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Abstract
Unlike many countries that have experienced multiple COVID-19 waves since January
2020, China’s stringent measures left most of the population without natural
immunity to SARS-CoV-2. After lifting controls, China experienced two distinct
Omicron waves from November 2022 to July 2023. However, no reliable study has yet
elucidated the transmission dynamics of these two consecutive Omicron waves in
China’s megacities, nor the phenomenon of reinfection due to immune escape. To
address this gap, this study proposes a hybrid epidemic modeling framework based
on multi-source surveillance and mobility data, including nucleic acid tests,
wastewater surveillance, case reports from Notifiable Infectious Diseases Surveillance
System of China (NIDSS), and intra-urban travel intensity data. In this hybrid modeling
framework, a four-stage compartmental model stratified by age is developed,
integrating human mobility and Omicron reinfection mechanisms. This model is
further corrected by an agent-based model to address the overestimation of
infections by the compartmental model, forming a comprehensive hybrid framework.
Based on the simulation results, several new findings are drawn. The attack rate of the
first wave in Shenzhen was 88.5% (95% confidence interval (CI): 72.1%-99.6%), lower
than other models’ predictions. The peak of the second wave occurred on May 18,
2023, with a higher reinfection rate compared to those observed in other countries
and regions. The effective reproduction number (Rt) for the first wave peaked at 5.44
(95% CI: 5.26-5.48), while for the second wave, the initial Rt was 1.28 (95% CI:
1.27-1.29). The first infections provide a 0.549 (95% CI: 0.544-0.554) protective effect
against XBB reinfection within six months. In conlusion, this study presents an
advanced modeling framework for accurately assessing epidemic spread in urban
environments using multi-source surveillance data.
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1 Introduction
After the outbreak of COVID-19 in late 2019, SARS-CoV-2 rapidly spread globally, lead-
ing to a pandemic [1–4]. In response, the Chinese government implemented a stringent
“Zero-COVID” policy until November 2022 [5–7]. With growing evidence of the reduced
severity of Omicron variants [8], China began gradually adjusting its COVID-19 control
policies in November 2022 [9–12]. Since then until July 2023, many areas of China had
experienced two consecutive distinct waves of Omicron driven by the major subvariants
BA.5/BF.7 and XBB, respectively [13, 14]. Unlike many other countries and regions that
experienced multiple COVID-19 waves caused by different SARS-CoV-2 variants since
January 2020 [15, 16], China’s prolonged strict measures left the vast majority of its pop-
ulation without natural immunity to SARS-CoV-2 before these two Omicron waves. This
unique situation provides an opportunity to investigate the relationship between the two
consecutive Omicron waves and to understand how immunity from the first wave, driven
by Omicron BA.5/BF.7, influenced the subsequent XBB wave. However, few studies have
estimated the dynamics of these two waves using reliable real-world data or assessed the
protective effect of a prior Omicron infection against reinfection. This study aims to fill
this gap.
It is challenging to accurately monitoring infection dynamics for large-scale epidemic
outbreaks, such as daily infections, reinfections, attack rate etc. On the one hand, indi-
vidual tests such as nucleic acid test are impractical for large populations over the whole
period of an outbreak; on the other hand, it is difficult to assess the reporting rate of
confirmed cases in various medical institutions. Alternative methods have emerged for
assessing the spread of the virus, especially for large-scale outbreaks, including wastew-
ater surveillance [17–19] and serological testing [20, 21]. However, serological surveys
only reflect past infection status and cannot capture real-time, rapidly changing trends,
especially during fast-evolving outbreaks. Meanwhile, wastewater monitoring is easily af-
fected by environmental factors, making it difficult to assess infection numbers accurately.
In contrast, epidemic modelling has consistently proven to be an effective tool for assess-
ing and predicting the dynamic spread of infectious diseases using epidemic-related data
[22–24]. Regarding the two consecutive Omicron waves from November 2022 to July 2023
in China, Leung et al.[25], Goldberg et al. [26], and Zhang et al. [27], Ma at al. [28] each re-
lied on non-traditionally epidemic-related monitoring data sources, such as transit data,
online surveys from China CDC, and Baidu search indices, to develop compartmental
models assessing the dynamics of the first wave of Omicron infections in China, Shanxi
province, Beijing specifically. However, these studies focused solely on modeling the first
wave and did not explore the impact of immunity from the first wave on subsequent waves.
Ma et al. [28] predicted that a small peak might occur in Shanxi by the end of April 2023,
but they were unable to provide a detailed assessment of the transmission dynamics. Be-
sides, they did not integrate more reliable data sources from medical institutions or CDC
departments, such as nucleic acid tests, wastewater surveillance, and case reports from
Notifiable Infectious Diseases Surveillance System of China (NIDSS).
Some studies have attempted to simulate the first wave using real-world data and predict
the second wave with some assumptions. For instance, Wu et al. [29] utilized vaccine-
induced immunity data from Hong Kong to predict the second wave of Omicron in China,
while Wang et al. [14] assumed that antibody effectiveness lasts 4–6 months following
Omicron infection to predict the infection dynamics of the second wave. These assump-
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tions, based on data from other countries or regions, may lead to inaccuracies in projecting
the second wave in China. A retrospective modeling study is needed to assess the dynam-
ics of the second wave using real-world data from China. Given that no single data source
can fully capture the dynamics of both Omicron waves, effectively integrate multi-source
data into the epidemic model is essential. This study aims to provide such an integration
framework. Moreover, previous studies [30, 31] have suggested that the commonly-used
population-based transmission models, which assume homogeneous mixing of human
contacts, tend to overestimate infections, particularly during the final stages of large-scale
outbreaks. This study will address this issue by proposing a modeling framework that es-
timates a more accurate infection scale. In terms of the related findings in epidemiology,
according to the cohort study from UK [32], the reinfection rate for XBB observed in epi-
demiology is between 14-16%. Previous studies [33, 34] indicate that protection from a
previous Omicron infection against a new Omicron reinfection has been found to range
from 50-90%. However, these findings were obtained after several rounds of SARS-CoV-2
infections, resulting in build-up of immunity in population. In contrast, China presents
a pristine natural scenario where the rate of immune evasion is expected to significantly
increase, leading to a higher likelihood of reinfection. In terms of the first wave of Omi-
cron in China since November 2022, from the epidemic modelling community, Goldberg
et al. [26] estimated the attack rate in the entire China to be 97% (95% CrI: 95%-99%).
Leung et al. [25] estimated that Beijing’s attack rate reached 92.3% (95% CrI: 91.4%-93.1%)
by January 31, 2023, while Zhang et al. [27] estimated that the attack rate for the first
wave in Beijing was 97.5% (95% CI: 97.0%-98.0%) as of January 15, 2023. Li et al. [35] used
molecular epidemiological analysis, serological surveys, and wastewater surveillance data
to analyze the first Omicron wave in Guangdong province, which peaked on January 11,
2023, with a cumulative infection rate of over 90%. Another serological survey found that
the IgM+ rate was 87% in Guangzhou [36], which is significantly lower than the aforemen-
tioned results [25–27]. For the second wave, with the mathematical models, Wu et al. [29]
posited an 80%/90% attack rate for China’s first outbreak and, building on this premise,
projected an attack rate of 37.63%/32.65% and a peak at July 2, 2023/Aug 15, 2023 for the
subsequent national wave. Zheng et al. estimated a reinfection rate of approximately 24.4%
in Shanghai based on a cohort study [37]. As we can see, the several existing studies have
also not yet reached a consistent result for this unique but important situation in China.
Therefore, this study develops a modelling framework that effectively integrates multi-
source data to assess two consecutively large-scale epidemic waves at a city level. To the
best of our knowledge, it is the first validated mathematical model to estimate and com-
pare the two Omicron waves in a megacity of China after the lifting of the “Zero-COVID”
policy in November 2022. This study also estimates the protective effect of a previous
Omicron infection against reinfection in the unique context of China. The highlights of
this work include:
1) Offering an epidemic hybrid modelling framework based on multi-source monitoring
and mobility data, including nucleic acid tests, wastewater surveillance, case reports from
NIDSS, and intra-urban travel intensity data. Notably, this study develops a four-stage
compartmental model stratified by age, which integrates the reinfection mechanism of
Omicron. The transmission rate is modelled by integrating the intra-urban travel inten-
sity and the contact intensity within and outside of households. The contact intensity is
further corrected by an equivalent individual-based model (i.e., agent-based model), cor-
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recting the overestimation of infection in the compartmental model and forming a hybrid
modelling framework. This study offers an advanced modeling example for accurately as-
sessing epidemic spread in urban settings using multi-source surveillance data.
2) Presenting new findings to enhance the understanding of the epidemic characteris-
tics of Omicron in China, including the attack rate, infection peak time, reinfection rate,
and the effective reproduction number (Rt) of the two Omicron waves in a megacity of
China. These insights contribute to a deeper understanding of Omicron’s epidemic char-
acteristics and the protective effect of natural immunity on Omicron reinfection. The
epidemiology of this emerging and rapidly evolving coronavirus can help prepare for fu-
ture emerging infectious disease, including the potential “Disease X”.
Overall, this study not only enhances our understanding of the epidemiological character-
istics of Omicron variants and the protective effect of natural Omicron infection against
reinfection in the Chinese population, but also offers methodological guidance for model-
based assessments of future emerging infectious diseases.

