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Abstract
The study of oncolytic virus dynamics encounters a significant challenge in accurately
describing uncertain biological phenomena using specific mathematical terms. To
overcome this problem, we introduce a basic framework for an oncolytic virus
dynamics model with a general growth rate F and a general nonlinear incidence
term G . The construction and derivation of the model explain in detail the generation
process and practical significance of the distributed time delays and nonlocal
infection terms. Our results provide the existence and uniqueness of solutions to the
model, as well as the existence of a global attractor. Furthermore, through two
auxiliary linear partial differential equations, the threshold parameters are determined
for sustained tumor growth σ1 and λ1 for successful viral invasion of tumor cells to
analyze the global dynamic behavior of the model. Finally, we illustrate and analyze
our abstract theoretical results through a specific example.
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1 Introduction
Oncolytic virus (OV) therapy is a promising approach for treating cancer, as it selectively
targets and destroys cancer cells while prtecting healthy cells from harm [18]. Specifically,
upon encountering cancer cells, oncolytic viruses enter these cells and commence repli-
cation. As viruses multiply, their numbers increase rapidly within cancer cells, ultimately
leading to cellular rupture and death. Moreover, this process can stimulate the immune
system to recognize cancer cells, triggering immune cells to attack and eliminate both in-
fected and uninfected cancer cells [14]. Nonetheless, as OV therapy is still an evolving
cancer treatment, a comprehensive understanding of the underlying biology and phar-
macology is essential to analyze the interactions between the growing tumor, replicating
virus, and potential immune responses [23, 32].

To gain a comprehensive understanding of the mechanism behind oncolytic virotherapy,
it is imperative to establish a rational mathematical model [33]. During the past decade,
several valuable mathematical models have been proposed that provide crucial informa-
tion on oncolytic virotherapy. These typical mathematical models compartmentalize on-
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colytic virotherapy into uninfected tumor cells (U), infected tumor cells (I), free virus
particles (V ), virus-specific immune response (VS), and tumor-specific immune response
(TS), among others. Wodarz [32] comprehensively considered U-I-TS-VS, constructing
four ordinary differential equation models. Through quantitative analysis of the equilib-
ria, insights into the favorable effects of low viral lethality and high replication rates on
tumor treatment were presented, as well as relevant immunological mechanisms. Dingli
et al. [5] and Bajzer et al. [1] proposed the U-I-V model for the measles oncolytic virus,
and using numerical modeling techniques, investigated the validity of the model and pro-
vided interpretations and predictions for experimental data. Furthermore, Wang et al. [27]
and Wang et al. [28], respectively, introduced models with time delays for U-I and U-I-V
based on the viral replication cycle. Wang et al. [30] explored a dynamic model with time
delays for U-I-VS and verified that virus-immune suppressive drugs can effectively en-
hance tumor treatment. In addition, Li and Xiao [17] introduced and analyzed the U-I-TS
oncolytic virus dynamics model, pointing out the significant enhancement of treatment
efficacy by tumor-specific immunity. Recently, Ding et al. [4] derived an oncolytic virus dy-
namic model with nonlocal time delay based on an age-structured model. The numerical
model demonstrated the significant role of the time-delay term in explaining experimental
data.

The aforementioned models presuppose a homogeneous mixing of cells and viruses
within the tumor, disregarding the presence of spatial structure. In reality, tumors often ex-
hibit complex spatial arrangements, which can significantly impact the dynamics of virus
diffusion [7, 8, 36]. Zhao and Tian [36] studied a delayed reaction–diffusion model for
U-I-V, incorporating virus diffusivity, tumor-cell diffusion, and the viral lytic cycle. Based
on the ODE model proposed by Wang et al. [29], Elaiw et al. [7, 8] further investigated
the influence of spatial heterogeneity on tumor treatment. They developed a tumor im-
munity reaction–diffusion model [8] and a delayed reaction–diffusion system with a virus
circulation period [7].

However, the predictability of oncolytic virus therapy through mathematical modeling is
often constrained by specific mathematical terms, which significantly influence the global
dynamics of the model [33]. To overcome the dependence of the model on specific mathe-
matical terms, Natalia and Wodarz proposed a general framework of ordinary differential
equations for oncolytic viruses [15]. The model encompasses uninfected tumor individu-
als U(t) and infected tumor individuals I(t), with the specific formulation as follows:

U ′(t) = UF (U + I)
︸ ︷︷ ︸

tumor proliferation

–βIG(U , V )
︸ ︷︷ ︸

virus infection

,

I ′(t) = βVG(U , I)
︸ ︷︷ ︸

virus infection

–αI(t)
︸︷︷︸

death

.

On this basis, Wang et al. [31] derived a general oncolytic virus therapy model with a
nonlocal delay term incorporating an age-structured model. The model is as follows:

⎧

⎨

⎩

U ′(t) = UF
(

U + 1
κ

∫ t
t–τ

βV (θ )G(U(θ ))e–α(t–θ )dθ
)

– βVG(U),

V ′(t) = βG
(

U(t – τ )
)

V (t – τ )e–ατ – αV (t),
(1.1)
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where β is the infection rate, α is the death rate, τ represents the duration of the viral-
replication cycle, κ is the average number of viruses on every infected tumor cell, F de-
notes the tumor growth function, and G represents the viral-infection function.

