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Abstract
Cell-to-cell infection cannot be ignored in the development of HIV in the host. The
mathematical difficulty in (Wang et al. in J. Biol. Dyn. 11:455–483, 2016) is mainly due
to the assumption of the equality of two parameters, in which they are the
proportions of infection that lead to latency caused by virus-to-cell infection and
cell-to-cell transmission, respectively. To overcome the restricted condition, we
propose a more general HIV development model with virus-to-cell and cell-to-cell
infection patterns with logistic growth and saturation incidence. By constructing a
proper Lyapunov function we obtain the global stability of the disease-free
equilibrium without this restricted condition, thereby the main result in (Wang et al.
in J. Biol. Dyn. 11:455–483, 2016) removing the restricted condition is proved by using
our method even if two parameters are not equal. We also investigate the existence
of Hopf bifurcation of diseased equilibrium in four cases.

Keywords: HIV infection model; Delay differential equation; Global stability; Hopf
bifurcation; Basic reproduction number

1 Introduction
Human immunodeficiency virus (HIV) attacks the immune system of a human body. The
major target of HIV infection is a class of lymphocytes, or white blood cells, known as
CD4+ T cells. Because of the central role of CD4+ T cells in immune regulation, their
depletion has widespread detrimental effects on the functioning of the entire immune
system and results in the immunodeficiency that characterizes AIDS [1].

To understand the HIV infection mechanism in hosts, various mathematical models
have been formulated and extensively studied, some of which focus on infection between
viruses and cells [2–6]. However, HIV can be transmitted efficiently through viral synapses
(VSs) in lymphocytes [7–16]. It is more effective to spread the virus directly between cells
than from virus to cell [14]. Although the cell-to-cell transmission is the main mode of
rapid viral development [17], the underlying mechanism is not completely clear and at-
tracts the attention of many researchers.

For the models with two transmission modes, Li [18] studied the cell-to-cell propagation
model and analyzed the global dynamic properties and the existence of Hopf bifurcation.
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A differential equation model of an HIV-1 infection with logistic growth for target cells,
time delay, the classical cell-free infection, and the direct cell-to-cell transfer infection
modes was put forward by Hu et al. [19]. A within-host viral infection delay model with two
transmission modes was investigated in [20], and results showed that delay may destabilize
the infected steady state and lead to Hopf bifurcation. Zhang and Liu [21] also put forward
an age-structured HIV infection model with cell-to-cell transmissions and found that the
model has a nontrivial periodic solution bifurcating from the positive equilibrium. Lai and
Zou [22, 23] developed some models that incorporate two models of viral spreading with
and without the logistic target cell growth and obtained the existence of Hopf bifurcation.
Yang et al. [24] also studied a within-host viral infection model with two transmission
modes and obtained some results on global stability of the equilibrium point. Especially,
Wang, Tang, et al. [25] put forward an HIV latent infection model incorporating both the
cell-free virus infection and cell-to-cell transmission. Their model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT(t)
dt = s – dT T(t) – βT(t)V (t) – kT(t)I(t),

dL(t)
dt = f βT(t – τ1)V (t – τ1)e–δ1τ1 + ηkT(t – τ1)I(t – τ1)e–δ1τ1

–(α + δL)L(t),
dI(t)

dt = (1 – f )βT(t – τ2)V (t – τ2)e–δ1τ2 + (1 – η)kT(t – τ2)I(t – τ2)

×e–δ1τ2 – δI(t) + αL(t),
dV (t)

dt = NδI(t) – cV (t).

(1)

They obtained the global stability of the disease-free and disease equilibrium under the
condition f = η and consistent persistent results. However, in reality, the constants f and
η may be not equal. In addition, the actual incidence rates are probably not strictly linear.
For example, the following viral model took into account the nonlinear incidence, that is,
the saturated mass action βTV

1+αV [26]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dT(t)
dt = s – dT T(t) + aT(1 – T

Tmax
) – βT(t)V (t)

1+bV (t) ,
dL(t)

dt = f βT(t–τ1)V (t–τ1)e–δ1τ1
1+bV (t–τ1) – (α + δL)L(t),

dI(t)
dt = (1–f )βT(t–τ2)V (t–τ2)e–δ1τ2

1+bV (t–τ2) – δI(t) + αL(t),
dV (t)

dt = NδI(t) – cV (t).

(2)

The symbols have the same meanings as in system (1). Obviously, model (2) does not
reflect the phenomenon of cell-to-cell transmission.

To obtain the stability of disease-free equilibrium and endemic equilibrium without the
restriction condition f = η by constructing a proper Lyapunov function, in this paper, we
propose the following more general HIV infection model (3) with both virus-to-cell infec-
tion and cell-to-cell transmission inspired by the saturation incidence and logistic growth
terms to model (2):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT(t)
dt = s + aT(1 – T

Tmax
) – dT T(t) – βT(t)V (t)

1+bV (t) – kT(t)I(t)
1+nI(t) ,

dL(t)
dt = f βT(t–τ1)V (t–τ1)e–δ1τ1

1+bV (t–τ1) + ηkT(t–τ1)I(t–τ1)e–δ1τ1
1+nI(t–τ1) – (α + δL)L(t),

dI(t)
dt = (1–f )βT(t–τ2)V (t–τ2)e–δ1τ2

1+bV (t–τ2) + (1–η)kT(t–τ2)I(t–τ2)e–δ1τ2
1+nI(t–τ2) – δI(t)

+αL(t),
dV (t)

dt = NδI(t) – cV (t),

(3)
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where T(t) denotes the concentration of uninfected CD4+ T cells at time t, L(t) represents
the concentration of latently infected T cells at time t, I(t) is the concentration of produc-
tively infected T cells, and V (t) denotes the concentration of virions in plasma. The model
assumes that uninfected CD4+ T cells are produced at a rate s, and they are infected by
free virus at a rate β or by direct cell-to-cell transmission at a rate k. The parameter a is
a logistic growth rate of the CD4+ T-cells, Tmax is the carrying capacity of the T-cell pop-
ulation, and dT is the per capita death rate of uninfected CD4+ T cells. The constants f ,
η ∈ (0, 1) are the proportions of infection that lead to latency. Latently infected cells die at
a rate δL per cell, and productively infected cells die at a rate δ per cell. Latently infected
cells can be activated by their relevant antigens to become productively infected cells at a
rate α. The factor N is the viral burst size, representing the total number of virus released
by one infected cell during its lifespan, and c is the viral clearance rate. The parameter δ1

is the death rate of infected cells in which viral DNA has not integrated into the DNA of
the host cell. The time τ1 represents the time from viral entry to viral DNA integrating
into the host cell DNA, and τ2 represents the time from viral entry to viral production. It
was clear that τ1 < τ2 according to the viral life cycle. Thus e–δ1τ1 and e–δ1τ2 represent the
probabilities of an infected cell will survive τ1 and τ2 ages, respectively.