2 Methods
2.1 Study area
Shenzhen, a mega-city of China adjacent to Hong Kong with more than 17 million res-
idents, is the youngest and most densely populated city in China with an average age of
32.5 years (https://www.gov.cn). During the first wave of Omicron since November 2022,
the population in Shenzhen likely had almost no immunity against Omicron infection. The
main virus strains in the first and second Omicron waves in Shenzhen were BA.5/BF.7 and
XBB variants, respectively (https://www.chinacdc.cn). This presents a unique opportunity
to directly estimate the transmission of Omicron within a young and dense population. Ex-
isting studies indicate that the first Omicron wave in China lasted less than a month but
had a high infection rate [26]. This meant that a major proportion of the population in
Shenzhen acquired immunity almost at the same time, providing protection against Omi-
cron reinfection for a while [38]. Analyzing Shenzhen’s two consecutive Omicron waves
together can enhance our understanding of the protective effect of natural immunity of
Omicron against reinfection in a young and dense population.

2.2 Data
The data used in our study include four main parts: epidemic surveillance data in Shen-
zhen, intra-urban mobility data, contact matrix data, and Shenzhen demographic data.
The intra-urban mobility, contact matrix, and demographic data can help build a fine-
structured epidemic model coupled with human mobility, while the epidemic surveillance
data can assist in deriving key parameters for the SARS-CoV-2’s transmission dynamics.

2.2.1 Epidemic surveillance data
Nucleic acid test data. In November 2022, Shenzhen issued the following regulations in
response to the COVID-19 epidemic situation. To enter public transportation facilities
(e.g., airports, train stations, bus stations, passenger terminals, subway stations), ride pub-
lic transportation vehicles (e.g., subway, busses, taxis, ride-hailing cars), or enter enclosed
public spaces, individuals must present a negative nucleic acid test certificate valid within
48 hours of the current day, or a nucleic acid sampling certificate (recorded). Medical in-
stitutions and testing facilities are required to report positive samples of the SARS-CoV-2

https://www.gov.cn
https://www.chinacdc.cn
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nucleic acid test to NIDSS. The data is not publicly available, but we (Shenzhen CDC)
have internal access. Shenzhen continued to conduct large-scale nucleic acid testing from
11/11/2022 to 12/07/2022. During this period, the number of people tested ranged from
16.2 million to 17.31 million, with a testing rate of 92.64% to 98.9%. We use the daily PCR-
positive test data for the calibration of our Stage I and II model, which simulates the Pre-
opening and Relaxation period (11/11/2022-12/07/2022), when large-scale nucleic acid
screening was still conducted in China. Wastewater Surveillance data. Shenzhen is the
first city in mainland China to establish routine wastewater surveillance (WWS) to moni-
tor the local transmission of SARS-CoV-2 [19]. From December 3, 2022, to the end of Jan-
uary 2023, Shenzhen CDC conducted a survey at six wastewater treatment plants and nine
pumping stations in the Futian and Nanshan districts, covering a population of approxi-
mately 3.55 million. Based on the wastewater monitoring results from these two districts,
we used the peak time of virus concentration in Shenzhen.

Daily reported cases of COVID-19 from medical institutions. Daily reported cases of
COVID-19 from medical institutions, including nucleic acid- or antigen-positive patients
with SARS-CoV-2 infections, were reported to Shenzhen CDC by NIDSS within 24 hours.
The NIDSS covers all public and private medical institutions in Shenzhen (including fever
clinics, inpatient departments, community health centers, etc.). Based on the reported
results, we have compiled the daily reported COVID-19 cases from May 1 to June 2, 2023.

2.2.2 Intra-urban mobility data
Previous studies [39, 40] have suggested that intra-urban mobility and physical mixing are
relevant to the local spread of COVID-19, which could be gauged by the intra-urban travel
intensity. The data for intra-urban travel intensity comes from Baidu Migration (https://
qianxi.baidu.com). It is defined as the daily standardized ratio between the number of
people with a travel more than 500 meters and the resident population of that city. A higher
intra-urban travel intensity indicates a higher proportion of the population traveling on a
given day. The daily mobility data of Shenzhen used in this study spans from December 7,
2022 to July 31, 2023.

