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Abstract
The frequent emergence of new infectious diseases poses a serious threat to human
health and social development. In the current digital age, the widespread application
of online social networks has accelerated the dissemination of information regarding
these diseases, influencing the interplay between disease spread and information
diffusion. To address this, we propose the UAU–SEPIRmodel, a novel two-layered
network propagation model inspired by the early stages of the COVID-19 outbreak.
This model, constructed using a micro-Markov-chain approach, features an upper
layer for information diffusion (the UAUmodel) and a lower layer for disease
propagation (the SEPIRmodel). We derive the epidemic threshold, which is influenced
by the dynamics of information diffusion, the network topology of disease spread,
and the pathways from exposed to infected to recovered individuals. Through
extensive random simulations, we confirmed the validity of our model. The research
findings reveal that both model parameters and network topology play crucial roles
in shaping the interaction between information diffusion and disease spread.
Additionally, in random networks, adaptive behavior of individuals significantly
enhances the inhibition of disease transmission. Overall, Our study provides
theoretical insights into the interplay between social-network dynamics and the early
outbreak stages, offering valuable support for disease prevention and control
strategies.

Keywords: Two-layered network; Disease spread; Information diffusion; Epidemic
threshold

1 Introduction
Throughout human history, infectious diseases have been a persistent threat. The COVID-
19 pandemic, which began in late 2019, has persisted for over four years. It is the most
impactful and widespread infectious disease of the 21st century, causing unprecedented
disruptions to daily life and significant socioeconomic consequences [1–6]. Despite the
ongoing effects of COVID-19, the emergence of the monkeypox outbreak in 2024 intro-
duces new challenges, further extending the era of global health crises and underscoring
that the threat of infectious diseases remains ever-present [7–10].

Increasingly, scholars in the public-health field recognize dynamic models as power-
ful tools for studying the spread and outbreak of infectious diseases. Since Kermack and
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McKendrick first introduced the compartmental model for studying infectious diseases
in 1927 [11], an increasing number of researchers have developed various models based
on this framework. These models aim to analyze the mechanisms of disease spread and to
predict future trends in disease development. Typically, these models assume a uniformly
mixed population, where each individual has an equal probability of being exposed to oth-
ers within a given time frame. However, in reality, contact frequency and the disease sta-
tus of individuals vary significantly. To address this, incorporating individual differences
in contact frequency is crucial. Consequently, simulating contact patterns through com-
plex networks has emerged as an effective method, making the study of infectious-disease
spread through these networks a major research direction [12–20].

In reality, the spread of infectious diseases involves both the disease itself and the diffu-
sion of related information. Such information is commonly shared through online social
networks like Weibo, WeChat, Twitter (X), and Facebook [21–26]. Upon receiving infor-
mation about a disease, individuals often adopt preventive measures, such as improving
personal hygiene, limiting public-place visits, and maintaining social distancing. Addi-
tionally, infected individuals may actively share information on these platforms. Thus, the
diffusion of disease-related information can influence disease spread, and conversely, dis-
ease spread can impact information diffusion.

The traditional single-layer network model is limited in capturing the interaction be-
tween infectious-disease spread and information diffusion. To more accurately represent
the complexity of disease spread, constructing a multilayer network topology structure is
essential [27–37]. Bauch and Galvani investigated the coupling effect between information
diffusion and disease spread in such networks [27]. Granell et al. developed a UAU–SIS
model using a micro-Markov-chain approach to describe how epidemic transmission and
awareness diffusion interact within multilayer networks. They discovered that the epi-
demic threshold depends not only on the disease layer’s network topology, but also on the
information layer’s diffusion dynamics [28]. Zheng et al. introduced the UAU–SIR models
to account for the cases where recovered individuals are not reinfected [29]. Guo et al. con-
structed a UAU–SIS two-layered network model incorporating local influence effects, re-
vealing two-stage changes in epidemic threshold influenced by local awareness [31]. Wang
et al. utilized micro-Markov chains to establish a UAU–SIR two-layer network model, and
then analyzed how the epidemic threshold is influenced by both information-diffusion
and disease-layer topology [32]. David et al. studied how the overlap ratio between the
information and disease layers affects the final epidemic size [34]. Ye et al. proposed a
heterogeneous propagation model of disease-behavior nformation to explore the effect of
individual risk perception and behavioral differences on disease spread [35].