This paper investigates the global dynamical behavior of the system (1.1) under spatially
heterogeneous conditions. For t > 0 and x ∈ 	, where 	 represents a spatially bounded
domain, we consider a system governed by the following equations:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

∂tU(t, x) =d1�U(t, x) – G
(

x, U(t, x), V (t, x)
)

+ U(t, x)F
(

x, U(t, x) + I(t, x)
)

,

∂tV (t, x) =d2�V (t, x) – α(x)V (t, x)

+
∫

	

�(x, y, τ )G
(

y, U(t – τ , y), V (t – τ , y)
)

dy,

I(t, x) =
1
κ

∫ τ

0

∫

	

�(x, y, a)G
(

y, U(t – a, y), V (t – a, y)
)

dyda,

(1.2)

with the following Robin boundary conditions:

∂U

∂
−→n

+ η1(x)U = 0,
∂V

∂
−→n

+ η2(x)V = 0, ∀x ∈ ∂	, t > 0 (1.3)

and the initial conditions are given as

U(θ , x) = U0(θ , x), V (θ , x) = V0(θ , x), ∀x ∈ 	, θ ∈ [–τ , 0]. (1.4)

In this context, d1 and d2 represent the diffusion rates of cells and viruses, respec-
tively. The parameter κ signifies the average number of viruses inside infected tumor
cells. The function α(x) denotes the virus death rate. All of d1, d2, and κ are positive con-
stants. Additionally, α(x) is a positive Holder continuous function over the closure of 	.
The function � refers to the Green function or the fundamental solution of the operator
d2� – α(x) under the appropriate boundary conditions. Moreover, ∂

∂
−→n denotes the out-

ward normal derivative on ∂	, and η1(x),η2(x) ∈ C
1+α(∂	,R+) with η1(x), η2(x) > 0, and

U0(θ , x), V0(θ , x) ∈C([–τ , 0] × 	,R+).
Furthermore, the functions F and G represent the cell growth rate and the nonlinear

incidence term, respectively, satisfying Assumption 1.

Assumption 1 F and G are continuous-differentiable functions and satisfy that
(1) There exists K0 > 0 such that F (x, K0) < 0 and F (x, 0) > 0 for all x ∈ 	.
(2) For any x ∈ 	, F (x, ·) is decreasing on R

+, and for some x0 ∈ 	, F (x0, ·) is strictly
decreasing on R+;

(3) G(·, 0, ·) = G(·, ·, 0) = 0;
(4) ∂u1G(x, u1, u2) > 0, ∂u2G(x, u1, u2) > 0 for all x ∈ 	, u1, u2 ≥ 0;
(5) G(x, u1, u2) ≤ ∂u2G(x, u1, 0)u2 for all x ∈ 	, u1, u2 > 0;
(6) G(x,u1,u2)

u1
is bounded, and ∂u1

G(x,u1,u2)
u1

≥ 0 for all x ∈ 	, u1, u2 > 0.

Remark 1.1 Assumption 1 possesses universal significance, as it is satisfied by many
common growth-rate functions (see Table 1) and nonlinear infection functions (see Ta-
ble 2).
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Table 1 Some examples of F (·,U)
F(·,U) Type Ref.

b – dU Logistic growth [15, 19]
b – d ln(U) Gomperzian Growth [6, 16]

where b, d are nonnegative constants.

Table 2 Some examples of G(·,U,V)
G(·,U,V) Type Ref.

βUV Mass action [7, 30]
βUV
1+hV Holling Type II [20, 35]

where β , h is a nonnegative constant.

Remark 1.2 Model (1.2)–(1.4) is very versatile as it encompasses various biological scenar-
ios. For example, it can represent a predator–prey model [10, 26] or an infectious-disease
model [11] by appropriately selecting the parametersF ,G , and κ . Specifically, our model is
equivalent to the one proposed in [10] when spatial factors x are ignored and κ approaches
infinity. In this case, d1, d2 are both zero, α(x) is constant, and �(x, y, τ ) is given by e–dτ .
Furthermore, if κ is set to infinity andF (x, U) = μ(x)

U(x) –d(x),G(x, U , V ) = β(x)U(x)V (x), and
η1(x) = η2(x) = 0, the model will transform into an infectious-disease model [11]. Lastly,
when κ is set to infinity, the model corresponds to the predator–prey model proposed in
[26].

The remainder of this paper is organized as follows. Section 2 provides a detailed deriva-
tion of the model (1.2). In Sect. 3, we establish the existence and uniqueness of solutions to
the model, as well as the global compact attractor of the solutions. In Sect. 4, we present
the harsh conditions for global stability of the zero steady state and tumor steady state,
as well as the conditions for successful viral invasion of tumor cells and the existence of
a positive steady state. In Sect. 5, we consider specific examples of the model, explain its
practical applications, and provide lower-bound estimates for tumor-cell and viral-particle
populations after viral invasion. Finally, in Sect. 6, we conclude the paper by summarizing
the overall framework and findings.

2 Model development
Inspired by Komarova and Wodarz [15], the uninfected tumor cells U(t, x) satisfy:

∂tU(t, x) = d1�U(t, x)
︸ ︷︷ ︸

Diffusion

+ U(t, x)F
(

x, U(t, x) + I(t, x)
)

︸ ︷︷ ︸

Tumor proliferation

– G
(

x, U(t, x), V (t, x)
)

︸ ︷︷ ︸

Virus therapy

,
(2.1)

where � is the Laplacian operator, d1 is the diffusion coefficient, the function F reflects
cancer growth and death processes, and G is the rate of infection.

To depict the intracellular viral life cycle [3, 28], we introduce the notion of infection age
denoted by the variable a. Let P(t, a, x) be the density (with respect to infection age a) of
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viruses at location x and time t, complying with the standard argument on age-structured
models with spatial diffusion:

∂tP(t, a, x) + ∂aP(t, a, x) = d2�P(t, a, x) – α(x)P(t, a, x), (2.2)

∂V

∂
−→n

+ η2(x)V = 0, (2.3)

P(t, 0, x) = G
(

x, U(t, x), V (t, x)
)

. (2.4)

Using the method of a characteristic curve, we solve the equations (2.2)–(2.4). For any
constant ξ , letting t = a + ξ , we define Wξ (a, x) := P(ξ + a, a, x) = P(t, a, x). Thus,

∂aWξ (a, x) = d2�Wξ (a, x) – α(x)Wξ (a, x),

Wξ (0, x) = G
(

x, U(ξ , x), V (ξ , x)
)

.

Regarding ξ as a parameter, we solve the above equation and obtain:

Wξ (a, x) =
∫

	

�(x, y, a)G
(

y, U(ξ , y), V (ξ , y)
)

dy.