2.2.3 Contact matrix data
The contact matrix for the age-specific transmission model is from a social contact survey.
Leung et al. [39] previously conducted a social contact survey in Hong Kong and estimated
the contact matrix by age. They divided population contact patterns into non-household
and household contacts, each represented by separate contact matrices. Given the geo-
graphical proximity and similar lifestyle patterns between Shenzhen and Hong Kong, this
study adopts the contact matrix parameters from Hong Kong to build the epidemic model.

2.2.4 Demographic data
This study utilizes demographic data of Shenzhen from the 7th National Population Cen-
sus of China in 2020. This included detailed information on the permanent resident pop-
ulation of Shenzhen and age distribution (https://www.gov.cn/guoqing/).

2.3 Model and inference
The two consecutive Omicron waves in Shenzhen from November 11, 2022, to July 31,
2023 consist of different stages of control policy and different Omicron strains. To analyze

https://qianxi.baidu.com
https://qianxi.baidu.com
https://www.gov.cn/guoqing/
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Figure 1 Four-stage hybrid epidemic modeling framework for Omicron in Shenzhen using multi-source
surveillance data and mobility data

these two waves, we propose a four-stage modeling framework that effectively leverage
different data sources in each stage. Based on the changes in policies and the epidemic
situation, the epidemic dynamics are divided into four stages:

1) Stage I Pre-opening (11/11/2022-12/01/2022): On November 11, 2022, the Chinese
government announced “20 measures” [9]. Control measures included restricting the con-
trol area, reducing the quarantine period for close contacts and inbound individuals, and
temporarily halting tracing of secondary contacts.

2) Stage II Relaxation (12/01/2022-12/06/2022): During this period, Shenzhen gradually
eased control measures, leading to a gradual increase in the daily new infections.

3) Stage III First Wave (12/07/2022-01/31/2023): On December 7, 2022, the Chinese
government issued “10 measures” [10], further promoting individual antigen testing in-
stead of large-scale nucleic acid screening, with individuals voluntarily choosing home
quarantine rather than centralized quarantine. From this point, China entered a phase of
widespread relaxation.

4) Stage IV Second Wave (02/01/2023-07/31/2023): After the conclusion of the first
Omicron wave in Shenzhen, people gradually returned to their pre-pandemic lifestyles.
During this stage, individuals who had not been infected in the first wave gradually be-
came infected, and reinfections were observed.

As shown in Figure 1, we construct a four-stage hybrid modeling framework. First, we
combine a compartmental model with an agent-based model (ABM) to create a hybrid
model that mitigates the traditional compartmental model’s tendency to overestimate at-
tack rates [30, 31]. Then, based on the distinct characteristics of each stage of the epi-
demic and the hybrid model, we establish a Susceptible-Latent-Asymptomatic-Infectious-
Removed (SLAIR) model for Stages I to III to simulate the transmission of SARS-CoV-2
in Shenzhen (The “Removed” compartment refers to those who have moved out of the
infected system). In the Stage IV, considering the phenomenon of reinfection, a reinfec-
tion compartment is introduced into the SLAIR model. Different data are used to fit the
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Figure 2 Multi-layer contact and infection spread in an ABM

corresponding parameters. Details of the models and the fitting processes for each stage
are discussed in following sections.

2.3.1 The hybrid model combining compartmental model and ABM
ABM can simulate the behaviors and interactions of individual agents with different at-
tributes and actions. This fine-grained modeling can capture the heterogeneity of popula-
tions, where individuals may have varying susceptibility and contact rates. In contrast, the
core assumption of compartmental model in this study is to use a fixed, age-specific con-
tact matrix to describe population contact patterns. However, this assumption overlooks
changes in interpersonal contact patterns and the heterogeneity during the epidemic dy-
namics [30, 31]. During large-scale outbreaks, we typically focus on the overall infection
trends of the population. Compartmental models can quickly assess epidemic dynamics
and adjust in real-time based on actual data, whereas ABM requires more computational
time.

To leverage the strengths of both models, we develop a hybrid model that integrates the
compartmental model and ABM to capture the complex dynamics of epidemic spread.
The ABM incorporates a multi-layer contact network encompassing household, work-
place, school, and community layers [41, 42]. Each agent within these layers exhibits het-
erogeneous contact patterns based on real-world statistical data fitted to age-specific and
location-specific distributions.As shown in Figure 2, ABM includes four contact layers:
Household, Workplace, School, and Community. The figure uses the school contact layer
as an example, showing the contact networks on different days (from Day 1 to Day n). The
curve chart below shows the trends in the number of susceptible, infected, and removed
individuals over time. At each simulation step, the model tracks the total number of sus-
ceptible (S) and infected (I) individuals. For each layer k, it calculates the total contact
counts CS,k , CI,k , and CT ,k for the susceptible, infected, and total populations, respectively.
Using these values, we determine the average contact numbers for the susceptible, in-
fected, and total populations in each layer, denoted as μS,k , μI,k , and μT ,k , respectively.
These are defined as:

μS,k =
CS,k

NS,k
,μI,k =

CI,k

NI,k
,μT ,k =

CT ,k

NT ,k
, (1)



Shi et al. Advances in Continuous and Discrete Models          (2025) 2025:5 Page 8 of 25

Figure 3 Relationship between the attack rate and the adjustment factor based on the ABM. (a) The
proportion of S, I, and R groups over time in the ABM. (b) The average contact numbers of S, I, and R groups in
four contact layers. (c) The relationship between the attack rate and the adjustment factor over time

where NS,k , NI,k , and NT ,k represent the number of susceptible individuals, infected indi-
viduals, and the total population in layer k, respectively. For example, in Figure 2, on Day
i, CS,k is 5, NS,k is 3 and μS,k is 5/3 ≈ 1.7.

The normalized effective transmission contact volume Nk for each layer is calculated by
taking the product of the average contact numbers of S and I and standardizing it by the
square of the average contact number of the total population:

Nk =
(
μS,k × μI,k

)
/μ2

T ,k. (2)

These normalized volumes from each layer are then aggregated into an overall metric:

N =
∑

k

wk ×Nk , (3)

where wk represents the predefined weight reflecting the relative importance of contact
time in each layer based on survey and time-use data (Appendix A.2).