Now let us explain each item on the right side of model (3) in a biological sense. Since
the concentration of uninfected T cells at time is T(t), so s + aT(1 – T

Tmax
) is the growth

rate including natural production and cell division. Since CD4+ T cells can be infected by
HIV virions, the fourth term on the right-hand side of the first equation means that CD4+
T cells decrease at rate – βT(t)V (t)

1+bV (t) , then leading to become latency cells at a proportion f
and infected T cells at a proportion 1 – f , respectively. Thus the first terms on the right-
hand sides of the second and third equations are formed according to the probabilities
e–δ1τ1 and e–δ1τ2 , respectively. Similarly, CD4+ T cells can be also directly transmitted by
infected T cells with transmission rate – βT(t)V (t)

1+bV (t) (the fifth term on the right-hand side of
the first equation), then becoming latency cells at proportion η and infected T cells at pro-
portion 1 – η, respectively. Hence the second terms on the right-hand sides of the second
and third equations are formed according to the above two probabilities. Because latently
infected cells can be converted to productively infected cells at a rate α, the last terms
on the right-hand sides of the second and third equations are determined by αL(t). The
first term NδI(t) on the right-hand side of the fourth equation represents the virus release
rate by infected cells. The last terms on the right-hand sides of the last three equations
represent the mortality rate of the corresponding cells.

This paper is organized as follows. In the next section, we give the derivation of the non-
negativity, boundedness, the basic reproductive number, and positive equilibrium point
of the proposed model. By constructing a Lyapunov function the results of the local and
global stability of the disease-free equilibrium without condition f = η will be proved in
Sect. 4. We study the Hopf bifurcation from the endemic equilibrium in Sect. 5. The last
section contains the conclusions.

2 Invariance
We denote the Banach space of continuous function ϕ : [–max{τ1, τ2}, 0] → R4 with norm

‖ϕ‖ = sup{|ϕ1(θ )|, |ϕ2(θ )|, |ϕ3(θ )|, |ϕ4(θ )|}
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by C, where ϕ = (ϕ1,ϕ2,ϕ3,ϕ4). Further, let

C+ = {ϕ = (ϕ1(θ ),ϕ2(θ ),ϕ3(θ ),ϕ4(θ )) : ϕi > 0,∀θ ∈ [–max{τ1, τ2}, 0], i = 1, 2, 3, 4}.

The initial condition for system (3) is given by

(T0, L0, I0, V 0) ∈ C+. (4)

The local existence and uniqueness of solution to system (3) with the initial condition
(4) follow from the standard result in the theory of delay differential equations [27]. The
global existence of the solution on [–max{τ1, τ2},∞) follows from Theorem 1.

System (3) is an autonomous differential equation system with constant time delays.
It always has an infection-free steady state E0 = (T0, 0, 0, 0), where T0 = Tmax

2a

[
a – dT +

√
(a – dT )2 + 4as

Tmax

]
.

We have the following result on the positivity and boundedness of solution of system
(3).

Theorem 1 Suppose that (T(t), L(t), I(t), V (t)) is a solution of system (3) with initial con-
dition (4). Then it is positive and ultimately bounded for t > 0.

Proof The proof is divided into two steps. In the first step, we prove that the solution of
system (3) is positive. We state that T(t) > 0 for all t > 0. Otherwise, assume that there
exists t1 > 0 such that T(t1) = 0 and T(t) > 0, t ∈ [0, t1), and thus T ′(t1) ≤ 0. From the
first equation of system (3) we have T ′(t1) = s + aT(t1)(1 – T(t1)

Tmax
) – dT T(t1) – βT(t1)V (t1)

1+bV (t1) –
kT(t1)I(t1)

1+nI(t1) = s > 0. The contradiction implies that T(t) > 0 for all t > 0.
By the last three equations of system (3) and the variation-of-constants formula for non-

homogeneous linear differential equations we have

L(t) =L(0)e–(α+δL)t +
∫ t

0

[ f βe–δ1τ1 T(ξ – τ1)V (ξ – τ1)

1 + bV (ξ – τ1)

+
ηke–δ1τ1 T(ξ – τ1)I(ξ – τ1)

1 + nI(ξ – τ1)

]
e–(α+δL)(t–ξ )dξ ,

I(t) =I(0)e–δt +
∫ t

0

[ (1 – f )βe–δ1τ2 T(ξ – τ2)V (ξ – τ2)

1 + bV (ξ – τ2)

+
(1 – η)ke–δ1τ2 T(ξ – τ2)I(ξ – τ2)

1 + nI(ξ – τ2)
+ αL(ξ )

]
e–δ(t–ξ )dξ ,

V (t) =V (0)e–ct +
∫ t

0
NδI(ξ )e–(t–ξ )dξ .

It is obvious that L(t) > 0, I(t) > 0, and V (t) > 0 for small t > 0. Next, we show that L(t) > 0,
I(t) > 0, and V (t) > 0 for all t > 0. Assume that t2 > 0 is the first time such that

min{L(t2), I(t2), V (t2)} = 0.
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If L(t2) = 0, L(t) > 0, I(t) > 0, and V (t) > 0 for t ∈ [0, t2), then we have L′(t2) ≤ 0. However,
from the second equation of (3) we have

L′(t2) =
f βT(t2 – τ1)V (t2 – τ1)e–δ1τ1

1 + bV (t2 – τ1)
+

ηkT(t2 – τ1)I(t2 – τ1)e–δ1τ1

1 + nI(t2 – τ1)
> 0,

which is a contradiction.
By a similar proof we can obtain that I(t2) = 0 and V (t2) = 0 are impossible. Thus L(t) > 0,

I(t) > 0, and V (t) > 0 for all t > 0.
In the second step, we prove the ultimate boundedness of the solution of system (3).

