase, particularly for
Model-III.
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Figure 5 The solutions of Model-III (left) and Model-IV (right) formS = 0, 0.02, 0.04, 0.06, while keeping
mR = 0.01 and τ = 15 in the special case (3.26) with the parameters of (4.1) andmI = 0

Figure 6 The existence of equilibria for Model-III (Left) with h1 = 1 and h2 = 3, and Model-IV (Right) with
κ1 = 0.1 and κ2 = 0.15, under the condition ofmI

12 =mI
21 = 0. The parametersmS

21 andmS
12 vary within the

ranges [0.001, 0.3001] and [0.001, 0.3001], respectively. Other parameters remain as defined in (4.2)

Next we consider some heterogeneous cases. To this end, we set the baseline parameters
as

⎧
⎪⎨

⎪⎩

A1 = 0.2, β̂1 = 1.1, θ1 = 0.9, d1 = 0.2, ε1 = 0.1,γ1 = 0.5,α1 = 0.06;
A2 = 0.2, β̂2 = 1, θ2 = 0.8, d2 = 0.2, ε1 = 0.1,γ2 = 0.5,α1 = 0.06;
h1 = 1, h2 = 3,κ1 = 0.1,κ2 = 0.15.

(4.2)

First we illustrate the impact of mS
21 and mS

12 on the existence of equilibria in Fig. 6. There
are six different colored regions corresponding to six different scenarios for the existence
of equilibria: E0 always exists, EB

1 exists in yellow-, red-, black-, and gray-colored regions,
EB

2 exists in green-, red-, blue-, and gray-colored regions, and E∗ exists in black-, blue-,
and gray-colored regions.

In conclusion, non-pharmaceutical interventions (NPIs) and media coverage can re-
sult in behavioral changes among susceptible individuals, meaning that only those who
are practically susceptible are likely to come into contact with infectious individuals and
thereby face the risk of infection. The varying infection force functions, resulting from
precautionary measures, have a considerable influence on the stability of equilibria within
the system. It is observed that a higher reduction rate β̃ in infection correlates with an
increased likelihood of cyclical variations in disease incidence. While the parameters β̂ ,
mS

ij, mI
ij, and mR

ij influence the existence of equilibria and associated thresholds, the pa-
rameters τ , α, β̃ , and f (I) do not affect these aspects, but instead impact the stability of
the equilibria and the occurrence of Hopf bifurcations. The dispersal of recovered individ-
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uals (mR
ij ≥ 0) does not impact the existence or stability of equilibrium points. If infected

individuals are allowed to travel between patches (mI
ij > 0), the disease will either die out

or persist in both patches. If dispersal of infected individuals is restricted (mI
ij = 0) and

only susceptible individuals can disperse (mS
ij > 0), then the system may exhibit complex

dynamical behaviors. For instance, boundary equilibrium points can arise and the disease
may only persist in one patch.

5 Summary and discussions
In this study, we integrated precaution, immunity loss and dispersal (travel between
patches) into a two-patch SIRS model and studied its dynamics. From the analysis of the
single patch SIRS model, we found that the precaution and its delayed effects can cause
oscillatory behavior in endemic disease situation due to the occurrence of Hopf bifurca-
tion. We then analyzed the impact of dispersal (travel) on disease spread patterns. Theo-
retical analyses were performed to ascertain the stability of disease-free equilibria and to
determine the basic reproduction number. We identified several travel-related thresholds
to determine the existence of equilibria including the disease-free equilibrium, boundary
equilibria (disease persists in one patch only) and the endemic equilibrium (disease per-
sists in both patches). For a special case, we established the stability result for the endemic
equilibrium and conducted the Hopf bifurcation analysis.

Numerical simulations were performed to illustrate the impacts of precaution and travel
on disease dynamics. The investigation highlighted the considerable influence of varying
infection force functions on the stability of equilibria within the system. It is seen that a
higher reduction rate in infection due to precaution correlates with an elevated possibility
for the observation of cyclical variation in disease incidence. This indicates the crucial role
of timely and precise dissemination of disease information in mitigating disease transmis-
sion.

The findings also suggest that the travel of individuals in different disease states yields
diverse effects on the system. For instance, when infected individuals remain stationary,
boundary equilibrium points, indicating the presence of disease in one patch only, can
arise. However, the mobility of recovered individuals does not influence the occurrence
of disease equilibria. The travel of susceptible individuals exerts intricate effects on the
presence and stability of equilibria within the system. Thus, our two-patch model allows
us to capture the heterogeneity of disease-related features across different regions and an-
alyze the combined effects of dispersal on disease transmission dynamics. Furthermore,
the implementation of public precaution significantly reduces infection levels, even when
people disperse at a relatively higher rate. These insights emphasize that restrictive mea-
sures targeting individual mobility may not consistently yield beneficial outcomes in curb-
ing disease transmission, thereby highlighting the necessity for governments to holistically
consider multiple factors in disease prevention and control efforts.