As shown in Figure 3, in the ABM simulation, the average contact numbers of S, I , and
R change as their proportions change. In Fig. 3(b), at the initial stage, due to the small
number of I and R, they are filtered out when calculating the average contact numbers.
The shaded area represents the trend of the attack rate over time. At each simulation step,
we treat the aggregated metric N as a dependent variable and the attack rate ρ for that
day as an independent variable. Here ρ represents the cumulative proportion of infected
individuals in the population from the initial time t = 0 to the current time t, as shown
in Equation (4). This allows us to derive a function g(ρ) representing the relationship be-
tween the attack rate and the adjustment factor N . g(ρ) does not have a fixed analytical
form, but is instead an empirically derived function based on the results of agent-based
model simulations. By simulating daily cumulative infection rates ρ within the ABM and
recording the corresponding effective contacts, we created a mapping of ρ → N values,
which represents the relationship between the attack rate ρ and the adjustment factor
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Figure 4 The SLAIR compartmental model structure used in Stages I, II and III

g(ρ).

ρ =
∫ t

0
∑

n In(τ )dτ
∑

n Nn(0)
(4)

The function g(ρ) is used to adjust the transmission rate β in the compartmental model.
The adjusted transmission rate β ′ is calculated as β ′ = β × g(ρ), where g(ρ) captures the
influence of the attack rate on the transmission rate. In the subsequent sections, we use
the adjustment function g(ρ), and taking into account the characteristics of epidemic de-
velopment at different stages, construct compartmental models.

2.3.2 Stage I pre-opening
Based on the natural history of Omicron, we establish an SLAIR model (Figure 4) to simu-
late the transmission of SARS-CoV-2 in Shenzhen. This model structure is used in Stages
I–III. The dynamic equations of the model are shown in Equation (5). In this model, the
population of Shenzhen is divided into four age groups: 0–3, 4–17, 18–59, and 60+ years.
The age proportions of each group are derived from the 7th national census data. This
model uses an age-specific contact matrix to describe the contact patterns among differ-
ent sub-populations. The model parameters are shown in Table 1.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSn(t)
dt = –β1g(ρ)Sn(t)

∑
m

(
Mnm

Am(t)+Im(t)
Nm

)

dLn(t)
dt = β1g(ρ)Sn(t)

∑
m

(
Mnm

Am(t)+Im(t)
Nm

)
– γeLn(t)

dAn(t)
dt = (1 – αn) γeLn(t) – δarAn(t)

dIn(t)
dt = αnγeLn(t) – δirIn(t)

dRn(t)
dt = δarAn(t) + δirIn(t)

Nn = Sn(t) + Ln(t) + An(t) + In(t) + Rn(t)

(5)

• Sn(t), Ln(t), An(t), In(t) and Rn(t) are the numbers of susceptible, latent, asymptomatic,
symptomatic and removed individuals in age group n at time t, respectively.

• Nn represents the total population of age group n.
• Mnm represents the average number of daily contacts between individuals in age

group n and age group m [46].
• g(ρ) represents the influence of the attack rate on the transmission rate β1.
Due to the influence of policy changes and human activities, the transmission rate of

Omicron varies across different stages. To account for this, the transmission rate β1 is
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Table 1 Model parameters for the four stages

Stage Parameter Description Value Reference

I β1 Transmission rate in Stage I 0.057 (95% CI: 0.055–0.058) Estimated
I–IV 1/γe Latent period �(3, 0.1) days [43]
I–IV αn Symptomatic rate by age group [0.78, 0.75, 0.85, 0.87] [44]
I–IV 1/δar Infectious period for asymptomatic infections �(8.87, 0.1) days [45]
I–IV 1/δir Infectious period for symptomatic infections �(8.87, 0.1) days [45]
II β2 Transmission rate in Stage II 0.090 (95% CI: 0.088–0.091) Estimated
III-IV γ , μ Scaling factor and weight parameter of

transmission rate function β(γ ,μ) in Stages
III, IV

0.098 (95% CI: 0.097–0.098),
0.833 (95% CI: 0.832–0.833)

Estimated

IV ϕ , ε, λ Constituent parameters of the individual
immunity waning function F(ϕ ,ε,λ)

0.036 (95% CI: 0.032–0.036),
0.100 (95% CI: 0.089–0.113),
0.160 (95% CI: 0.151–0.183)

Estimated

IV 1/γrs The period from R (Removed) moving to S’
(Secondary susceptible)

248 (95% CI: 247.5–248.0) days Estimated

estimated by fitting the SLAIR model to epidemic surveillance data. Specifically, we fit
the model to the daily new positive cases calculated based on nucleic acid test data from
November 10 to November 31, 2022 in Shenzhen, with β1 set as the optimization pa-
rameter. The mean squared error (MSE) between the simulated daily new infections and
the actual nucleic acid test data is used as the objective function, as shown in Equa-
tion (6):

argmin f1 (β1) =
1
n

n∑

t=1

(Lmodel (t,β1) – Lreal (t))2 , (6)

where Lmodel (t,β1) represents the number of new infections simulated by the model on
day t, and Lreal (t,β1) represents the actual number of positive nucleic acid tests on day t.
The optimal β1 is determined by the Bayesian optimization algorithm [47]. The Bayesian
optimization algorithm is also used in the subsequent stages to estimate unknown param-
eters.

2.3.3 Stage II relaxation
During this period, despite the relaxation of control policies, human activity levels did
not return to pre-pandemic levels, and the scale of infections remained relatively low. The
SLAIR model from Stage I is retained in this phase. However, due to policy changes and
the resulting shifts in human behavior, the transmission rate changes. Therefore, it is nec-
essary to refit β2. The positive cases on November 30, 2022, obtained from the simulation
in Stage I, are used as the seed for Stage II. We use daily new positive cases calculated
based on nucleic acid test data from December 1 to December 6, 2022, to refit β2. The
fitting process in Stage II is mirrors that of Stage I, and the optimal β2 is again determined
using the Bayesian optimization algorithm.