However, in the above related works, traditional infectious disease models like SIS, SIR,
and SEIR are commonly used. To better understand real-world scenarios and devise more
effective prevention and control strategies, we focus on the early stages of the COVID-19
outbreak when no control measures were in place [38]. We modeled this scenario using
a UAU (Unaware-Aware-Unaware) information diffusion model and SEPIR (Susceptible-
Exposed-Presymptomatic-Infectious-Recovered) disease model with a two-layered net-
work. This approach allow us to delve into how interactions between the information and
disease layers impact epidemic threshold and propagation dynamics.

The structure of this paper is organized as follows: Sect. 2 introduces a UAU–SEPIR
two-layered network propagation model, which combines the UAU model for information



Yan and Han Advances in Continuous and Discrete Models         (2024) 2024:61 Page 3 of 19

Figure 1 (a) The transition process of infectious-disease states, (b) The transition process of information states

diffusion with the SEPIR model for disease dynamics, based on the micro-Markov-chain
framework; Sect. 3 analyzes the epidemic threshold; Sect. 4 presents a comparison be-
tween numerical simulations and random simulations, demonstrating the consistency of
the fitting results, and then discusses key numerical findings; Sect. 5 provides a summary
of the conclusions and discussions.

2 Model formation
During the COVID-19 pandemic [38], the research population can be categorized into five
different groups according to the disease states: susceptible or healthy group (S), exposed
group (E), infectious but not yet symptomatic group (P), symptomatic infected group (I)
and recovered group (R). The birth and death rates of the population are considered neg-
ligible in this model. Within a unit of time, susceptible individuals come into contact with
infected individuals and become exposed at a rate of β . Among the exposed individuals, a
proportion of p transition to the presymptomatic group at a rate of σ , while the remaining
proportion of 1 – p transition to the symptomatic infected group at the same rate of σ .
The presymptomatic individuals recover at a rate of r1, and the symptomatic infected in-
dividuals enter the recovered group with a rate of r2. The transition dynamic of the disease
states is illustrated in Fig. 1(a).

At the same time, information about infectious diseases is often disseminated through
virtual social platforms, which can influence disease transmission in the real world. For
instance, healthy individuals may adopt self-protection measures in response to such in-
formation, thereby reducing their infection risk. We categorize the same population into
two groups based on their awareness of the disease: the unaware group (U) and the aware
group (A). Unaware individuals transition to the aware group at a rate of λ through in-
formation exchange with aware individuals. Aware individuals may revert to the unaware
group at a rate of γ due to forgetting or information fatigue. The transition dynamic of
the information states is illustrated in Fig. 1(b).

We use a two-layered network to simulate the spread of both diseases and information
within the same population. The network consists of:

(1) Online Social Network (Layer 1): This layer models the dissemination of information
related to infectious diseases based on the UAU propagation model. In this network, nodes
represent individuals, and edges represent the transmission of information between them.

(2) Physical Social Network (Layer 2): This layer represents actual physical contacts
among individuals, simulating the spread of infectious diseases, based on the SEPIR
model. Here, edges represent friendship relationships, which facilitate the physical trans-
mission of diseases.