From the positivity of the solution and the first equation of (3) we obtain that

dT
dt

≤ s + aT(1 –
T

Tmax
) – dT T(t),

which yields [28]

lim sup
t→+∞

T(t) ≤ T0.

From the second equation of system (3) we get

dL(t)
dt

≤ f βT(t – τ1)V (t – τ1)e–δ1τ1

bV (t – τ1)
+

ηkT(t – τ1)I(t – τ1)e–δ1τ1

nI(t – τ1)

– (α + δL)L(t)

=
f βT(t – τ1)e–δ1τ1

b
+

ηkT(t – τ1)e–δ1τ1

n
– (α + δL)L(t)

≤(
f βe–δ1τ1

b
+

ηke–δ1τ1

n
)T0 – (α + δL)L(t).

Then we have

lim sup
t→+∞

L(t) ≤
( f βe–δ1τ1

b
+

ηke–δ1τ1

n

) T0

α + δL

	= M1.

Similarly, we can get

lim sup
t→+∞

I(t) ≤T0β

bδ

(
(1 – f )e–δ1τ2 +

αfe–δ1τ1

α + δL

)

+
T0k
nδ

(
(1 – ξ )e–δ1τ2 +

αξe–δ1τ1

α + δL

) 	= M2,

and thus

lim sup
t→+∞

V (t) ≤ NδM2

c
.

Let M = max{T0, M1, M2, NδM2
c }. Then T(t), L(t), I(t), and V (t) are ultimately uniformly

bounded, and their upper bound is M. This completes the proof of the theorem. �
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Denote


 = {(T , L, I, V ) ∈ C+ : ‖T(t)‖ ≤ T0,‖L(t)‖ ≤ M1,‖I(t)‖ ≤ M2,‖V (t)‖ ≤ NδM2

c
}.

Then it follows from Theorem 1 that the region 
 is positive invariant with respect to
system (3). This shows that system (3) is dissipative, i.e., the positivity of system may im-
ply that HIV virus and all the CD4+ T cells including uninfected, latently infected, and
infected T cells may survive. Because of availability of limited resources or spaces, the
boundedness of the system may be viewed as the natural barrier to unrestricted expan-
sion.

3 The basic reproductive number and the existence of endemic equilibrium
Obviously, system (3) has a disease-free equilibrium point E0 = (T0, 0, 0, 0). We define the
matrices

F =

⎛

⎜
⎜
⎝

f βT(t–τ1)V (t–τ1)e–δ1τ1
1+bV (t–τ1) + ηkT(t–τ1)I(t–τ1)e–δ1τ1

1+nI(t–τ1)
(1–f )βT(t–τ2)V (t–τ2)e–δ1τ2

1+bV (t–τ2) + (1–η)kT(t–τ2)I(t–τ2)e–δ1τ2
1+nI(t–τ2)

0

⎞

⎟
⎟
⎠

and

V =

⎛

⎜
⎝

(α + δL)L(t)
δI(t) – αL(t)

–NδI(t) + cV (t)

⎞

⎟
⎠ .

Then we have

F =
∂F (E0)

∂(L, I, V )
=

⎛

⎜
⎝

0 ηke–δ1τ1 T0 f βe–δ1τ1 T0

0 (1 – η)ke–δ1τ1 T0 (1 – f )βe–δ1τ1 T0

0 0 0

⎞

⎟
⎠

and

V =
∂V(E0)

∂(L, I, V )
=

⎛

⎜
⎝

α + δL 0 0
–α δ 0
0 –Nδ c

⎞

⎟
⎠ .

Thus the basic reproductive number R0 is the spectral radius of the next generation
operator FV–1 [29], that is,

R0 =ρ(FV–1) =
NβT0

c

(
αf

α + δL
e–δ1τ1 + (1 – f )e–δ1τ2

)

+
kT0

δ

(
αη

α + δL
e–δ1τ1 + (1 – η)e–δ1τ2

)

	=R01 + R02.

Similarly to [25], R01 and R02 represent the contributions to R0 from the virus-to-cell
infection and cell-to-cell transmission, respectively.



Liu and Zhou Advances in Continuous and Discrete Models         (2024) 2024:60 Page 7 of 18

Next, we show that the threshold condition guaranteeing the existence of the endemic
equilibrium is R0 > 1. An endemic equilibrium E∗ = (T∗, L∗, I∗, V ∗) is a positive solution of
the equation system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s + aT∗(1 – T∗
Tmax

) – dT T∗ – βT∗V∗
1+bV∗ – kT∗I∗

1+nI∗ = 0,
f βT∗V∗e–δ1τ1

1+bV∗ + ηkT∗I∗e–δ1τ1
1+nI∗ – (α + δL)L∗ = 0,

(1–f )βT∗V∗e–δ1τ2
1+bV∗ + (1–η)kT∗I∗e–δ1τ2

1+nI∗ – δI∗ + αL∗ = 0,
NδI∗ – cV ∗ = 0.

(5)

After some calculations, we obtain that

T∗ =
T0(1 + bV ∗)(Nδ + cnV ∗)

R01(Nδ + cnV ∗) + NδR02(1 + bV ∗)
,

I∗ =
cV ∗

Nδ
,

L∗ =
1

α + δL

(
f βT∗V ∗e–δ1τ1

1 + bV ∗ +
ηkT∗I∗e–δ1τ1

1 + nI∗

)

,

and V ∗ satisfies the equation

A4x4 + A3x3 + A2x2 + A1x + A0 = 0,

where

A4 =
–aT2

0
Tmax

b2n2c2,

A3 =
–aT2

0
Tmax

(2bn2c2 + 2Nδb2nc) + T0((a – dT )bnc)(R01nc + R02Nδb)

– T0R01βn2c2 – T0R01kcbnc – T0NδβR02bnc – T0kcR02Nδb2,

A2 =
–aT2

0
Tmax

(n2c2 + 4Nδbnc + N2δ2b2) + T0R01(a – dT )(n2c2 + 2Nδbnc)

+ T0R02Nδ(a – dT )(Nδb2 + 2bnc) + sR2
01n2c2 + 2sR01R02Nδbnc

+ sR2
02N2δ2b2 – 2T0R01Nδβnc + T0(nc + Nδb)(–kcR01 – NδβR02)

– 2T0R02kcNδb,

A1 =
–aT2

0
Tmax

2Nδ(nc + Nδb) + T0(a – dT )[R01(2Nδnc + N2δ2b) + R02Nδ(2Nδb

+ nc)] + 2sNδ[R01
2nc + R01R02(Nδb + nc) + R2

02Nδb] + T0Nδ[–R01βNδ

– kcR01 – NδβR02 – kcR02],

A0 =N2δ2R2
0

[
–a

Tmax

(
T0

R0

)2

+ (a – dT )

(
T0

R0

)

+ s

]

.