2.3.4 Stage III first wave
Stage III is characterized by an “opening up” after policy adjustments, resulting in signif-
icant changes in human mobility compared to earlier stages. These behavioral changes
have a considerable impact on contact patterns and the spread of Omicron. Therefore, in
this stage, we use population mobility monitoring data as a probe to dynamically adjust
the transmission rate, β , from Stages I and II.
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We adopt the method proposed by Leung et al. [39] to construct the transmission rate
β(t), accounting for both population exposure from outdoor activities and household con-
tacts. Specifically, we use intra-urban mobility data from residents of Shenzhen to repre-
sent the contact intensity associated with population engagement in outdoor activities.
Given the geographical proximity of Shenzhen to Hong Kong, we apply the household
contact matrix developed by Leung et al. for Hong Kong [39] to Shenzhen. The transmis-
sion rate β(t) is calculated as follows:

β(t) = μγ m2(t) + (1 – μ)H . (7)

We define m(t) as the normalized intra-urban residential mobility in Shenzhen (https://
qianxi.baidu.com) on day t. H represents the average number of contacts within a house-
hold, while γ and μ denote the scaling factor and weight parameter, respectively, both of
which are estimated through statistical inference. The dynamic equations for the model
in Stage III are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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dt = –β(t)g(ρ)Sn(t)

∑
m

(
Mnm

Am(t)+Im(t)
Nm

)

dLn(t)
dt = β(t)g(ρ)Sn(t)

∑
m

(
Mnm

Am(t)+Im(t)
Nm

)
– γeLn(t)

dAn(t)
dt = (1 – αn) γeLn(t) – δarAn(t)

dIn(t)
dt = αnγeLn(t) – δirIn(t)

dRn(t)
dt = δarAn(t) + δirIn(t)

Nn = Sn(t) + Ln(t) + An(t) + In(t) + Rn(t).

(8)

For the Stage III model, we need to infer the unknown parameters γ and μ. The initial
seed for the model is the number of individuals in compartments A and I by age group
on December 6, 2022, simulated by the Stage II model. We then fit the model parameters
by utilizing the peak time (December 27, 2022) of wastewater surveillance data in Shen-
zhen from December 7, 2022, to January 31, 2023. The objective function is defined as
follows:

argmin f2(γ ,μ) = |Pmodel (γ ,μ) – Preal | , (9)

where Pmodel denotes the peak infection time as simulated by the model, where Preal is
the peak time of infections derived from wastewater surveillance data. Then, the optimal
parameters γ and μ are found using the Bayesian optimization algorithm.

2.3.5 Stage IV second wave
After the first Omicron wave in Shenzhen, a natural immunity barrier was established
within the population. According to the report of China CDC, the XBB variant became
the dominant strain during this stage (https://www.chinacdc.cn). Variants like XBB, along
with BA.5/BF.7, belong to the same lineage. While it is known that XBB has greater im-
mune evasion capabilities than BA.5/BF.7 [48], concrete data comparing their transmis-
sibility is lacking. Therefore, in Stage IV, we continue to use the transmission parameter
β(t) as fitted in Stage III. Considering the potential for reinfection among previously in-
fected individuals and the subsequent development of immunity, we extend the compart-
mental model used in Stages I–III. The updated model structure is shown in Figure 5.

https://qianxi.baidu.com
https://qianxi.baidu.com
https://www.chinacdc.cn
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Figure 5 The compartmental model structure for Stage IV

After individuals enter the R compartment, they transition to the S’ (secondary suscep-
tible) compartment at a rate γrs, where they become susceptible to secondary infection.
The compartmental transition process for secondary infections mirrors that for primary
infection. To reduce the influence of repeated infections on our analysis of secondary in-
fections, we do not account for tertiary infections. In Stage IV, we consider both the im-
munity conferred by initial infections and its gradual waning over time, which can reduce
the risk of reinfection. The process of individual immunity waning is modelled based on
prior literature [49], where we assume that the waning function follows a convex-concave
shape. We define this function using a sigmoid function. F(t) represents the probabil-
ity of preventing infection, i.e., the protective ability of prior infection against reinfec-
tion.

F(t) =
1 – ε

1 + eϕ(t–λ)
+ ε. (10)

The unknown parameters are ϕ, ε, λ. To account for the individual immunity waning,
we assume that after individuals enter the R compartment, they transition to the S’ com-
partment at a rate γrs, making them susceptible to infection again. After determining the
individual immunity waning function, we use a weighted average method to calculate
population immunity. The calculation formula is as follows:

Simm(t) =
∑

t S′
new(t)F(t)

∑
t S′

new(t)
(11)

S′
new(t) represents the number of individuals who became susceptible to secondary infec-

tion t days ago, while Simm(t) represents the average level of population immunity at this
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time t.
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(12)

We then utilize the peak time of daily reported COVID-19 cases from medical institutions
from May 1 to June 2, 2023, along with the trends in the daily case number curve, to fit the
unknown model parameters. Specifically, we use the absolute error in peak time between
the reported cases and the model-simulated infections, as well as the Pearson correlation
coefficient between the simulated and reported daily cases during this period, as objective
functions.

argmin f3 (ϕ, ε,λ,γrs)

= ω1 |Pmodel – Preal | + ω2

∑
t
(
Lsim (t) – L̄sim

) (
Lreal (t) – L̄real

)

√∑
t
(
Lsim (t) – L̄sim

)2 ∑
t
(
Lreal (t) – L̄real

)2
,

(13)

where Pmodel denotes the simulated peak time of daily new infections in Shenzhen’s
second Omicron wave, and Preal represents the actual peak time of daily reported
cases in Shenzhen. Lsim (t) represents the modeled daily new infections from May 1
to June 2, 2023, while Lreal (t) represents the daily reported case numbers. ω1 and ω2

are weighting coefficients. Finally, the Bayesian optimization algorithm is applied to
search for the optimal parameter set that minimizes the value of the objective func-
tion.

3 Results
3.1 Model fitting and validation
This section presents the fitting results between the model simulations and real data for
each of the four stages.

As shown in Figure 6(a)–(b), the estimated daily COVID-19 cases based on positive rate
of nucleic acid testing increased from 10 to 350 during the 20 days of Stage I (November
11–30, 2022), and surged to 1,966 over the 6 days of stage II (December 1–6, 2022). In
Figure 6(c)–(d), the model simulation of daily new infections fits the number of positive
cases quite well in both stages, with Pearson correlation coefficients of 0.96 and 0.98, re-
spectively. These models are used to capture the scale of infection seeds at the beginning
of the first Omicron wave.
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Figure 6 The model simulations of daily new infections according to the reported positive rate of nucleic
acid testing in Stages I and II. (a) Positive rate of nucleic acid testing in Stage I (November 11 – November 30,
2022). (b) Positive rate of nucleic acid testing in Stage II (December 1–6, 2022). (c) Model simulation of daily
new infections in Stage I. (d) Model simulation of daily new infections in Stage II

Figure 7 The model fitting results in Stage IV

In Stage III (the first Omicron wave), the model is fitted using the peak infection time de-
rived from wastewater surveillance data, with the peak occurring on December 27, 2022.
As shown in Figure 8(a), the modeled peak time aligns well the observed peak on Decem-
ber 27.