We assume that each node in the two layers corresponds to the same individual, al-
though the network topologies of the two layers can differ. Figure 2 shows the architecture
of this two-layered network, where each individual has two simultaneous states: a disease
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Figure 2 Schematic diagram of the two-layered network and the classification of node states: the upper layer
represents the information-dissemination network; The lower layer represents the disease-spread network

state and an information state. Consequently, the population is categorized into US, AS,
UE, AE, UP, AP, AI , UR, AR states, as depicted in Fig. 2. In the upper and lower layers of
the network, let the number of nodes be N and they are both undirected graphs. The adja-
cency matrix of the upper layer network is A = (aij)N×N , where aij = 1 indicates that there
is an edge between node i and node j, otherwise aij = 0. The adjacency matrix of the lower
layer network is B = (bij)N×N , where bij = 1 indicates that there is an edge between node
i and node j, otherwise bij = 0. Actually, the dynamics in one layer (information dissemi-
nation) influence the dynamics in the other layer (disease transmission). The susceptible
individuals with awareness (AS) reduce their risk of infection by adjusting their behavior
(such as reducing access to public places, maintaining social distancing, etc.), resulting in
a lower infection rate coefficient βA than the β of susceptible individuals with unaware-
ness, i.e., βA = δβ . The exposed individuals with unawareness (UE) will transition directly
to the aware and infected individuals (AI). This transition occurs because these individu-
als become aware of the disease after experiencing relevant symptoms. Consequently, we
do not include the unaware and infected state (UA) in the model, as shown in Fig. 2.

For the needs of subsequent modeling, we define λi(t) as the probability that node i does
not communicate disease-related information with any neighboring nodes in the informa-
tion layer, expressed as:

λi(t) =
∏

j

(1 – λaijpA
j (t)), (1)

where the symbol
∏

denotes a product over multiple terms, pA
j (t) represents the prob-

ability that node j is an aware individual at time t. Defining TU
i as the probability of an

unaware and susceptible individual being infected by the infected neighbors in the dis-
ease layer, then:

TU
i (t) =

∏

j

(1 – βbijpAI
j (t)), (2)

where pAI
j (t) represents the probability that node j is an aware and infected individual

at time t. Similarly, TA
i represents the probability of an aware and susceptible individual
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Figure 3 Schematic diagram of probability-transition tree for nine states (US, UE, UP, UR, AS, AE, AP, AI, and
AR). Each state can transition to other states based on specific probabilities, illustrated by arrows and formulas
on the branch lines. The diagram ensures that the sum of probabilities for all possible transitions from any
given state equals 1

being infected by infected neighbors, then:

TA
i (t) =

∏

j

(1 – δβbijpAI
j (t)). (3)

In the two-layered network model UAU–SEPIR, nodes can be in one of nine states: US,
AS, UE, AE, UP, AP, AI , UR, AR. Each state transitions to other states based on a specific
probability, forming a state-transition probability tree, as in Fig. 3. For states other than
UR and AR states, transitions involve changes in both the information layer and the dis-
ease layer. For example, in the US state, the first layer determines whether a node remains
unaware or transitions to the aware state. With probability λi, the node stays in the US
state, while with probability 1 – λi, it moves to the AS state. In the second layer, if a node
in the US state is not infected with probability TU

i , it remains in US; otherwise, it transi-
tions to UE with probability 1 – TU

i . Similarly, for the AS state, the uninfected probabilities
are adjusted to TA

i for remaining in AS and 1 – TA
i for transitioning to AE.

For nodes in the UE and AE states, transitions can be categorized into three scenarios: 1)
With probability 1–σ , the node stays in the same state (UE or AE); 2) With probability pσ ,
the node transitions to the presymptomatic state (UP or AP); 3) With probability (1 – p)σ ,
it moves to the symptomatic infected state (AI). For the UR and AR states, transitions only
involve changes in the information layer: in the UR state, with probability λi, the node
remains in UR, and with probability 1 – λi, it transitions to AR. Similarly, in the AR state,
the node either stays in AR with probability 1–γ or transitions back to UR with probability
γ . This diagram ensures that the sum of probabilities for all possible transitions from any
given state equals 1.