Thus,

P(t, a, x) =
∫

	

�(x, y, a)G
(

y, U(t – a, y), V (t – a, y)
)

dy,

where � is the fundamental solution of the operator d2� – α(x) associated with bound-
ary condition ∂Wξ

∂
−→n + η2(x)Wξ = 0, where η2(x) ∈ C(	, R+) is Holder continuous, and ∂W

∂
−→n

denotes the derivative along the outward normal direction −→n to ∂	 [13].
We divide the virus into two parts: the virus within tumor cells E(t, x) and free viruses

V (t, x). Also, E(t) and V (t) satisfy the following equations:

E(t, x) =
∫ τ

0
P(t, a, x)da

=
∫ τ

0

∫

	

�(x, y, a)G
(

y, U(t – a, y), V (t – a, y)
)

dyda,

V (t, x) =
∫ +∞

τ

P(t, a, x)da

=
∫ +∞

τ

∫

	

�(x, y, a)G
(

y, U(t – a, y), V (t – a, y)
)

dyda,

where τ represents the virus-replication cycle, in other words, for the infection age a < τ ,
viruses are all within the infected tumor cells; and after the infection age a > τ , the viruses
lyse the infected tumor cells and become free virus particles.

We postulate that there are κ virus particles within each infected tumor cell, leading to
the relationship:

I(t, x) =
E(t, x)

κ
. (2.5)
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In addition, one can rewrite V (t, x) as

V (t, x) =
∫ t–τ

–∞

(∫

	

�(x, y, t – τ )G
(

y, U(s, y), V (s, y)
)

dy
)

ds. (2.6)

Differentiating (2.6) with respect to t and using equation (2.2), we have

∂tV (t, x) =d2(x)�V (t, x) – α(x)V (t, x)

+
∫

	

�(x, y, τ )G
(

y, U(t – τ , y), V (t – τ , y)
)

dy.
(2.7)

Thus, by equation (2.1), equation (2.5), and equation (2.7) together with the boundary
condition ∂

∂
−→n · +η2(x)· = 0, we obtain the full oncolytic virus therapy system (1.2).

3 Well-posed and global compact attractor
Let 	 be a bounded domain in R

n and X = C(	,R2
+) be the Banach space of continuous

functions with values in the real plane, equipped with the norm ‖u‖X , which is the supre-
mum norm. Assume that 	 has a smooth boundary ∂	, and let Y = C(	,R). Set τ ≥ 0
and Cτ = C([–τ , 0],X) with the norm ‖φ‖ := maxθ∈[–τ ,0] ‖φ(θ )‖X. We define ut ∈Cτ by

ut(θ ) = u(t + θ ), ∀θ ∈ [–τ , 0].

Let T1(t), T2(t) : Y → Y , t ≥ 0, be the semigroups corresponding to A1 := d1�, A2 :=
d2� – α(x) with the boundary conditions ∂

∂
−→n + η1(x) and ∂

∂
−→n + η2(x), respectively. In other

words, the linear operator A := (A1, A2) with domain D(A) = D(A1)×D(A2) is the infinites-
imal generator of C0 semigroups T(t) := (T1(t), T2(t)).

Define L := (L1,L2) as a mapping from Cτ to Cτ with

L1(φ1,φ2)(·) = –G
(

·,φ1(0, ·),φ2(0, ·)
)

+ φ1(0, ·)F
(

·,φ1(0, ·)

+
1
κ

∫ τ

0

∫

	

�(·, y, a)G
(

y,φ1(–a, y),φ2(–a, y)
)

dyda
)

L2(φ1,φ2)(·) = –α(·)φ2(0, ·) +
∫

	

�(·, y, τ )G
(

y,φ1(–τ , ·),φ2(–τ , ·)
)

dy

for φ = (φ1,φ2) ∈Cτ . Assuming that the semiflow of the solution generated by the system
(1.2)–(1.4) is �(t), we can recast the system (1.2)–(1.4) as a semidynamical system u(t) :=
�(t)φ, where φ(·) = (φ1(·),φ2(·)) ∈Cτ . Also, u(t) satisfies the following evolution equation:

⎧

⎨

⎩

du(t)
dt = Au + L(ut), t > 0,

u(0) = φ.
(3.1)

Theorem 3.1 For any function φ ∈Cτ , the system (1.2)–(1.4) admits a unique noncontinu-
able solution u defined on 	̄ × [–τ , t∞), where t∞ = t∞(φ) with 0 < t∞ ≤ ∞. Furthermore,
for (t, x) ∈ [–τ , t∞) × 	̄, u(t, x,φ) belongs to R

2
+.
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Proof By Corollary 4 in Martin and Smith [21], it suffices to prove that the operator L
satisfies the subtangential condition and the Lipschitz condition in the invariant set K :=
R

2
+.
It can be easily demonstrated that the operator L is Lipschitz continuous, as the func-

tions F and G are continuously differentiable, as well as the bounded properties of the
Green function �.

Now, let us verify the subtangential condition. For every φ ∈Cτ , x ∈ 	 and h ≥ 0, then:

φ(0, ·) + hL(φ)(·) =

(

φ1(0, x) + hL1 (φ1,φ2)

φ2(0, x) + hL2 (φ1,φ2)

)

, (3.2)

where

φ1(0, ·) + hL1 (φ1,φ2)

=φ1(·, 0)
[

1 – hG
(

·,φ1(0, ·),φ2(0, ·)
)

φ–1
1 (0, ·)

]

+ hφ1(·, 0)F
(

·,φ1(0, ·) +
1
k

∫ τ

0

∫

	

�(·, y, τ )G(y,φ1(–τ , ·),φ2(–τ , ·))dyda
)

,

φ2(0, ·) + hL2 (φ1,φ2)

=φ2(0, ·) [1 – α(·)h] + h
∫

	

�(·, y, τ )G
(

y,φ1(–τ , ·),φ2(–τ , ·)
)

dy.

According to Assumption 1 (6), we can observe that the expression (3.2) is greater than 0
when h is sufficiently small. �

To proceed further, we consider the following equation:

⎧

⎨

⎩

∂tz(x, t) = d1�z(x, t) + z(x, t)F
(

x, z (x, t)
)

, x ∈ 	

∂z(t,x)

∂
−→n + η1(x)z(t, x) = 0, ∀x ∈ ∂	.

(3.3)

It is easy to check that z(x) = 0 is a steady state of system (3.3). Linearizing the above system
at 0, we obtain the following elliptic eigenvalue problem:

⎧

⎨

⎩

σψ = d1�ψ + ψF (x, 0), x ∈ 	,
∂ψ(x)

∂
−→n + η1ψ(x) = 0, ∀x ∈ ∂	.