In Stage IV (the second Omicron wave), we fit the model using the full trend of daily
reported cases from May 1 to June 2, 2023, as shown in Figure 7. Due to the prevalence
of mild symptoms during this wave in Shenzhen, a substantial discrepancy exists between
the daily reported cases and the actual daily new infections. Therefore, the model fitting
focuses on the peak time and the overall trend of the reported case curve. As a result, both
the simulated and reported daily new infections peaked on May 18, 2023, with a Pearson
correlation coefficient of 0.93 between the two curves.
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Figure 8 The modeled two consecutive waves of Omicron in Shenzhen. (a) Daily new infections during the
two consecutive waves. (b) Daily new infections segmented by primary infections and reinfections. (c)
Cumulative infections during the first Omicron wave. (d) Cumulative infections during the second Omicron
wave

3.2 The first Omicron wave in Shenzhen
This section delves into the details of the first Omicron wave in Shenzhen and the changes
in human mobility.

Figure 8(a) displays the daily new infections in Shenzhen. The peak of the first Omicron
wave occurred on December 23, 2022 (Peak 1), with an estimated peak value of approx-
imately 1.25 million (95% CI: 1.11–1.32 million) and a peak daily new infection rate of
7.13% (95% CI: 6.36-7.53%). By January 3, 2023, the daily new infection rate had dropped
to below 1%, and the attack rate for the first wave in Shenzhen reached 88.5% (95% CI:
72.1–99.6%).

In Figure 8(a), from December 7 to December 23, 2022, daily new infections in Shenzhen
experienced rapid growth. During this period, the travel intensity in Shenzhen dropped
significantly, reaching 0.44 on December 25, 2022 — two days after the infection peak-
which represents a decrease of approximately 56% compared to normal travel intensity.
The two-day lag in mobility decrease is likely due to the 2-3 day incubation period. Given
the high percentage of symptomatic cases [36], many sick people had to stay at home,
and their household members may need to take care of them, leading to a significant de-
crease in mobility. As the epidemic subsided, travel behavior gradually recovered. More-
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over, from January 11 to January 31, 2023, marked the Chinese New Year period–Spring
Festival holidays. Shenzhen is China’s youngest city, comprising a large number of young
workers from other regions, with 63% non-registered residents. Therefore, during the hol-
idays for family reunion, Shenzhen experienced significant population outflow, resulting
in the lowest point of intra-urban travel intensity. At the same time, the first Omicron
wave in Shenzhen has ended, so it did not significantly impact the epidemic.

3.3 The second Omicron wave in Shenzhen
We define the beginning of the second Omicron wave as the date when the daily new
infections exceed 0.1% after the conclusion of the first Omicron wave, and consider it over
when the daily new infections drop again below 0.1%. According to the model simulation,
the second Omicron wave in Shenzhen started on April 2, 2023, and ended on July 15,
2023, peaking on May 18, 2023 (Peak 2). At its peak, the daily new infections reached 0.12
million (95% CI: 0.10–0.13 million), corresponding to a new infection rate of 0.66% (95%
CI: 0.59– 0.73%). As shown in Figure 8(d), the cumulative number of infections during the
second wave was 6.57 million (95% CI: 5.16–8.14 million), with an attack rate of 37.5% (95%
CI: 29.5–46.4%). Figure 8(b) illustrates the daily new infections segmented by primary
infections and reinfections across both waves. During the first Omicron wave, the majority
of daily new infections were primary. Following the conclusion of the first wave, the daily
primary infections gradually decreased, while reinfections started to rise. On February 23,
2023, the daily new reinfections surpassed primary infections. During the second wave,
reinfections become predominant. On May 18, 2023, at the peak of the second wave, the
daily new primary infections were 13 k (95% CI: 10–16k), while reinfections reached 0.102
million (95% CI: 0.09–0.11million). The attack rate for primary infections in the second
wave was 4.2% (95% CI: 3.2–5.6%), while the attack rate for reinfections was 33.3% (95%
CI: 26.3–40.8%), accounting for 88.8% of infections during the second wave.

As observed in Figure 8(a), after the Chinese New Year, intra-urban travel intensity in
Shenzhen returned to normal levels and exhibited a weekly rhythmic pattern. During the
second Omicron wave, there was no significant change in intra-urban mobility in Shen-
zhen. Cross-correlation function analysis indicates a very strong negative correlation (co-
efficient = –0.98, P = 0.0035) at lag 0 between the number of new infections in the first
wave and travel intensity, suggesting that a decrease in mobility was closely associated
with an increase in new infections and vice versa. In contrast, the correlation between the
second wave and travel intensity was much weaker (coefficient = –0.25, P = 0.3), suggest-
ing a less pronounced relationship. Thus, it can be inferred that the second Omicron wave
had a limited impact on the daily travel behavior of Shenzhen residents.

3.4 Immunity and immune waning
During the first Omicron wave in Shenzhen, the predominant strain was BA.5/BF.7. The
XBB variant was first detected in China on February 17, 2023, and subsequently became
the dominant strain in the second wave (https://www.chinacdc.cn). Individuals previously
infected with the BA.5/BF.7 subvariants may develop partial immunity to the XBB subvari-
ant, providing some protection against reinfection. However, this immunity wanes over
time. To model this process, we fit the dynamics of individual immunity and its decline
(see Figure 11). In our model, individuals gain immunity against Omicron reinfection after
an initial infection. We present the simulation results as an alternative to a closed cohort

https://www.chinacdc.cn
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Figure 9 The daily new infection rate for the control group and the test group

to assess the protective effect against XBB reinfection after infection with BA.5/BF.7. The
observation time spanned from February 17 to July 31, 2023. As shown in Figure 9, the or-
ange line represents the daily new infection rate in the simulated control group, which had
no prior SARS-CoV-2 infection before XBB infection, while the green line represents the
simulated test group, previously infected with BA.5/BF.7 subvariants. The control group
peaked on May 11, 2023, whereas the test group peaked nine days later on May 20, 2020,
with about 45% of the daily new infection rate of the control group. The relative risk (RR),
defined as the ratio of the attack rate among previously infected individuals to that of those
without prior infection, was calculated to be 0.451 (95% CI: 0.448-0.456). This suggests a
0.549 (95% CI: 0.544-0.552) protective effect against XBB reinfection after previous infec-
tion with BA.5/BF.7 subvariants within 6 months.