Defining pUS
i , pAS

i , pUE
i , pAE

i , pUP
i , pAP

i , pAI
i , pUR

i , pAR
i as the probability that node i is in

states US, AS, UE, AE, UP, AP, AI , UR, AR at time t, and based on the state-transition
probability tree depicted in Fig. 3, the following dynamic model is constructed using the
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micro-Markov-chain method:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pUS
i (t + 1) = pUS

i (t)λi(t)TU
i (t) + pAS

i (t)γ TU
i (t),

pAS
i (t + 1) = pUS

i (t)(1 – λi(t))TA
i (t) + pAS

i (t)(1 – γ )TA
i (t),

pUE
i (t + 1) = pUS

i (t)λi(t)(1 – TU
i (t)) + pAS

i (t)γ (1 – TU
i (t))

+pUE
i (t)λi(t)(1 – σ ) + pAE

i (t)γ (1 – σ ),

pAE
i (t + 1) = pUS

i (t)(1 – λi(t))(1 – TA
i (t)) + pAS

i (t)(1 – γ )(1 – TA
i (t))

+pUE
i (t)(1 – λi(t))(1 – σ ) + pAE

i (t)(1 – γ )(1 – σ ),

pUP
i (t + 1) = pUE

i (t)λi(t)pσ + pAE
i (t)γ pσ + pUP

i (t)λi(t)(1 – r1)

+pAP
i (t)γ (1 – r1),

pAP
i (t + 1) = pUE

i (t)(1 – λi(t))pσ + pAE
i (t)(1 – γ )pσ

+pUP
i (t)(1 – λi(t))(1 – r1) + pAP

i (t)(1 – γ )(1 – r1),

pAI
i (t + 1) = pUE

i (t)(1 – p)σ + pAE
i (t)(1 – p)σ + pAI

i (t)(1 – r2),

pUR
i (t + 1) = pUP

i (t)λi(t)r1 + pAP
i (t)γ r1 + pAI

i (t)γ r2 + pUR
i (t)λi(t) + pAR

i (t)γ ,

pAR
i (t + 1) = pUP

i (t)(1 – λi(t))r1 + pAP
i (t)(1 – γ )r1 + pAI

i (t)(1 – γ )r2

+pUR
i (t)(1 – λi(t)) + pAR

i (t)(1 – γ ).

(4)

System (4) tracks the evolution of node probabilities over time by considering the state
transitions detailed in Fig. 3, with each transition governed by the probabilities specified
in the state-transition tree.

At any time t, the sum of the probabilities of any given node i in the two-layered network
being in these nine states is 1, that is:

pUS
i (t) + pAS

i (t) + pUE
i (t) + pAE

i (t) + pUP
i (t) + pAP

i (t) + pAI
i (t) + pUR

i (t) + pAR
i (t) = 1. (5)

When t → +∞, system (4) reaches steady state E∗ = (pUS∗
i , pAS∗

i , pUE∗
i , pAE∗

i , pUP∗
i , pAP∗

i ,
pAI∗

i , pUR∗
i , pAR∗

i ), satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pUS
i (t + 1) = pUS

i (t) = pUS∗
i , (t → ∞),

pAS
i (t + 1) = pAS

i (t) = pAS∗
i , (t → ∞),

pUE
i (t + 1) = pUE

i (t) = pUE∗
i , (t → ∞),

pAE
i (t + 1) = pAE

i (t) = pAE∗
i , (t → ∞),

pUP
i (t + 1) = pUP

i (t) = pUP∗
i , (t → ∞),

pAP
i (t + 1) = pAP

i (t) = pAP∗
i , (t → ∞),

pAI
i (t + 1) = pAI

i (t) = pAI∗
i , (t → ∞),

pUR
i (t + 1) = pUR

i (t) = pUR∗
i , (t → ∞),

pAR
i (t + 1) = pAR

i (t) = pAR∗
i , (t → ∞)

(6)

and the following expression

pUS∗
i + pAS∗

i + pUE∗
i + pAE∗

i + pUP∗
i + pAP∗

i + pAI∗
i + pUR∗

i + pAR∗
i = 1.



Yan and Han Advances in Continuous and Discrete Models         (2024) 2024:61 Page 7 of 19

3 The epidemic threshold
The epidemic threshold βc is a key indicator for determining the potential for an
infectious-disease outbreak. If the infection rate β exceeds this threshold βc, the disease is
likely to persist within the population. Conversely, if β is below βc, the disease is expected
to rapidly decline, and the epidemic is likely to end relatively quickly.