Certainly, given the myriad factors encompassed in the model and their intricate inter-
play, numerous unanswered questions remain. For instance, there is a pressing need for
comprehensive investigations into the stability analysis of equilibria within heterogeneous
environments. Further exploration in areas such as parameter estimation, model analysis,
and the development of policies tailored to real-world contexts are also worthy of attempt-
ing. To capture the heterogeneous of individuals’ immunity and infectiousness in the study
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of patchy infectious diseases, it is also crucial to distinguish between susceptible individ-
uals based on their immunity power, as well as between symptomatic and asymptomatic
infections. Another challenge is to illustrate how infection force changes under different
influencing factors. Future work may consider modeling infection force based on indi-
vidual behavioral shifts, media influence, spatial heterogeneity, and other factors to more
accurately reflect real conditions. Additionally, there is a need for further research into
how media reporting influences travel rates and the resulting dynamics of disease within
multi-patch environments.

Appendix A: The proof of Theorem 2.2
Proof Summing all three equations of system (2.1), we have

dN(t)
dt

= A – dN – εI ≤ A – dN .

This means

lim
t→∞ sup S(t) ≤ lim

t→∞ sup N(t) ≤ A
d

.

When R1
0 < 1, we can choose a sufficiently small η > 0 such that

β̂
(A

d
+ η

)
< (γ + ε + d).

Then, for large T > 0, we have

S(t) ≤ A
d

+ η, t > T .

When t > T , the second equation of system (2.1) has the following linear ordinary dif-
ferential equation (ODE) as a comparison equation, where all solutions converge to 0 as
t → ∞:

dI(t)
dt

=

(

β̂
(A

d
+ η

)
– (γ + ε + d)

)

I(t).

Therefore, employing a comparison argument, it can be concluded that the I(t) compo-
nent of the solution of system (2.1) also tends to 0 as t → ∞.

Thus, the third equation of system (2.1) has a limit equation

dR(t)
dt

= –(d + α)R(t).

This equation exhibits global convergence dynamics with R(t) approaching 0 as t → ∞.
Thus, the first equation of system (2.1) exhibits global convergence dynamics, with S(t)

approaching A
d as t → ∞, as it has a limit equation

dS(t)
dt

= A – dS(t).
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So, according to the theory of asymptotically autonomous systems, every solution of
system (2.1) with a nonnegative initial condition (2.4) converges to E0 as t → ∞, provided
that R1

0 < 1. �

Appendix B: The characteristic equation of one-patch SIRS
By a straightforward calculation, we know that

p̄2p̄1 – p̄0 =
(
α + 2d + β(I∗)I∗ – β ′(I∗)I∗S∗

)

×
(

d(α + d) + (d + α + a)β(I∗)I∗ – (α + 2d)β ′(I∗)I∗S∗
)

–
(

(ε + d)(α + d) + dγ
)
β(I∗)I∗ + d(α + d)β ′(I∗)I∗S∗

=
(
α + 2d + β(I∗)I∗ – β ′(I∗)I∗S∗

)
d(α + d)

+
(
α + 2d + β(I∗)I∗ – β ′(I∗)I∗S∗

)
(d + α + a)β(I∗)I∗

–
(
α + 2d + β(I∗)I∗ – β ′(I∗)I∗S∗

)
(α + 2d)β ′(I∗)I∗S∗

–
(

(ε + d)(α + d) + dγ
)
β(I∗)I∗ + d(α + d)β ′(I∗)I∗S∗

=
(
α + 2d + β(I∗)I∗

)
d(α + d) – β ′(I∗)I∗S∗d(α + d)

+ (α + 2d)(d + α + a)β(I∗)I∗ +
(
β(I∗)I∗ – β ′(I∗)I∗S∗

)
(d + α + a)β(I∗)I∗

– β ′(I∗)
(
α + 2d + β(I∗)I∗ – β ′(I∗)I∗S∗

)
(α + 2d)I∗S∗

–
(

(ε + d)(α + d) + dγ
)
β(I∗)I∗ + d(α + d)β ′(I∗)I∗S∗

=
(
α + 2d + β(I∗)I∗

)
d(α + d)

+ +
(
β(I∗)I∗ – β ′(I∗)I∗S∗

)
(d + α + a)β(I∗)I∗

– β ′(I∗)
(
α + 2d + β(I∗)I∗ – β ′(I∗)I∗S∗

)
(α + 2d)I∗S∗

+
(

(α + 2d)(d + α + a) – (ε + d)(α + d) – dγ
)
β(I∗)I∗

=
(
α + 2d + β(I∗)I∗

)
d(α + d)

+ +
(
β(I∗)I∗ – β ′(I∗)I∗S∗

)
(d + α + a)β(I∗)I∗

– β ′(I∗)
(
α + 2d + β(I∗)I∗ – β ′(I∗)I∗S∗

)
(α + 2d)I∗S∗

+
(

(α + 2d)(d + α + a) – a(α + d) + αγ
)
β(I∗)I∗ > 0

=
(
α + 2d + β(I∗)I∗

)
d(α + d)

+ +
(
β(I∗)I∗ – β ′(I∗)I∗S∗

)
(d + α + a)β(I∗)I∗
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– β ′(I∗)
(
α + 2d + β(I∗)I∗ – β ′(I∗)I∗S∗

)
(α + 2d)I∗S∗

+
(

(α + 2d)(d + α) + ad + αγ
)
β(I∗)I∗ > 0.