3.5 Comparison of epidemic characteristics between the two consecutive
Omicron waves in Shenzhen

The instantaneous effective reproduction number, Rt , is defined as the average number
of secondary cases per infectious case on day t. We used the “EpiEstim” R package devel-
oped by Thompson et al. [50] to calculate the Rt values for the two consecutive Omicron
waves. As shown in Figure 10, just on December 11, 2022 – shortly after opening up –
Rt reached 5.44. Following this, due to the rapid and dramatic increase of symptomatic
patients (especially with fever [44]), and the need to care for household members, out-
of-home travels have dropped dramatically throughout the city. On December 25, 2022,
symptomatic cases in Shenzhen reached their peak, and intra-urban travel intensity fell
to its lowest point of 0.44, while Rt decreased to 1.36 (95% CI: 1.32-1.37). After the wave
passed its peak, cases gradually recovered and the intra-urban travel intensity gradually
increased. Rt dropped below 1 on December 27, 2022. During the Spring Festival, Shen-
zhen experienced a large-scale population outflow, which further reduced the intra-urban
travel intensity to its lowest point of 0.23. By that time, the first Omicron wave in Shen-
zhen had basically ended, with Rt fluctuating around 0.6. At the beginning of the second
wave, Rt was 1.28 (95% CI: 1.27-1.29), and remained stable for about a month, falling be-
low 1 for the first time on May 22, 2023. Throughout the second wave, Rt remained low
(0.85-1.3), and the intra-urban travel intensity maintained normal levels, indicating that
the daily mobility in Shenzhen was not greatly affected during the second wave.

As shown in Table 2, the duration of the second wave was approximately three times
longer than the first. The peak times of the two waves were five months apart. The first
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Figure 10 Rt of the two consecutive Omicron waves in Shenzhen after opening up

Table 2 Comparison of the epidemic characteristics of the first and second Omicron waves

Start End Duration Peak time Peak daily
new infections

Attack rate

First wave 12/07/2022 01/03/2023 28 days 12/23/2022 1.25 m 88.5%
Second wave 04/02/2023 07/15/2023 104 days 05/18/2023 0.12 m 37.5%

wave reached its peak in 16 days, while the second wave took 47 days to do so - about three
times longer. The peak daily new infections in the second wave was roughly one-tenth of
those in the first, with an attack rate about two-fifths that of the first wave.

4 Discussion and conclusions
In large-scale epidemics, relying solely on a single data source and a compartmental model
makes it difficult to quickly and accurately assess epidemic dynamics. To overcome this
limitation, this study develops an epidemic modeling framework that integrates multi-
source data. To address the issue of overestimating attack rates in the compartmental
model, we introduce an ABM to increase heterogeneity. This hybrid modeling framework
provides a valuable approach to accurately assess epidemic spread in urban environments
using multi-source surveillance data.

Our simulations estimate the attack rate of the first Omicron wave in Shenzhen to be
88.5%, which is lower than the 97% reported by a previous study [26], based primarily on
an online infection status survey conducted on December 26, 2022. Online surveys can
overestimate infection rates for several reasons: 1) Internet users tend to be younger and
have higher contact rates with fewer protective behaviors, leading to higher infection rates;
2) Individuals who are infected and symptomatic are more likely to participate in such
surveys. In contrast, our estimate aligns closely with the results from more reliable sources.
For instance, a serological survey in Guangzhou, another megacity in the same province
located 100 kilometers from Shenzhen, reported an IgM+ rate of 87% [36], supporting
the accuracy of our model. Additionally, Fu et al. [51] estimated a national attack rate
of the first wave to be 82.4% based on an online survey. We infer that Shenzhen, as the
youngest city in China with potentially more human contacts, experienced a higher attack
rate compared to the national average.

When examining secondary infections in the population, we account for both high im-
mune escape and the process of immune waning. Model simulations estimate that there
is only 54.9% protective effect against XBB reinfection within 6 months after a first infec-
tion of BA.5/BF.7. A retrospective cohort study in Singapore also reported that immunity
against XBB infection remains high 7-8 months after infection with the Omicron BA.2,
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BA.5 and BF.7 variants [38]. According to results from a UK cohort study, the risk of re-
infection with XBB after an initial infection with BA.5/BF.7 variants increased from 0.5
to 1 over approximately 120 days, with a reinfection rate of 14-16% for XBB identified.
Comparing these results with other countries, we observed a faster decay in population
immunity and a higher reinfection rate of 33.3% in our population. This is likely attributed
to the unique policy decisions in China, as other countries have experienced multiple epi-
demic waves, allowing their populations to accumulate immunity against various strains.
In contrast, China’s consecutive waves occurred when a majority of the population lack
natural immunity to SARS-CoV-2. Whether the new variant causes a spike in the number
of infections in a given country is likely to depend on the size and timing of that country’s
earlier wave, as noted by an evolutionary biologist from the Catholic University of Leuven
in Belgium [52]. Wu et al. [29] and Wang et al. [14] projected that mainland China would
face its second wave 7 months after the first, with an attack rate of about 37%, based on
assumptions of antibody efficacy. We fill in their assumptions with our fitted results based
on real surveillance data, further validating their projection about the infection rate of
the second wave. We found that the actual peak time in Shenzhen and mainland China
occurred in May 2023 (https://www.chinacdc.cn), which is 2-3 months earlier than pre-
dicted by models based on assumptions.

During the initial phase of the first Omicron wave, despite the absence of travel re-
strictions, mobility significantly decreased. This reduction can be attributed to the rapid
spread of the epidemic, potentially leading to numerous concentrated infections, partic-
ularly among those with fever, which reduced the movement of both patients and their
caregivers. Additionally, some individuals voluntarily self-isolated, and fear-driven pre-
ventive behaviors further contributed to reduced mobility [25]. In contrast, the second
wave had a less noticeable impact on mobility. The scale of infections was significantly
lower, symptoms during reinfections were milder, and increased public awareness and
understanding of COVID-19 diminished fear. As a result, population mobility remained
stable. When substantial changes in mobility occur, it is essential for models to incorporate
these variations in contact patterns to accurately simulate epidemic dynamics.

In summary, our study demonstrates that for a completely susceptible population, two
consecutive Omicron waves are likely to result in widespread infection. However, due to
the rapid mutation of SARS-CoV-2, the swift waning of immunity, and the absence of
seasonality, reinfection remains a concern. Therefore, real-time surveillance of infection
rates, severe cases, and mortality remains crucial.

This study has several limitations. First, the immune waning mechanism in our model
does not account for age-specific differences. In reality, immune response and the rate
of waning vary by age due to physiological factors, resulting in heterogeneity [53]. Sec-
ond, due to the unavailability of local social contact data, we used the age-specific contact
matrix from Hong Kong as a proxy for Shenzhen. Given the demographic and social sim-
ilarities between Hong Kong and Shenzhen — such as urban settings, population density,
and cultural practices — this substitution is unlikely to significantly affect our conclusions.