Let ξi = pAI∗
i , and when the infection rate of the disease layer approaches the epidemic

threshold, we assume ξi � 1. Based on this assumption, we can further derive:

TU
i (t) ≈ 1 – αU

i , TA
i (t) ≈ 1 – αA

i ,

where αA
i = δβ

∑
j bijξj, αU

i = β
∑

j bijξj. In this case, the first four equations of system (4)
can be transformed as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pUS
i (t + 1) = pUS

i (t)λi(t)(1 – αU
i ) + pAS

i (t)γ (1 – αU
i ),

pAS
i (t + 1) = pUS

i (t)(1 – λi(t))(1 – αA
i ) + pAS

i (t)(1 – γ )(1 – αA
i ),

pUE
i (t + 1) = pUS

i (t)λi(t)αU
i + pAS

i (t)γαU
i + pUE

i (t)λi(t)(1 – σ )

+pAE
i (t)γ (1 – σ ),

pAE
i (t + 1) = pUS

i (t)(1 – λi(t))αA
i + pAS

i (t)(1 – γ )αA
i

+pUE
i (t)(1 – λi(t))(1 – σ ) + pAE

i (t)(1 – γ )(1 – σ ).

(7)

Since the remaining five equations in system (4) maintain their original form in this case,
they will not be repeated here.

When the above system (7) is in a steady state and the number of infected individuals
is very small, we can assume that pUP∗

i → 0, pAP∗
i → 0, pUR∗

i → 0, pAR∗
i → 0. Then, the

equations related to pUP
i , pAP

i , pUR
i pAR

i can be ignored. Consequently, we focus only on the
first four key equations and equation ξi in system (7). By further neglecting the higher-
order nonlinear terms in these equations, we derive the following steady-state system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pUS∗
i = pUS∗

i λi + pAS∗
i γ ,

pAS∗
i = pUS∗

i (1 – λi) + pAS∗
i (1 – γ ),

pUE∗
i = pUS∗

i λiα
U∗
i + pAS∗

i γαU∗
i + pUE∗

i λi(1 – σ ) + pAE∗
i γ (1 – σ ),

pAE∗
i = pUS∗

i (1 – λi)αA∗
i + pAS∗

i (1 – γ )αA∗
i + pUE∗

i (1 – λi)(1 – σ )

+pAE∗
i (1 – γ )(1 – σ ),

ξi = (pUE∗
i + pAE∗

i )σ (1 – p) + ξi(1 – r2).

(8)

From the above system (8), we can calculate:

σ (pUE∗
i + pAE∗

i ) = αU
i pUS∗

i + αA
i pAS∗

i . (9)

By substituting equation (9) into ξi in system (8), we can derive:

ξi = ξi(1 – r2) + (1 – p)(pUS∗
i + δpAS∗

i )β
∑

j

bjiξj. (10)
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The probability of any given node i being in an aware state is:

pA∗
i = pAS∗

i + pAI∗
i + pAP∗

i + pAR∗
i ,

then we can obtain pA∗
i ≈ pAS∗

i . we further derive pUS∗
i ≈ 1 – pA∗

i . Thus, we can derive the
following equation:

r2

1 – p
ξi = (1 – pA∗

i + δpA∗
i )β

∑

j

bijξj, (11)

through further organization, we can obtain:

∑

j

[(1 – (1 – δ)pA∗
i )bji –

r2

β(1 – p)
tij]ξj = 0. (12)

Let cij = (1 – (1 – δ)pA∗
i )bij, depending on the adjacency matrix element bij of the disease

layer and the probability pA∗
i that node i is an aware individual at steady state. As i and j

vary from 1 to N , cij forms a matrix C = (cij)N×N . From equation (12), we can derive the
expression for the epidemic threshold:

βc =
r2

(1 – p)	max(C)
, (13)

where 	max(C) represents the maximum eigenvalue of matrix C = (cij)N×N . Obviously, the
epidemic threshold βU

c is influenced by both the network structure of the disease layer
and the propagation dynamics of the information layer. Furthermore, βc is affected by the
proportion 1 – p of the exposed individuals who transition to the infected state, as well as
the rate r2 at which infected individuals recover. This suggests that βc depends significantly
on the transmission pathway E → I → R, likely due to the fact that the source of infection
is the infected individuals I .