(3.4)

We define σ1 as the principal eigenvalue of the above linear equation (3.4) and ξ1(x) is the
corresponding strictly positive eigenfunction.

Lemma 3.1 (Proposition 3.3 in [9] or Proposition 3.3.1 and Proposition 3.3.2 in [2]) System
(3.3) has a unique positive steady state z∗(x) ≤ K0, where K0 is defined by Assumption 1 (1).
Also, for every initial data φ ∈ Cτ , we have limt→∞ z(x, t,φ) = z∗(x) uniformly for x ∈ 	̄ if
σ1 > 0; whereas, all nonnegative solutions of (3.3) decay exponentially to zero as σ1 ≤ 0.

Theorem 3.2 For any φ ∈ Cτ , system (1.2) admits a unique classical solution u(t, x,φ) on
(t, x) ∈ [0, +∞) × 	. Furthermore, the semiflow solution �(t) : Cτ → Cτ has a compact
global attractor A.
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Proof By the Theorem 3.1, one obtains that system (1.2)–(1.4) admits a unique classical
solution in [0, t∞) with U , V ≥ 0. Then, by the first equation of system (1.2):

∂tU(t, x) ≤ d1�U(t, x) + U(t, x)F
(

x, U(t, x)
)

.

By Lemma 3.1 and the comparison theorem, there is a positive constant B such that
U(t, x) ≤ B for any initial function φ ∈ C as t > t(φ).

Making use of the boundedness of U(t, x) and Assumption 1(5) in the second equation
of (1.2), one obtains:

∂tV (t, x) ≤ d2�V (t, x) – α(x)V (t, x) + cV (t – τ ), (3.5)

for some positive constant c, where V (t) =
∫

	
V (t, x)dx. To show the boundness of V (t),

integrating the first equation of (1.2):

∂tU(t) =
∫

	

d1�U(t, x)dx –
∫

	

G
(

x, U(t, x), V (t, x)
)

dx

+
∫

	

U(t, x)F
(

x, U(t, x) + I(t, x)
)

dx

≤ –
∫

	

G
(

x, U(t, x), V (t, x)
)

dx +
∫

	

U(t, x)F
(

x, U(t, x) + I(t, x)
)

dx,

where U(t) =
∫

	
U(t, x)dx, and the inequality is based on the divergence theorem and

boundary condition. Thus,
∫

	

G
(

x, U(t, x), V (t, x)
)

dx ≤
∫

	

U(t, x)F
(

x, U(t, x) + I(t, x)
)

dx – ∂tU(t). (3.6)

Similarly, integrating the second equation of (1.2) with respect to x ∈ 	, and using (3.6),
then there exist two positive numbers k1, k2 such that:

∂tV (t) ≤
∫

	

∫

	

�(x, y, τ )G
(

y, U(t – τ , y), V (t – τ , y)
)

dydx –
∫

	

α(x)V (t, x)dx

≤ –α0V (t) + k1

∫

	

G
(

y, U(t – τ , y), V (t – τ , y)
)

dy

≤ –α0V (t) – k1∂tU(t – τ )

+ k1

∫

	

U(t – τ , y)F
(

x, U(t – τ , y) + I(t – τ , y)
)

dy

≤ –α0V (t) + k2 – k1∂tU(t – τ ),

where

α0 = max
x∈	

α(x),

k1 = max
(x,y)∈	×	

�(x, y, τ )mes(	),

k2 = k1mes(	) max
(x,y)∈	×[0,B]

yF (x, y)

and mes(	) denotes the Lebesgue measure of 	.
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Hence,

d
dt

(V (t)eα0t) ≤ k2eα0t – k1eα0t dU(t – τ )

dt
.

Integrating by parts the above inequality over t ∈ [t1(φ), t], we can find a positive number
k3, independent of φ, and a positive number k4 = k4(φ) dependent on φ such that:

V (t) ≤ k4(φ)e–α0t + k3, t ≥ t(φ).

This confirms the boundedness of V (t). Combining this with (3.5), there exists a positive
number B1, independent of φ, such that V (t, x) ≤ B1 if t ≥ t2(φ). Also, the solution semi-
flow �(t) is point dissipative. Moreover, by Theorem 2.1.8 in [34] and Theorem 3.4.8 in
[12], �(t) has a compact global attractor A. �

4 Global extinction and persistence
It is evident that the system (1.2) has a steady state at E0 = (0, 0). Additionally, Lemma 3.1
can be utilized to infer that if σ1 > 0, there exists another steady state E1 = (U1(x), 0), where
U1(x) is equivalent to z∗(x) as defined in Lemma 3.1. We now proceed to examine the
global asymptotic behavior of system (3.4).

Theorem 4.1 If σ1 < 0, then E0 is globally attractive for the model (1.2)–(1.4). In other
words, for any φ = (φ1,φ2) ∈Cτ , the solution u(t,φ) of model (1.2) satisfies:

lim
t→+∞ u(t,φ)(x) = (0, 0)

uniformly for x ∈ 	.

Proof By the first equation of system (1.2), it is obvious that:

∂tU(t, x) ≤ d1�U(t, x) + U(t, x)F
(

x, U(t, x)
)

. (4.1)

By Lemma 3.1 and the standard comparison theorem, one obtains that limt→+∞ U(t, x) =
0 uniformly for x ∈ 	 if σ1 < 0.

Now, we regard the V (t, x) as a solution of the following nonautonomous reaction–
diffusion equation:

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

∂tV (t, x) = d2�V (t, x) – α(x)V (t, x)

+
∫

	
�(x, y, τ )G

(

y, U(t – τ ), V (t – τ , y)
)

dy, x ∈ 	, t > 0
∂V (t,x)

∂
−→n + η2(x)V (t, x) = 0. x ∈ ∂	, t > 0.