Appendix
A.1 Synthetic population
This section refers to the method by Zhu et al. (2024) [42]. To simulate disease trans-
mission within a city, we first constructed a synthetic population that reflects the actual

https://www.chinacdc.cn
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demographics of the target city. This process used census data and household survey data
to generate a synthetic population that matches the scale and demographic characteris-
tics of the real urban population. We used combinatorial optimization to align key demo-
graphic attributes, such as age distribution and household size, while preserving typical
family structures to ensure consistency with statistical data. Specifically, we derived typical
household structures from survey data and applied combinatorial optimization to match
the marginal distributions of key attributes (e.g., age, household size) based on census
data. This optimization involved heuristic constraint techniques to produce an optimal
allocation scheme, ensuring high consistency between the synthetic population and ac-
tual demographic distributions.

A.2 Contact network construction
This section refers to the work by Yin et al. (2021) [41]. To accurately represent the contact
network characteristics, we constructed a multi-level contact network based on individ-
uals’ location and behavior attributes from the synthetic population. Real-world contact
networks consist of both fixed contacts, based on social relationships, and dynamic con-
tacts, based on spatial proximity. Thus, we categorized the contact network into four types:
Household, Workplace, School, and Community. Each network type was assigned differ-
ent contact mechanisms and intensities.

Data usage:
• Census data (including population age structure and household size distribution):

used to construct a synthetic population with accurate age structure and household
size distribution.

• Household structure survey data: employed to further refine household composition
in the synthetic population, aligning with the typical household structure in the target
city.

• Employment rate data: utilized to determine parameters for the workplace network,
helping to identify employed individuals and set their workplace locations.

• Contact survey data and time-use data: applied to define contact weight parameters
across network layers, reflecting individual-level heterogeneity and age-specific
contact distributions.

For the Workplace network, we grouped synthetic individuals by their workplace lo-
cations, simulating environments such as office buildings or factories. These individuals
were then further divided into social groups representing smaller, high-contact groups
(e.g., departments or teams) within each workplace, forming a high-frequency contact
network. Similarly, school-age individuals were assigned to schools based on educational
district data and then subdivided into classrooms, forming the school network. The com-
munity network represents individuals’ interactions in public spaces, organized randomly
at the community level to allow contact opportunities across the population.

Individuals within the same social group (e.g., classrooms or workgroups) have a prede-
termined set of daily contacts. However, the actual contact count and intensity are deter-
mined by parameters based on contact surveys, which define the contact rate (the number
of individuals contacted) and contact strength (probability of an infection event per con-
tact). Contact rates across age groups fit a log-normal distribution, highlighting a small
number of “hub” individuals with high contact degrees. Overall, students have the high-
est contact rates, while the elderly have the lowest; Household networks have the highest
contact intensity, while Community networks have the lowest.
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Table 3 Person-to-person contact intensity within various contact settings. *Sourced from Yin et al.
(2021) [41]

Contact setting Contact intensity

Home 0.37

Community place Kindergarten 0.25
School (elementary, middle, and high) 0.25
Workplace 0.26

Public place 0.10

We use the predefined weight wk, which reflects the relative importance of contact time
in each layer based on survey and time-use data. This data provided records of person-to-
person contact durations across different environments, helping us define contact inten-
sity for each setting, as shown in Table 3.

A.3 Spatiotemporal transmission simulation
To simulate disease transmission, we employed a spatially explicit agent-based model that
operates in daily discrete iterations. The model initializes with a few infected seed agents,
following which each iteration consists of two main processes:

• Contact Infection: Each day, the model scans infectious individuals and simulates
contact interactions in different settings using the multi-level contact network.
Infectious individuals probabilistically infect susceptible contacts based on their
location and contact network type.

• Compartmental Transition: For all non-susceptible individuals, the model simulates
changes in their compartmental state over time. The duration in each compartment
follows a log-normal distribution to reflect real-world tail characteristics. For
compartments with multiple possible outcomes (e.g., severe cases might recover or
result in death), we applied a stochastic chain binomial process to ensure random
outcomes.

A.4 Individual immunity waning
The immunity process consists of two parts: high immunity and immune waning. After
an initial infection, individuals recover and enter the R (Removed) compartment, where
they have high protection against reinfection. The parameter 1/γrs represents the average
duration it takes for an individual to move from the R to the S’ (secondary susceptible)
compartment, following an exponential distribution with γrs as the mean. By fitting the
Stage IV model, we estimate 1/γrs = 248 days. Figure 11(a) shows the daily probability of
an individual transition from the R back to the S’ compartment. On average, the proba-
bility is 1/248 per day, and increases over time. By day 170, the probability of transition
reaches 0.5. Once in the S’ compartment, individuals face a reduced risk of reinfection
due to immunity, but this immunity wanes over time. The pattern of individual immune
waning is depicted in Figure 11(b), showing a concave-convex curve. In the first 87 days,
probability of preventing reinfection declines rapidly to 0.34, after which the decline slows,
eventually stabilizing at 0.1.

A.5 Sensitivity analysis on household contacts
In our study, contact matrices are categorized into household and external household con-
tact matrices. The external household contact matrix is based on data from Shenzhen,
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Figure 11 The individual immunity and immune waning function of infection with BA.5/BF.7 against XBB
reinfection. (a) The probability of an individual returning to the susceptible. (b) The individual immune waning
function of infection with BA.5/BF.7 against XBB reinfection

Figure 12 Daily new infections based on different household contact intensities

while, due to the lack of specific household contact data for Shenzhen, we use the house-
hold contact matrix from Hong Kong. From this matrix, we derive the average household
contact intensity. To assess the impact of using this contact matrix on the experimental
outcomes, we conduct a sensitivity analysis. The average household sizes for the country
and Guangdong province are obtained from the 7th National Population Census and a
social survey [54], respectively. We use these household sizes as a rough proxy for house-
hold contact intensity in Guangdong and nationwide, and refit the model for Stages III
and IV. The fitted daily new infections are shown in Figure 12. The peak of the first wave,
using the household contact matrix in the main text, is 1.247 m, whereas the values for
Guangdong and nationwide data are 1.262 m and 1.259 m, respectively, showing mini-
mal differences. The peak of the second wave under the contact matrix in the main text
is 0.115 m, compared to 0.121 m (Guangdong) and 0.123 m (nationwide), also indicating
small variations. The cumulative infection rate of the first wave is almost identical across
the three data sets, at 0.885, 0.886, and 0.889, respectively. Similarly, the cumulative infec-
tion rates for the second wave are 37.5% (contact matrix in the main text), 37.7% (Guang-
dong), and 38.2% (nationwide). In conclusion, given the similarity in average household
sizes between Guangdong and nationwide data, the household contact intensities also ex-
hibit little variation. The model fitting results for both waves indicate that the differences
across the three data sets are minimal, with limited impact on the overall findings.
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