When R0 > 1, there must be at least one positive root for this quartic equation. In fact,
we define the function g(x) = A4x4 + A3x3 + A2x2 + A1x + A0. Noticing that 0 < T0

R0
< T0 and
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s+aT0(1– T0
Tmax

)–dT T0 = 0, we get that g(0) = A0 > 0. From A4 < 0 we have that g(x) → –∞
as x → +∞. Thus the equation g(x) = 0 has at least one positive real root, denoted by V ∗.

Based on the above analysis, we get that when R0 > 1, there is an endemic equilibrium
E∗ = (T∗, L∗, I∗, V ∗) for system (3).

4 Stability of the disease-free equilibrium
In this section, we study the local and global stability of the disease-free equilibrium. The
following results show that the basic reproductive number provides a threshold value de-
termining the local and global stability.

4.1 The local stability of the disease-free equilibrium
Next, we give the locally asymptotic stability of the disease-free equilibrium.

Theorem 2 For system (3), if R0 < 1, then the disease-free equilibrium E0 is locally asymp-
totically stable, and if R0 > 1, then it is unstable for all time delays τ1, τ2 ≥ 0.

Proof Let Ẽ = (T̃ , L̃,̃ I, Ṽ ) be an arbitrary equilibrium of system (3). Then the characteristic
equation of the linearized system of system (3) at the equilibrium Ẽ is

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ – a + dT + 2aT̃
Tmax

+ βṼ
1+bṼ + k̃I

1+ñI 0
–( f βe–δ1τ1 Ṽ

1+bṼ + ηke–δ1τ1 Ĩ
1+ñI )e–λτ1 λ + α + δL

–
(

(1–f )βe–δ1τ2 Ṽ
1+bṼ + (1–η)ke–δ1τ2 Ĩ

1+ñI

)
e–λτ2 –α

0 0

kT̃
(1+ñI)2

βT̃
(1+bṼ )2

–ηkT̃e–δ1τ1 e–λτ1
(1+ñI)2

–f βT̃e–δ1τ1 e–λτ1
(1+bṼ )2

λ + δ – (1–η)kT̃e–δ1τ2 e–λτ2
(1+ñI)2 – (1–f )βT̃e–δ1τ2 e–λτ2

(1+bṼ )2

–Nδ λ + c

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0. (6)

Substituting E0 = (T0, 0, 0, 0) into Eq. (6) and expanding the determinant by the first col-
umn, we obtain λ – a + dT + 2aT0

Tmax
= 0 or

(λ + α + δL)(λ + c)(λ + δ) = (λ + α + δL)(λ + c)(1 – η)kT0e–δ1τ2 e–λτ2

+ (λ + α + δL)NδβT0(1 – f )e–δ1τ2 e–λτ2 + α(λ + c)ηkT0e–δ1τ1 e–λτ1

+ NδβT0αfe–δ1τ1 e–λτ1 .

(7)

Therefore one of the characteristic roots is

λ = a – dT –
2aT0

Tmax
= –

√

(a – dT )2 +
4as

Tmax
< 0,

and the remaining roots are determined by Eq. (7). When R0 < 1, we claim that if λ = x + yi
is the solution to Eq. (7), then the real part x < 0. Assume that x ≥ 0. By dividing both sides
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by (λ + α + δL)(λ + c)(λ + δ) Eq. (7) becomes

1 =
NδβT0αfe–δ1τ1 e–λτ1

(λ + α + δL)(λ + c)(λ + δ)
+

NδβT0(1 – f )e–δ1τ2 e–λτ2

(λ + c)(λ + δ)

+
αηkT0e–δ1τ1 e–λτ1

(λ + α + δL)(λ + δ)
+

(1 – η)kT0e–δ1τ2 e–λτ2

λ + δ
.

(8)

Taking the modulus of the left-hand side of Eq. (8), we obtain

1 =
∣
∣
∣

NδβT0αfe–δ1τ1 e–λτ1

(λ + α + δL)(λ + c)(λ + δ)
+

NδβT0(1 – f )e–δ1τ2 e–λτ2

(λ + c)(λ + δ)

+
αηkT0e–δ1τ1 e–λτ1

(λ + α + δL)(λ + δ)
+

(1 – η)kT0e–δ1τ2 e–λτ2

λ + δ

∣
∣
∣

≤
∣
∣
∣

NδβT0αfe–δ1τ1 e–λτ1

(λ + α + δL)(λ + c)(λ + δ)

∣
∣
∣ +
∣
∣
∣
NδβT0(1 – f )e–δ1τ2 e–λτ2

(λ + c)(λ + δ)

∣
∣
∣

+
∣
∣
∣

αηkT0e–δ1τ1 e–λτ1

(λ + α + δL)(λ + δ)

∣
∣
∣ +
∣
∣
∣
(1 – η)kT0e–δ1τ2 e–λτ2

λ + δ

∣
∣
∣

≤NδβαfT0e–δ1τ1

cδ(α + δL)
+

NδβT0(1 – f )e–δ1τ2

cδ

+
αηkT0e–δ1τ1

δ(α + δL)
+

(1 – η)kT0e–δ1τ2

δ

=
NβT0

c

(
αfe–δ1τ1

α + δL
+ (1 – f )e–δ1τ2

)

+
kT0

δ

(
αηe–δ1τ1

α + δL
+ (1 – η)e–δ1τ2

)

	=R0.

This contradicts R0 < 1. Thus all the roots of the characteristic equation have negative
real parts. Therefore the disease-free equilibrium is locally asymptotically stable when
R0 < 1.