(4.2)

Since it is known that limt→+∞ U(t, x) = 0 uniformly for x ∈ 	, and V (t, x) remains
bounded, it can be inferred that the system (4.2) is asymptotic to the following linear au-
tonomous reaction–diffusion equation:

⎧

⎨

⎩

∂tV̂ (t, x) = d2�V̂ (t, x) – α(x)V̂ (t, x) x ∈ 	, t > 0
∂V̂ (t,x)

∂
−→n + η2(x)V̂ (t, x) = 0. x ∈ ∂	, t > 0.

(4.3)
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By Theorem 2.2.1 in [2], all nonnegative solutions of system (4.3) will decay to 0. By a
generalized Marku theorem for asymptotically autonomous semiflows (Theorem 4.1 in
[25]), one obtains that limt→+∞ V (t, x) = 0. �

To understand the asymptotic stability on steady state E1, we consider the nonlocal el-
liptic eigenvalue problem with forcing function U1(x):

⎧

⎨

⎩

λψ = d2�ψ – α(x)ψ +
∫

	
�(x, y, τ )∂VG

(

y, U1(y), 0
)

ψ(y)dye–λτ , x ∈ 	

∂ψ
−→n + η2(x)ψ = 0, x ∈ ∂	.

(4.4)

Lemma 4.1 (Theorem 2.2 of [26]) Model (4.4) possesses a principle eigenvalue λ1(U1(x))

associated with a strictly positive eigenfunction ψ1.

Theorem 4.2 If σ1 > 0 and λ1(U1(x)) < 0, then E1 is global attractive in Cτ .

Proof By the first equation of system (1.2), U(t, x) satisfies inequality (4.1). Thus, for any
ε > 0 there exists a t1 = t(φ) depending on initial data φ such that U(t, x) ≤ U1(x) + ε for
t > t1. Taking this result into the second equation of system (1.2), one obtains:

∂tV (t, x)

≤ d2�V (t, x) – α(x)V (t, x) +
∫

	

�(x, y, τ )G
(

y, U1(x) + ε, V (t – τ , y)
)

dy

≤ d2�V (t, x) – α(x)V (t, x)

+
∫

ω

�(x, y, τ )∂VG
(

y1, U1(x) + ε, 0
)

V (t – τ , y)dy.

The first inequality is due to Assumption 1 (4) and the second inequality comes from
Assumption 1 (5). On the other hand, the model:

∂tV (t, x) =d2�V (t, x) – α(x)V (t, x)

+
∫

	

�(x, y, τ )∂VG(y, U1(x) + ε, 0)V (t – τ , y)dy

possesses a principle eigenvalue λ1(U1(x) + ε) associated with a strictly positive eigen-
vector φ2(x) by Lemma 4.1. Also, λ1(U1(x)) < 0 indicates that λ1(U1(x) + ε) < 0 for small
ε. Thus, by the standard comparison theorem, 0 ≤ limt→+∞ V (t, x) ≤ limt→+∞ V (t, x) ≤
limt→+∞ ceλ1(U1(x)+ε)tφ2(x) = 0, where c is a positive constant. Regarding V (t, x) as a fixed
function with limt→+∞ V (t, x) = 0 for all x ∈ 	, one obtains that:

⎧

⎨

⎩

∂tÛ(t, x) = d1(x)�Û(t, x) + Û(t, x)F (x, Û(t, x)), x ∈ 	, t > 0
∂Û(t,x)

∂
−→n + η1(x)Û(t, x) = 0, x ∈ ∂	, t > 0

is the asymptotically autonomous system of (1.2). Since σ1 > 0, then limt→+∞ Û(t, x) =
U1(x) for all x ∈ 	. Moreover, Lemma 3.1 in [22] ensures that U(t, x) will not tend to
0 as t → +∞. Thus, by Theorem 4.1 in [25], we obtain limt→+∞ U(t, x) = U1(x) for all
x ∈ 	. �
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Theorem 4.3 Assume λ1(U1(x)) > 0, σ1 > 0, then the semiflow �(t) is ecologically perma-
nent. In other words, there exists ε > 0 such that

lim inf
t→+∞ U(t, x) ≥ ε, lim inf

t→+∞ V (t, x) ≥ ε.

Moreover, system (1.2)–(1.4) admits at least the virus therapy equilibrium solution E2 =
(U2(x), V2(x)) such that U2(x) > 0, V2(x) > 0, and U2(x) < U1(x) for all x ∈ 	.

Proof Let Y0 := {(φ1,φ2) ∈ Cτ : φi �≡ 0, i = 1, 2}, ∂Y0 := Cτ \ Y0, and S := {φ ∈ ∂Y0 : �(t)φ ∈
∂Y0, t ≥ 0}. Lemma 3.1 indicates that ω(S) = {E0, E1} and ω(S) is acyclic. To obtain the
persistence of �, by Theorem 4.4.3 in [2], it is sufficient to prove that E0, E1 are isolated
invariant subsets for � in Y0 and that:

W S(E0) ∩ Y0 = ∅,

W S(E1) ∩ Y0 = ∅,

where W S(Ei) denotes the stable manifold of equilibrium Ei for i = 0, 1. Suppose W S(E0) ∩
Y0 �= ∅. Then, for any ε > 0, there is a positive number t1 = t(φ) depending on initial data
φ such that t > t1 implies that U(t, x), V (t, x) ≤ ε. Choose 0 < ε1 ≤ σ1. Then, there exists
t0 > 0 and δ0 > 0 such that for all t > t0, x ∈ 	, and U ≤ δ0, V ≤ δ0, the following inequality
holds:

U(t, x)F
(

x, U(t, x) + I(t, x)
)

– G
(

x, U(t, x), V (t, x)
)

≥ U(t, x)[F (x, 0) – ε1].

By substituting this inequality into the first equation of system (1.2), we obtain:

∂tU(t, x) ≥ d1�U(t, x) + U(t, x)[F (x, 0) – ε1].

Considering the following system:

⎧

⎨

⎩

U(t, x) = d1�U(t, x)] + U(t, x)[F (x, 0) – ε1], t ≥ t0, x ∈ 	,
∂U(t,x)

∂
−→n + η1(x)U(t, x) = 0, t ≥ t0, x ∈ ∂	.