Appendix C: The proof of Theorem 3.1
Proof For system (3.1), we know that there exists a unique solution x(t;φ) for t ∈ (0, tm)

with φ = (φ1,φ2,φ3,φ4,φ5,φ6) ∈ X, as guaranteed by the fundamental theory of functional
differential equations [23], where (0, tm) represents the maximal interval of existence. Ad-
ditionally, it is straightforward to demonstrate that these solutions are nonnegative, as
shown in [39, Proposition A.17]. The nonnegativity implies that the existence holds for all
t ≥ 0.

Moving on, we proceed to demonstrating the boundedness of the solution. For this pur-
pose, we introduce Ni(t) = Si(t) + Ii(t) + Ri(t) for i = 1, 2 and define N(t) = N1(t) + N2(t).
Then,

dN
dt

=
2∑

i=1

(Ai – εiIi – diNi).

The nonnegativity of the solution implies

A1 + A2 – max{d1 + ε1, d2 + ε2}N ≤ dN
dt

≤ A1 + A2 – min{d1, d2}N .

Hence,

N(t) ∈
[

min
{ A1 + A2

max{d1 + ε1, d2 + ε2} , N(0)
}

, max
{ A1 + A2

min{d1, d2} , N(0)
}]

. �

Appendix D: The proof of the monotonicity of g1, g2, and G1

Proof Firstly, by direct calculations, and noting β ′
i (·) < 0, we have

d
dx1

u–1
1 (x1) =

( d
dI1

u1(I1)
)–1

=

(

α2r21 –
a1mS

21
(
β1(I1)

)2
d

dI1
β1(I1)

)–1

> 0,

d
dx2

u–1
2 (x2) =

( d
dI2

u2(I2)
)–1

=

(

α1r12 –
a2mS

12
(
β2(I2)

)2
d

dI2
β2(I2)

)–1

> 0,

and

g ′
2(x2) =

d
dx2

g2(x2)

= –
a2(d2 + mS

12)
(
β2(u–1

2 (x2))
)2 β ′

2(u–1
2 (x2))

d
dx2

u–1
2 (x2) + (a2 – α2r22)

d
dx2

u–1
2 (x2) > 0,

g ′
1(x1) =

d
dx1

g1(x1)
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= –
a1(d1 + mS

21)
(
β1(u–1

1 (x1))
)2 β ′

1(u–1
1 (x1))

d
dx1

u–1
1 (x1) + (a1 – α1r11)

d
dx1

u–1
1 (x1) > 0.

So g1 and g2 are increasing functions.
Secondly, because

a2 – α2r22 = d2 + ε2 + γ2 –
α2(α1 + d1 + mR

21)

(α1 + d1)(α2 + d2) + mR
21(d2 + α2) + mR

12(d1 + α1)
γ2

= d2 + ε2 +
d2α1 + d1d2 + d2mR

21 + d1mR
12 + α1mR

12

(α1 + d1)(α2 + d2) + mR
21(d2 + α2) + mR

12(d1 + α1)
γ2

>
α1mR

12

(α1 + d1)(α2 + d2) + mR
21(d2 + α2) + mR

12(d1 + α1)
γ2

= α1r12 > 0,

and

a1 – α1r11 = d1 + ε1 + γ1 –
α1(α2 + d2 + mR

12)

(α1 + d1)(α2 + d2) + mR
21(d2 + α2) + mR

12(d1 + α1)
γ1

= d1 + ε1 +
d1α2 + d1d2 + d1mR

12 + d2mR
21 + α2mR

21

(α1 + d1)(α2 + d2) + mR
21(d2 + α2) + mR

12(d1 + α1)
γ1

>
α2mR

21

(α1 + d1)(α2 + d2) + mR
21(d2 + α2) + mR

12(d1 + α1)
γ1

= α2r21 > 0,

we get

d
dx2

g2(x2) × d
dx1

g1(x1)

=

– a2(d2+mS
12)

(
β2(I2)

)2 β ′
2(I2) + (a2 – α2r22)

α1r12 – a2mS
12(

β2(I2)
)2 β ′

2(I2)
×

– a1(d1+mS
21)

(
β1(I1)

)2 β ′
1(I1) + (a1 – α1r11)

α2r21 – a1mS
21(

β1(I1)
)2 β ′

1(I1)

>

– a2β ′
2(I2)

(
β2(I2)

)2 (d2 + mS
12) + α1r12

– a2β ′
2(I2)

(
β2(I2)

)2 mS
12 + α1r12

×
– a1β ′

1(I1)
(

β1(I1)

)2 (d1 + mS
21) + α2r21

– a1β ′
1(I1)

(
β1(I1)

)2 mS
21 + α2r21

> 1.

Thus,

G′
1(x1) =

d
dx1

G1(x1) =
d

dx2
g1(x2) × d

dx1
g2(x1) – 1 > 0.

This implies G1(x1) is an increasing function. �
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