Next, we turn to the case of R0 > 1 with delays τ1, τ2 ≥ 0. The characteristic equation (7)
can be written in the form

F(λ)
	= λ3 + B2λ

2 + B1λ + B0 = 0, (9)

where

B2 =(α + δL + c + δ) – (1 – η)kT0e–δ1τ2 e–λτ2 ,

B1 =(α + δL)c + (α + δL)δ + cδ – (c + α + δL)(1 – η)kT0e–δ1τ2 e–λτ2

– NδβT0(1 – f )e–δ1τ2 e–λτ2 – αηkT0e–δ1τ1 e–λτ1 ,

B0 =(α + δL)cδ – (α + δL)c(1 – η)kT0e–δ1τ2 e–λτ2 – (α + δL)NδβT0

× (1 – f )e–δ1τ2 e–λτ2 – cαηkT0e–δ1τ1 e–λτ2 – NδβT0αfe–δ1τ1 e–λτ1 .

Obviously, F(0) = B0 = (α + δL)cδ(1 – R0) < 0, and limλ→+∞ F(λ) = +∞. It shows that
Eq. (9) has at least one positive root. Therefore the disease-free equilibrium E0 is unstable
when R0 > 1. This completes the proof of the theorem. �



Liu and Zhou Advances in Continuous and Discrete Models         (2024) 2024:60 Page 10 of 18

4.2 The global stability of the disease-free equilibrium
We use the Lyapunov direct method to study the global stability of the disease-free equi-
librium of system (3).

Theorem 3 If R0 < 1, then the disease-free equilibrium E0 of system (3) is globally asymp-
totically stable for all time delays τ1, τ2 ≥ 0.

Proof Let G = {(T , L, I, V ) ∈ C+ : T0 ≥ T ≥ 0, L ≥ 0, I ≥ 0, V ≥ 0}. From Theorem 1 we
know that the region G attracts all solutions of system (3). Let (T(t), L(t), I(t), V (t)) be the
solution of system (3) with any initial value (4). We claim that T(t) ≤ T0 for all t ≥ 0. In
fact, if there is t1 > 0 such that T(t1) > T0 and dT(t1)

dt > 0, then we have

dT(t1)

dt
= s + aT(t1)(1 –

T(t1)

Tmax
) – dT T(t1) –

βT(t1)V (t1)

1 + bV (t1)
–

kT(t1)I(t1)

1 + nI(t1)

≤ –
βT(t1)V (t1)

1 + bV (t1)
–

kT(t1)I(t1)

1 + nI(t1)
≤ 0.

Here we have used T(t1) > T0 and s – dT T0 + aT0(1 – T0
Tmax

) = 0. This is a contradiction to
dT(t1)

dt > 0, so the claim is proved. Thus G is positively invariant with respect to system (3).
Define the function W (t) = W1(t) + W2(t) on G, where

W1(t) =
α

α + δL
L(t) + I(t) +

1 – R02

N
V (t),

and

W2(t) =
αfe–δ1τ1

α + δL

∫ τ1

0

βT(t – θ )V (t – θ )

1 + bV (t – θ )
dθ

+
αηe–δ1τ1

α + δL

∫ τ1

0

kT(t – θ )I(t – θ )

1 + nI(t – θ )
dθ

+ (1 – f )e–δ1τ2

∫ τ2

0

βT(t – θ )V (t – θ )

1 + bV (t – θ )
dθ

+ (1 – η)e–δ1τ2

∫ τ2

0

kT(t – θ )I(t – θ )

1 + nI(t – θ )
dθ .

Calculating the derivatives of W1(t) and W2(t) along the solution of system (3), we obtain

dW1(t)
dt

=
αe–δ1τ1

α + δL

(
f βT(t – τ1)V (t – τ1)

1 + bV (t – τ1)
+

ηkT(t – τ1)I(t – τ1)

1 + nI(t – τ1)

)

+
(1 – f )βT(t – τ2)V (t – τ2)e–δ1τ2

1 + bV (t – τ2)
+

(1 – η)kT(t – τ2)I(t – τ2)e–δ1τ2

1 + nI(t – τ2)

– δR02I(t) –
cV (t)

N
+

R02cV (t)
N

and

dW2(t)
dt

=e–δ1τ1
αf

α + δL

∫ τ1

0

d(βT(t – θ )V (t – θ ))

dt(1 + bV (t – θ ))
dθ
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+ e–δ1τ1
αη

α + δL

∫ τ1

0

d(kT(t – θ )I(t – θ ))

dt(1 + nI(t – θ ))
dθ

+ e–δ1τ2 (1 – f )
∫ τ2

0

d(βT(t – θ )V (t – θ ))

dt(1 + bV (t – θ ))
dθ

+ e–δ1τ2 (1 – η)
∫ τ2

0

d(kT(t – θ )I(t – θ ))

dt(1 + nI(t – θ ))
dθ

= – e–δ1τ1
αf

α + δL

∫ τ1

0

d(βT(t – θ )V (t – θ ))

dθ (1 + bV (t – θ ))
dθ

– e–δ1τ1
αη

α + δL

∫ τ1

0

d(kT(t – θ )I(t – θ ))

dθ (1 + nI(t – θ ))
dθ

– (1 – f )e–δ1τ2

∫ τ2

0

d(βT(t – θ )V (t – θ ))

dθ (1 + bV (t – θ ))
dθ

– (1 – η)e–δ1τ2

∫ τ2

0

d(kT(t – θ )I(t – θ ))

dθ (1 + nI(t – θ ))
dθ

=e–δ1τ1
αf

α + δL

βT(t)V (t)
1 + bV (t)

– e–δ1τ1
αf

α + δL

βT(t – τ1)V (t – τ1)

1 + bV (t – τ1)

+ e–δ1τ1
αη

α + δL

kT(t)I(t)
1 + nI(t)

– e–δ1τ1
αη

α + δL

KT(t – τ1)I(t – τ1)

1 + nI(t – τ1)

+ (1 – f )e–δ1τ2
βT(t)V (t)
1 + bV (t)

– (1 – f )e–δ1τ2
βT(t – τ2)V (t – τ2)

1 + bV (t – τ2)

+ (1 – η)e–δ1τ2
kT(t)I(t)
1 + nI(t)

– (1 – η)e–δ1τ2
βT(t – τ2)I(t – τ2)

1 + nI(t – τ2)
.