Then, by comparing theorem, one obtains that:

U(t, x) ≥ U(t, x) = ce(σ1–ε1)tξ1(x),

which indicates that U(t, x) will not converges to 0. It contracts with the assumption
W S(E0) ∩ Y0 �= ∅. Furthermore, using a similar method, we also can prove W S(E1) ∩ Y0 = ∅
thanks to λ1(U1(x)) > 0. Using the acyclicity test for permanence (Theorem 4.4.3 in Refer-
ence [2]), the semiflow �(t) is ecologically permanent (defined by Sect. 4.2.1 in Reference
[2]).

Furthermore, Theorem 4.4.6 in [2] (or Theorem 6.3 in [24]) ensures that system (1.2)
admits at least one equilibrium solution (U2(x), V2(x)) such that U2(x) > 0, V2(x) > 0 for
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all x ∈ 	. Returning to the original equations (1.2)–(1.4), U2(x) is a positive equilibrium
solution of the following equation:

⎧

⎨

⎩

∂tÛ2(t, x) = d1�Û2(x) + Û2(x)F2

(

x, Û2(x)
)

, x ∈ 	

∂Û2(x)

∂
−→n + η1(x)Û2(x) = 0, x ∈ ∂	,

where F2(x, u) = F
(

x, u + I2(x, u)
)

– 1
uG

(

x, u, V2(x)
)

and

I2(x) =
1
κ

∫ τ

0

∫

	

�(x, y, a)G
(

y, u(y), V2(y)
)

dyda > 0.

In addition, U1(x) is a positive equilibrium solution of the system (3.3). By using Assump-
tion 1 (1), (2), and (6), it can be concluded that F and F2 are strictly decreasing functions
of u for u ≥ 0, and F (x, u) > F2(x, u) for u > 0. Therefore, by applying Proposition 3.3.3 in
[2], we have U1(x) > U2(x). �

Remark 4.1 Indeed, “ecologically permanent” in Theorem 4.3 is equivalent to uniform
ρ-persistence in the literature [24], where:

ρ(U(x), V (x)) = min{sup
x∈	

U(x), sup
x∈	

V (x)}.

It is obvious to derive uniform ρ-persistence from the definition of “ecologically perma-
nent.” Conversely, we can also use the method from [24] to derive ecological persistence:
Theorem 8.17 in the aforementioned work establishes that acyclicity implies uniform weak
persistence; when combined with Theorem 4.2 from [24], we can deduce that the semiflow
�(t) is uniformly ρ-persistent. Furthermore, define

ρ̃(x) = min{min
x∈	

U(x), min
x∈	

V (x)}.

From Corollary 4.22 in [24], we can conclude that �(t) is uniformly ρ̃-persistent, which
corresponds to “ecologically permanent”.

5 A simple example of the correlation between logistics growth and Holling
type II

In this section, we investigate the specific form of model (1.2), assuming α(x) = α,
F (x, U) = b – dU , G(x, U , V ) = βUV

1+hV , η1(x) = η2(x) = 0, and 	 = (0,π), where α,β , d, h are
positive constants, and b is a nonnegative constant.

Then, the model equations (1.2) tend to the following forms:

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

∂tU(t, x) = d1�U(t, x) – βU(t,x)V (t,x)
1+hV (t,x) + U(t, x)

[

b – dU(t, x)

– β

κ

∫ τ

0
∫ π

0 �(x, y, a) U(t–a,y)V (t–a,y)
1+hV (t–a,y) dyda

]

,

∂tV (t, x) = d2�V (t, x) – αV (t, x) + β
∫ π

0 �(x, y, τ ) U(t–τ ,y)V (t–τ ,y)
1+hV (t–τ ,y) dy,

(5.1)

with the following homogeneous Neumann boundary conditions:

∂xU(t, 0) = ∂xU(t,π) = ∂xV (t, 0) = ∂xV (t,π) = 0, t > 0 (5.2)
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and initial conditions given by:

U(0, x) = U0(x), V (0, x) = V0(x), x ∈ [0,π]. (5.3)

The function �(x, y, a) in model (5.1) is the Green’s function of the following equation:

⎧

⎪
⎪
⎨

⎪
⎪
⎩

∂aW (a, x) = d2�W – αW , x ∈ (0,π), t > 0,

W (0, x) = W0(x) x ∈ (0,π),

∂xW (t, 0) = ∂xW (t,π) = 0, t > 0.

(5.4)

By using the method of separation of variables, we know that the solution of equation
(5.4) is:

W (a, x) =
2
π

∞
∑

n=1

[
∫ π

0
W0(y) cos nydy

]

cos(nx)e–
(

n2d2+α
)

a

=
2
π

∫ π

0

∞
∑

n=1

[

e–
(

n2d2+α
)

a cos ny cos nx
]

W0(y)dy

=
∫ π

0
�(x, y, a)W0(y)dy,

(5.5)

where �(x, y, a) = 2
π

∑∞
n=1 e–

(

n2d2+α
)

a cos ny cos nx is the Green function of system (5.4).
In addition, in the special case when W0(y) = 1, we know that the solution of equation

(5.4) is W (a, x) = e–αa. Therefore, by utilizing the uniqueness of the solution and equation
(5.5), we can deduce that

∫ π

0 �(x, y, a)dy = e–αa. By performing a simple computation, we
can thus obtain the following conclusions.

Theorem 5.1 The constant equilibria of the system (5.1)–(5.3) can be described as follows:
1. When b ≤ 0, the model has a unique steady state E0 = (0, 0);
2. When b > 0 and bβ

αdeατ ≤ 1, the system (5.1)–(5.3) has an original steady state
E0 = (0, 0) and an untreated steady state E1 =

( b
d , 0

)

;
3. When b > 0 and bβ

αdeατ > 1, in addition to the original steady state E0 = (0, 0) and the
untreated steady state E1 =

( b
d , 0

)

, the system (5.1)–(5.3) also has a unique positive
treated steady state E3 = (U3, V3), where U3 and V3 are both positive.

Proof To study the constant steady state, we consider the following system:

{

– βUV
1+hV + U

[

b – dU – β

κ
(1 – e–ατ ) UV

1+hV

]

= 0,
–αV + βe–ατ UV

1+hV = 0.