Thus

dW (t)
dt

=
dW1(t)

dt
+

dW2(t)
dt

=e–δ1τ1
αf

α + δL

βT(t)V (t)
1 + bV (t)

+ e–δ1τ1
αη

α + δL

kT(t)I(t)
1 + nI(t)

+ (1 – f )e–δ1τ2
βT(t)V (t)
1 + bV (t)

+ (1 – η)e–δ1τ2
kT(t)I(t)
1 + nI(t)

– δR02I(t) –
cV (t)

N
+

R02cV (t)
N

≤
(

αf
α + δL

e–δ1τ1 + (1 – f )e–δ1τ2

)
βT0V (t)
1 + bV (t)

+
(

αη

α + δL
e–δ1τ1 + (1 – η)e–δ1τ2

)
kT0I(t)

1 + nI(t)

– δR02I(t) –
cV (t)

N
+

R02cV (t)
N

≤
(

αf
α + δL

e–δ1τ1 + (1 – f )e–δ1τ2

)

βT0V (t)

+
(

αη

α + δL
e–δ1τ1 + (1 – η)e–δ1τ2

)

kT0I(t)

– δR02I(t) –
cV (t)

N
+

R02cV (t)
N
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=
c
N

[
NβT0

c

(
αf

α + δL
e–δ1τ1 + (1 – f )e–δ1τ2

)

V (t) – V (t)
]

+ δ

[
kT0

δ

(
αη

α + δL
e–δ1τ1 + (1 – η)e–δ1τ2

)

I(t) – R02I(t)
]

+
R02cV (t)

N

=
c
N

(R01V (t) – V (t)) + δ(R02I(t) – R02I(t)) +
c
N

R02V (t)

=
c
N

(R01 + R02 – 1)V (t)

=
c
N

(R0 – 1)V (t).

It is clear that dW (t)
dt ≤ 0 when R0 < 1. Moreover, dW (t)

dt = 0 if and only if V (t) = 0. The
largest invariant set in {(T , L, I, V ) : dW (t)

dt = 0} is the singleton set {E0}. Therefore by the
Lyapunov-LaSalle invariance principle and Theorem 2 the disease-free equilibrium E0 is
globally asymptotically stable. �

Remark 1 Theorem 4.1 in [25] requires the condition f = η to ensure the global stability of
the disease-free equilibrium. However, in clinical practice, these two parameters may be
not equal. Our Theorem 3 removes the condition f = η. Therefore our conclusion is more
consistent with the actual situation. In fact, by using the method of proving Theorem 3,
we can prove that Theorem 4.1 in [25] holds even if two parameters are not equal.

5 Hopf bifurcation from the endemic equilibrium
Once the system generates the Hopf bifurcation, the HIV viral load will fluctuate periodi-
cally in the hosts, which is not conducive to the prevention and control of AIDS. Therefore
it is necessary to explore the existence conditions for the Hopf bifurcation in the system,
so as to bring enlightenment to the prevention and control of AIDS. In this section, taking
τ1 and τ2 as the bifurcation parameters, we consider the existence of Hopf bifurcation of
system (3) from the endemic equilibrium E∗ = (T∗, L∗, I∗, V ∗). We know that the endemic
equilibrium E∗ exists when R0 > 1. Substituting E∗ into Eq. (6), the characteristic equation
of the linearized system of system (3) is

P0(λ) + P1(λ)e–λτ1 + P2(λ)e–λτ2 = 0, (10)

where

P0(λ) =λ4 + a3λ
3 + a2λ

2 + a1λ + a0,

P1(λ) =b2λ
2 + b1λ + b0,

P2(λ) =c3λ
3 + c2λ

2 + c1λ + c0,

and

a3 = – (a11 + a22 + a33 + a44),

a2 =a11a22 + a11a33 + a11a44 + a22a33 + a22a44 + a33a44,

a1 = – a11a22a33 – a11a22a44 – a11a33a44 – a22a33a44,
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a0 =a11a22a33a44,

b2 = – a32b23,

b1 = – a32a43b24 – a13a32b21 + a32b23(a11 + a44),

b0 = – a14a32a43b21 + a11a32a43b24 + a13a32a44b21 – a11a32a44b23,

c3 = – c33,

c2 = – a43c34 + c33(a11 + a22 + a44) – a13c31,

c1 =(a11 + a22)a43c34 – a14a43c31 – c33(a11a22 + a11a44 + a22a44)

+ a13(a22 + a44)c31,

c0 = – a11a22a43c34 + a14a22a43c31 + a11a22a44c33 – a13a22a44c31

with

a11 = a – dT – 2aT∗
Tmax

– βV∗
1+bV∗ – kI∗

1+nI∗ , a13 = – kT∗
(1+nI∗)2 ,

a14 = – βT∗
(1+bV∗)2 , a22 = –(α + δL),

a32 = α, a33 = –δ,
a43 = Nδ, a44 = –c,
b21 = e–δ1τ1

(
f βV∗

1+bV∗ + ηkI∗
1+nI∗

)
, b23 = ηe–δ1τ1 kT∗

(1+nI∗)2 ,

b24 = fe–δ1τ1 βT∗
(1+bV∗)2 , c31 = e–δ1τ2

(
(1–f )βV∗

1+bV∗ + (1–η)kI∗
1+nI∗

)
,

c33 = (1–η)e–δ1τ2 kT∗
(1+nI∗)2 , c34 = (1–f )e–δ1τ2 βT∗

(1+bV∗)2 .

Now we discuss the Hopf bifurcation of system (3) in three cases.
Case (1): when τ1 = τ2 = 0, Eq. (10) is reduced to

λ4 + (ā3 + c̄3)λ3 + (ā2 + b̄2 + c̄2)λ2 + (ā1 + b̄1 + c̄1)λ + (ā0 + b̄0 + c̄0) = 0, (11)

where āi = ai, b̄j = bj(τ1=0), and c̄k = ck(τ2=0) (i, k = 0, 1, 2, 3; j = 0, 1, 2). By the Routh–Hurwitz
criterion the roots of (11) must have negative real parts if the following condition is satis-
fied:

(H1) ā3 + c̄3 > 0, ā1 + b̄1 + c̄1 > 0, and (ā1 + b̄1 + c̄1)((ā3 + c̄3)(ā2 + b̄2 + c̄2) – (ā1 + b̄1 + c̄1)) >
(ā3 + c̄3)2(ā0 + b̄0 + c̄0) > 0.

Therefore, if the conditions (H1) and R0 > 1 hold, then the endemic equilibrium E∗ is
locally asymptotically stable in the absence of delay.

Case (2): when τ1 = 0, τ2 > 0, Eq. (10) is reduced to

λ4 + m3λ
3 + m2λ

2 + m1λ + m0 + (c3λ
3 + c2λ

2 + c1λ + c0)e–λτ2 = 0, (12)

where m0 = a0 + b0, m1 = a1 + b1, m2 = a2 + b2, and m3 = a3.
Without loss of generality, we assume that Eq. (12) has a pair of simple and conjugate

imaginary roots λ = ±iω(τ2), where ω(τ2) is a real and positive function of τ2. It follows
that

{
(c2ω

2 – c0) cosωτ2 + (c3ω
3 – c1ω) sinωτ2 = ω4 – m2ω

2 + m0,
(c0 – c2ω

2) sinωτ2 + (c3ω
3 – c1ω) cosωτ2 = –m3ω

3 + m1ω.
(13)
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Squaring and adding the equations of (13), we obtain that

ω8 + h3ω
6 + h2ω

4 + h1ω
2 + h0 = 0, (14)

where

h3 =m2
3 – 2m2 – c2

3,

h2 =m2
2 + 2m0 – 2m1m3 – c2

2 + 2c1c3,

h1 =m2
1 – 2m0m2 + 2c0c2 – c2

1,

h0 =m2
0 – c2

0.

Taking z = ω2, (14) can be converted to

G1(z)
	= z4 + h3z3 + h2z2 + h1z + h0 = 0. (15)

Denote

p =
8h2 – 3h2

3
16

, q =
h3

3 – 2h2h3 + 8h1

32
, D0 =

q2

4
+

p3

27

and define

z∗
1 = –

h3

4
+ 3

√

–
q
2

+
√

D0 + 3

√

–
q
2

–
√

D0 if D0 > 0,

z∗
2 = max

{

–
h3

4
– 2 3

√
q
2

, –
h3

4
+ 3

√
q
2

}

if D0 = 0,

z∗
3 = max

{

–
h3

4
+ 2Re{α}, –

h3

4
+ 2Re{αε}, –

h3

4
+ 2Re{αε̄}

}

if D0 < 0,

where α = 3
√

– q
2 +

√
D0 and ε = –1+

√
3i

2 .
By a similar argument as for Lemma 2.1 in [30], we have the following lemma.

Lemma 1 For Eq. (15), we have:
(H2) If h0 < 0 or h0 ≥ 0 and one of the following conditions holds:

(1) D0 > 0, z∗
1 > 0, and G1(z∗

1) < 0,
(2) D0 = 0, z∗

2 > 0, and G1(z∗
2) < 0,

(3) D0 < 0, z∗
3 > 0, and G1(z∗

3) < 0,
then Eq. (15) has at least one positive root.

(H3) If h0 ≥ 0 and one of the following conditions holds:
(1) D0 > 0 and z∗

1 < 0,
(2) D0 = 0 and z∗

2 < 0,
(3) D0 < 0 and z∗

3 < 0,
then Eq. (15) has no positive root.

Without loss of generality, we assume that Eq. (15) has four positive roots, denoted by qk .
Then Eq. (14) also has positive roots ωk = √qk (k = 1, 2, 3, 4). Furthermore, from Eq. (13)
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we have

τ
(j)
2(k) =

1
ωk

arccos(θ1) +
2jπ
ωk

,

where

θ1 =
(ω4

k – m2ω
2
k + m0)(c2ω

2
k – c0) + (–m3ω

3
k + m1ωk)(c3ω

3
k – c1ω)

(c3ω
3
k – c1ωk)2 + (c2ω

2
k – c0)2 ,

k = 1, 2, 3, 4, j = 0, 1, 2, . . . . Then ±iωk is a pair of purely imaginary roots of Eq. (12) with
τ2 = τ

(j)
2k . Let τ ∗

2 = min{1,2,3,4}{τ (0)
2k } and ω0 = ω(τ ∗

2 ), where ω(τ ∗
2 ) is the value of ω when t = t∗

2 .
Let λ(τ2) = ξ1(τ2) + iω(τ2) be a root of Eq. (12) satisfying ξ1(τ ∗

2 ) = 0 and ω0 = ω(τ ∗
2 ).

Differentiating both sides of Eq. (12) with respect to τ2, it follows that

(
dλ

dτ2

)–1

=
3c3λ

2 + 2c2λ + c1

λ(c3λ3 + c2λ2 + c1λ + c0)
–

4λ3 + 3m3λ
2 + 2m2λ + m1

λ(λ4 + m3λ3 + m2λ2 + m1λ + m0)
–

τ2

λ
.

Notice that

sign
{

d(Reλ)

dτ2

}

τ2=τ∗
2

= sign

{

Re
(

dλ

dτ2

)–1
}

τ2=τ∗
2

.

According to Eqs. (12), (13), (14), and (15), we have

sign
{

d(Reλ)

dτ2

}

τ2=τ∗
2

= sign
{

G′
1(ω0)

(c3ω
2
0 – c1)2ω2

0 + (c0 – c2ω
2
0)2

}

= sign
{

G′
1(ω0)

}
.

Since ω0 > 0, we conclude that dReλ
dτ2

|τ2=τ∗
2

and G′
1(ω0) have the same sign. By applying

Lemma 1 to Eq. (15) and Hopf bifurcation theorem we get the following theorem about
the existence of a Hopf bifurcation.

Theorem 4 Suppose that τ1 = 0, τ2 > 0, and R0 > 1.
(I) If (H1) and (H3) hold, then the endemic equilibrium E∗ of system (3) is asymptotically

stable for τ2 > 0.
(II) If (H1), (H2), and G′

1(ω0) 
= 0 hold, then the endemic equilibrium E∗ of system (3)
is locally asymptotically stable for τ2 ∈ [0, τ ∗

2 ). In addition, Hopf bifurcation occurs when
τ2 = τ ∗

2 , and system (3) generates a cluster of bifurcated periodic solutions near τ ∗
2 , where

τ ∗
2 =

1
ω0

arccos

{
(ω4

0 – m2ω
2
0 + m0)(c2ω

2
0 – c0) + (–m3ω

3
0 + m1ω0)(c3ω

3
0 – c1ω0)

(c3ω
3
0 – c1ω0)2 + (c2ω

2
0 – c0)2

}

.