When V = 0, it is easy to obtain conclusion 1 and conclusion 2. When V �= 0, we have
U = αeατ

β
(1 + hV ), where V satisfies the quadratic equation:

AV 2 + BV + C = 0, (5.6)
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Figure 1 The quadratic curves for all fixed A < 0 and
C < 0. We use dashed lines to represent the case of B < 0,
dotted lines to represent the case of B > 0, and solid lines
to represent the quadratic curves with B = 0

where

A = –dα2 (eα τ )
2 h2 –

β α2eα τ h
κ

(eατ – 1),

B = αeατ

[

–β2 + βbh – 2dαeατ h –
αβ

κ
(eατ – 1)

]

,

C = α(βb – dαeατ ).

It is easy to check that A < 0. Hence, in the case where C > 0 (i.e., when bβ

αdeατ > 1), equation
(5.6) possesses a single positive solution, which can be obtained using Vieta’s formula.
Please refer to Fig. 1 for a visual representation of this scenario.

Conversely, when bβ

αdeατ ≤ 1, it implies that B < 0 and C ≤ 0. Applying Vieta’s formula
once more, it can be readily deduced that equation (5.6) lacks a positive solution. �

In addition, when V (t, x) = 0, it follows that U(t, x) satisfies:
⎧

⎨

⎩

∂tU(t, x) = d1U(t, x) + U(t, x)
[

b – dU(t, x)
]

, x ∈ (0, 1), t > 0,

∂xU(t, 0) = ∂xU(t,π) = 0. t > 0.
(5.7)

Linearizing the above system (5.7) at 0, we obtain the elliptic eigenvalue problem:
{

σψ = d1�ψ + bψ , x ∈ (0,π)

∂xψ(0) = ∂xψ(π) = 0.

It is easy to check that the principle eigenvalue σ1 = b and the corresponding eigenfunction
ψ = 1. By Lemma 3.1, we have the following Lemma.

Lemma 5.1 If b > 0, then the system (5.7) possesses a unique positive steady state U1(x) =
b
d , such that for every φ ∈ Cτ , limt→+∞ U(x, t,φ) = b

d uniformly for x ∈ [0,π], whereas
limt→+∞ U(x, t,φ) = 0 uniformly for x ∈ [0,π] as b < 0.

Now, we consider the following nonlocal elliptic eigenvalue problem:
{

sψ = d2�ψ – αψ + e–sτ bβ

d
∫ π

0 �(x, y, τ )ψ(y)dy, x ∈ (0,π)

∂xψ(0) = ∂xψ(π) = 0.
(5.8)
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Lemma 5.2 The principle eigenvalue of system (5.8) has the same sign as λ1 = –α + βb
deατ .

Proof According to Theorem 2.2 in [26] (or Lemma 2.4 in [11]), system (5.8) possesses a
principal eigenvalue s1 along with a strictly positive eigenfunction ψ1. Moreover, the prin-
cipal eigenvalue s1 shares the same sign as λ1, where λ1 represents the principal eigenvalue
of the following systems:

{

λψ = d2�ψ – αψ + bβ

d
∫ π

0 �(x, y, τ )ψ(y)dy, x ∈ (0,π)

∂xψ(0) = ∂xψ(π) = 0.
(5.9)

To estimate λ1, we integrate the first equation of system (5.9), then:

λψ = –αψ +
bβ

d

∫ π

0

∫ π

0
�(x, y, τ )ψ(y)dydx

= –αψ +
bβ

d

∫ π

0

[
∫ π

0
�(x, y, τ )dx

]

ψ(y)dy

= –αψ +
bβ

deατ
ψ ,

(5.10)

where ψ :=
∫ π

0 ψ(x)dx. The second equals sign in equality (5.10) arises from exchanging
the integrals, and the third equals sign in equality (5.10) stems from the symmetry of the
Green’s function and

∫ π

0 �(x, y, a)dy = e–αa.
Due to the fact that the principal characteristic vector ψ1 of system (5.9) is strictly posi-

tive, it follows that ψ1 �= 0. Hence, equation (5.10) implies that the principal eigenvalue λ1

of system (5.9) is given by λ1 = –α + βb
deατ . �

Theorem 5.2 The global dynamic behavior of the model (5.1)–(5.3) is described as follows:
1. If b < 0, original steady state E0 is globally stable;
2. If b > 0 and βb

αdeατ < 1, then tumor steady state E1 is global attractive in Cτ ;
3. If b > 0 and βb

αdeατ > 1, the solution semigroup �(t) generated by system (5.1)–(5.3) is
uniformly persistent. Furthermore, when h > β

b , we can provide a lower-bound
estimate:

lim
t→∞ U(t, x) ≥ ακ(b2h – βb + αdeατ )

ακbdh + (1 – e–ατ )(βb – αdeατ )
> 0,

lim
t→∞ V (t, x) ≥ (βb – αdeατ )(hbκ – βκ – e–ατ + 1)

heατ

[

ακbdh + (1 – e–ατ )(βb – αdeατ )
] > 0.

Proof Conclusion 1 arises from Theorem 4.1 and Lemma 5.1; Conclusion 2 stems from
Theorem 4.2, Lemma 5.1, and Lemma 5.2. By combining Theorem 4.3, Lemma 5.1, and
Lemma 5.2, we can derive the first part of Conclusion 3.

Now, we will prove the second part of Conclusion 3. Based on Theorem 3.2, it is known
that the solution semigroup �(t) generated by system (5.1)–(5.3) is bounded. Therefore,
we can choose c > 0 such that cU – βUV + U[b – dU – β

ακ
(1 – e–ατ )UV ] is monotone

increasing in U for all values taken by the solution. Utilizing the Green’s function �1(x, y, a)
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associated with d1� and the Neumann boundary condition, we have:

U(t, x) =e–ct
∫

	

�1(x, y, t)U0(x)dy +
∫ t

0
e–cs

∫

	

�1(x, y, s)
{

cU(t – s, y)

–
βU(t – s, y)V (t – s, y)

1 + hV (t – s, y)
+ U(t – s, y)

[

b – dU(t – s, y)

–
β

κ

∫ τ

0

∫ π

0
�(y, z, a)

U(t – s – a, z)V (t – s – a, z)
1 + hV (t – s – a, z)

dzda
]
}

dyds.

(5.11)

Let

U∞(x) := lim sup
t→+∞

U(t, x), U∞(x) := lim inf
t→+∞ U(t, x),

V ∞(x) := lim sup
t→+∞

V (t, x), V∞(x) := lim sup
t→+∞

V (t, x).

As the solution semigroup �(t) is uniformly persistent, for all x ∈ 	, there exists a ε > 0
such that

U∞(x) ≥ U∞(x) ≥ ε, V ∞(x) ≥ V∞(x) ≥ ε.

By applying Fatou’s Lemma to equation (5.11), we obtain

U∞(x) ≤
∫ ∞

0
e–cs

∫

	

�1(x, y, s)
{

cU∞(y) –
βU∞(y)V∞(y)

1 + hV∞(y)

+U∞(y)
[

b – dU∞(y) –
β

κ

∫ τ

0

∫ π

0
�(y, z, a)

U∞(z)V∞(z)

1 + hV∞(z)
dzda

]
}

dyds.
(5.12)

Let

U
∞ := sup

x∈[0,π ]
U∞(x), V

∞ := sup
x∈[0,π ]

V ∞(x),

U∞ := inf
x∈[0,π ]

U∞(x), V∞ := inf
x∈[0,π ]

V∞(x).

In addition, due to the validity of

∫ π

0
�1(x, y, a)dy = 1,

∫ π

0
�(x, y, a)dy = e–αa,

the inequality (5.12) can be rewritten as

U
∞ ≤ 1

c
{cU∞ –

βU∞
V∞

1 + hV∞
+ U

∞
[

b – dU∞ –
β

ακ
(1 – e–ατ )

U
∞
V∞

1 + hV∞

]

}

. (5.13)

The simplified form of (5.13) yields:

βV∞
1 + hV∞

≤ [1 + (
1 – e–ατ

ακ
)U∞]–1(b – dU∞). (5.14)
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Similarly, by Fatou’s Lemma of the lower limit, we can obtain

βV∞

1 + hV∞ ≥ [1 + (
1 – e–ατ

ακ
)U∞]–1(b – dU∞). (5.15)

By employing the Green’s function � for d2� – α, we obtain

V (t, x) =
∫ π

0
�(x, y, t)V0(y)dy+β

∫ t

0

∫ π

0
�(x, y, s +τ )

U(t – s – τ , y)V (t – s – τ , y)

1 + hV (t – s – τ , y)
dyds.

Again, by Fatou’s Lemma together with the fundamental properties of the Green’s function
�, one can obtain the following results:

1 ≤ βU∞

αeατ (1 + hV∞)
(5.16)

and

1 ≥ βU∞
αeατ (1 + hV∞)

. (5.17)

In addition, by the comparison theorem together with the first equation of system (5.1),
it is easy to obtain that limt→∞ u(t, x) ≤ b

d , which indicates that:

U
∞ ≤ b

d
. (5.18)

Taking inequality (5.18) into (5.16), we can obtain:

V
∞ ≤ 1

h
(

βb
αdeατ

– 1). (5.19)

Again, taking (5.19) into (5.15), we yield:

U∞ ≥ ακ(b2h – βb + αdeατ )

ακbdh + (1 – e–ατ )(βb – αdeατ )
> 0. (5.20)

Lastly, taking (5.20) into (5.17), we yield:

V∞ ≥ (βb – αdeατ )(hbκ – βκ – eατ + 1)

heατ

[

ακbdh + (1 – e–ατ )(βb – αdeατ )
] > 0.

By the definition of U∞ and V∞, We have completed the proof for this part. �

6 Conclusion
In this paper, we derive a therapeutic model for oncolytic virus treatment based on an age-
structured model with nonlocal time delays and nonlocal infection spreading. It is worth
mentioning that to overcome the limitation of mathematical models in explaining uncer-
tain biological phenomena using specific functional expressions, we use general continu-
ous differentiable functions F and G to characterize tumor growth and virus infection.
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Theorem 3.2 ensures the existence and uniqueness of the model’s solution, as well as the
existence of a global compact attractor. Additionally, the principle eigenvalue σ1 defined
by system (3.4) determines the sustained proliferation of tumor cells:

(1) Theorem 4.1 indicates that tumor growth is not sustainable when σ1 < 0. (2)
Lemma 3.1 shows that tumor growth reaches a saturation state when σ1 > 0.

Furthermore, in the case of sustained tumor growth (i.e., σ1 > 0), the principle eigen-
value λ1 defined by system (4.4) determines the success of oncolytic virus treatment: (1)
Theorem 4.2 reveals that the viral treatment fails when λ1 < 0 (i.e., limt→+∞ V (t, x) = 0).
(2) Theorem 4.3 demonstrates that the viral treatment is successful when λ1 > 0 (i.e., there
exists ε > 0 such that limt→+∞ V (t, x) > ε).

Then, we assume that the tumor follows logistic growth (with growth rate F = b – dU)
and a Holling Type-II functional response (viral infection function G(U , V ) = βUV

1+hV ) under
Neumann boundary conditions. Model (1.2)–(1.4) is transformed into model (5.1)–(5.3).
We calculate the tumor-threshold parameter as σ1 = b and the viral treatment-threshold
parameter as λ1 = –α + βb

deατ . Furthermore, we provide a lower-bound estimate for the
solution under tumor-treatment conditions.

We believe that our model is highly versatile as it incorporates different tumor-growth
processes and viral-infection processes. The dynamic results of this study provide theo-
retical foundations for further data fitting and predictions of the model.
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1. Bajzer, Ž., Carr, T., Josić, K., Russell, S.J., Dingli, D.: Modeling of cancer virotherapy with recombinant measles viruses. J.

Theor. Biol. 252(1), 109–122 (2008)
2. Cantrell, S.R., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations. Wiley Series in Mathematical and

Computational Biology (2003)
3. Chiocca, E.A.: Oncolytic viruses. Nat. Rev. Cancer 2(12), 938–950 (2002)
4. Ding, C., Wang, Z., Zhang, Q.: Age-structure model for oncolytic virotherapy. Int. J. Biomath. 15(01), 2150091 (2022)
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