Case (3): when τ1 > 0 and τ2 = 0, this is similar to Case (2).
Case (4): when τ1 > 0 and τ2 > 0, let λ = iω (notice that the ω here has nothing to do with

the ω in Case (2); it is just an expression) be the root of Eq. (10)). Then we obtain

ω4 – a3ω
3i – a2ω

2 + a1ωi + a0 + (–b2ω
2 + b1ωi + b0)e–iωτ1
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+ (–c3ω
3i – c2ω

2 + c1ωi + c0)e–iωτ2 = 0.

Separating the real and imaginary parts, we get

{
(b2ω

2 – b0) cosωτ1 – b1ω sinωτ1 = ω4 – a2ω
2 + a0 + d1,

(b0 – b2ω
2) sinωτ1 – b1ω cosωτ1 = –a3ω

3 + a1ω + g1,
(16)

where

d1 = – c3ω
3 sinωτ2 – c2ω

2 cosωτ2 + c1ω sinωτ2 + c0 cosωτ2,

g1 = – c3ω
3 cosωτ2 + c2ω

2 sinωτ2 + c1ω cosωτ2 – c0 sinωτ2.

Squaring and adding the above equations, we obtain

ω8 + e6ω
6 + e4ω

4 + e3ω
3 + e2ω

2 + e1ω + e0 = 0, (17)

where

e6 = a2
3 – 2a3, e4 = a2

2 + 2a0 + 2d1 – 2a1a3 – b2
2,

e3 = –2a3g1, e2 = –2a0a2 – 2a2d1 + a2
1 + 2b0b2 – b2

1,
e1 = 2a1g1, e0 = a2

0 + d2
1 + 2a0d1 + g2

1 – b2
0.

Suppose that
(H4) Eq. (17) has at least one positive real root.
Then without loss of generality, we assume that Eq. (17) has eight positive real roots ωk ,

k = 1, 2, . . . , 8, and from Eq. (16) we have

τ
(j)
1(k) =

1
ωk

arccos (θ2) +
2jπ
ωk

,

where θ2 = (ω4
k –a2ω2

k +a0+d1)(b2ω2
k –b0)+(a3ω3

k –a1ωk –g1)b1ωk
(b2ω2

k –b0)2+b2
1ω2

k
, j = 0, 1, 2, . . . .

Let τ ∗
1 = min{k=1,2,...,8}{τ (0)

1(k)} and λ(τ1) = ξ2(τ1) + iω(τ1) be a root of Eq. (10) satisfying
ξ2(τ ∗

1 ) = 0, and let ω∗
0 = ω(τ ∗

1 ), where ω(τ ∗
1 ) is the value of ω when τ1 = τ ∗

1 . Next, we consider
the transversality condition. Taking the derivative of λ with respect to τ1 in Eq. (10), it
follows that

Re

⎧
⎨

⎩

(
dλ

dτ1

)–1
∣
∣
∣
∣
∣
τ1=τ∗

1

⎫
⎬

⎭
= Re

F23 + F24i
F21 + F22i

=
F21F23 + F22F24

F2
21 + F2

22
,

where

F21 =(b0 – b2(ω∗
0)2)ω∗

0 sinω∗
0τ

∗
1 – b1(ω∗

0)2 cosω∗
0τ

∗
1 ,

F22 =(b0 – b2(ω∗
0)2)ω∗

0 cosω∗
0τ

∗
1 + b1(ω∗

0)2 sinω∗
0τ

∗
1 ,

F23 = – 3a2(ω∗
0)2 + 2b2ω

∗
0 sinω∗

0τ
∗
1 – τ ∗

1 (b0 – b2(ω∗
0)2) cosω∗

0τ
∗
1 + b1 cosω∗

0τ
∗
1

+ a1 – τ ∗
1 b1ω

∗
0 sinω∗

0τ
∗
1 + (c1 – 3c3(ω∗

0)2) cosω∗
0τ2 + 2c2ω

∗
0 sinω∗

0τ2
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– τ2(c0 – c2(ω∗
0)2) cosω∗

0τ2 – τ2(c1ω
∗
0 – c3(ω∗

0)3) sinω∗
0τ2,

F24 = – 4(ω∗
0)3 + 2a2ω

∗
0 + 2b2ω

∗
0 cosω∗

0τ
∗
1 – b1 sinω∗

0τ
∗
1 – τ ∗

1 b1ω
∗
0 cosω∗

0τ
∗
1

+ τ ∗
1 (b0 – b2(ω∗

0)2) sinω∗
0τ

∗
1 – (c1 – 3c3(ω∗

0)2) sinω∗
0τ2 + 2c2ω

∗
0 cosω∗

0τ2

– τ2(c1ω
∗
0 – c3(ω∗

0)3) cosω∗
0τ2 + τ2(c0 – c2(ω∗

0)2) sinω∗
0τ2.

If we suppose that F21F23 + F22F24 
= 0, then Re( dλ
dτ1

)–1
τ1=τ∗

1

= 0.

We obtain the following conclusion.

Theorem 5 Suppose that τ1 > 0, τ2 > 0, and R0 > 1. If (H1), (H4), and F21F23 + F22F24 
= 0
hold, then the endemic equilibrium E∗ of system (3) is asymptotically stable when τ1 ∈
[0, τ ∗

1 ), and Hopf bifurcation occurs when τ1 = τ ∗
1 .

6 Conclusions
We constructed a latent HIV infection model (3) with virus-to-cell and cell-to-cell trans-
mission modes. In addition, we added logistic growth terms and nonlinear incidence to
model (3). According to [31], it is reasonable to assume that the infection rate of modeling
HIV infection has βTV

1+bV and kTI
1+nI forms. Time delays between viral entry and the establish-

ment of latent infection or virus production were also included in the model. We derived
the basic reproductive number R0. Our results show that R0 is a threshold that affects the
stability of the equilibrium point.

By constructing a proper Lyapunov function we obtained the global asymptotic stability
of the disease-free equilibrium when R0 < 1 without condition f = η of Theorem (4.1) in
[25]. This means that once drug treatment, such as antiretroviral therapy, makes R0 < 1,
the infection is expected to disappear. In addition, by using the method of Theorem 3
we can also obtain the global stability of the disease-free equilibrium point of system (1)
without the condition f = η.

The analysis showed that the local stability of the disease-free equilibrium is indepen-
dent of the size of the delay, but the size of the delay may affect the endemic equilibrium,
leading to a Hopf bifurcation. We studied the existence of the Hopf bifurcation of sys-
tem (3) at the endemic equilibrium and gave the conditions for the emergence of Hopf
bifurcation of the system in four cases.
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