4 Simulation results
In this section, we use a configuration model to generate two-layered networks with N
nodes, constructing four distinct network structures: 1) SF-SF network, where the up-
per layer is a scale-free network with p(k) ∼ k–3, and the lower layer is also a scale-free
network with p(k) ∼ k–2.5; 2) R-R network, where the upper layer is a random network
with 〈k〉 = 10, and the lower layer is a random network with 〈k〉 = 6; 3) SF-R network,
where the upper layer is a scale-free network with p(k) ∼ k–3, and the lower layer is a
random network with 〈k〉 = 6; 4) R-SF network, where the upper layer is a random net-
work with 〈k〉 = 10, nd the lower layer is also a scale-free network with p(k) ∼ k–2.5. Using
the state-transition probability tree depicted in Fig. 3, we employ the Monte Carlo sim-
ulation method to model disease and information propagation across these two-layered
networks [28]. The numerical simulation are based on system (4). In practice, the focus is
on the densities of various disease states – denoted as ρS(t), ρE(t), ρP(t), ρI(t), ρR(t) – with
particular attention to asymptomatic and symptomatic infected individuals. Similarly, for
information dissemination, we track the density of different information states, denoted
as ρU(t), ρA(t). The calculation formulas for the densities of various disease states and
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information states during the simulation process are:

ρS(t) =

N∑
i=1

(pUS
i (t) + pAS

i (t))

N
, ρE(t) =

N∑
i=1

(pUE
i (t) + pAE

i (t))

N
,ρI(t) =

N∑
i=1

pAS
i (t)

N
,

ρP(t) =

N∑
i=1

(pUP
i (t) + pAP

i (t))

N
, ρR(t) =

N∑
i=1

(pUR
i (t) + pAR

i (t))

N
,

ρU(t) =

N∑
i=1

(pUS
i (t) + pUE

i (t) + pUP
i (t) + pUR

i (t))

N
,

ρA(t) =

N∑
i=1

(pAS
i (t) + pAE

i (t) + pAP
i (t) + pAI

i (t) + pAR
i (t))

N
.

Consequently, this section focuses on illustrating the temporal changes in these densities.
In the following work, we will use N = 1000, λ = 0.28, γ = 0.3, β = 0.24, δ = 0.2, σ = 1/7,
p = 0.2, r1 = 0.14, and r2 = 0.33 as the benchmark parameters for the relevant simulations.

To validate model (4), we compare its numerical solution (black curve) with results
from 50 independent Monte Carlo simulations (brown circles). Figure 4 clearly shows that
the numerical results align well with the Monte Carlo simulations. Figure 4 also depicts
the density changes of various coupling states. ρUS decreases rapidly initially, then more
slowly, approaching a nonzero steady-state value. ρUE and ρUP rise to a high peak before
declining to zero. ρUR increases rapidly at first, then stabilizes at a steady-state value. ρAS

also increases rapidly, then decreases and stabilizes at a steady-state value. The initial in-
crease in ρAS is due to U in the US state becoming an aware individual, resulting in an
increase in AS. The ρAE , ρAP , and ρAI show trends similar to ρUE and ρUP , reflecting the
typical disease stages of susceptible individuals through stages E, P, or I before reaching R,
hence the densities tend to zero. ρAR rises quickly before stabilizing at a steady-state value.
Additionally, Fig. 12 in Appendix A shows the density changes of these coupled states in
the R-R network, the numerical results align well with the random simulation results. This
consistency suggests that the outcomes of the numerical and random simulation methods
are not influenced by the network structure.

To investigate the impact of the coupling changes between the information-diffusion
rate λ and network topology on spreading behaviors, we examined different λ values
across the four network structures in Fig. 5. The first, second, third, and fourth rows cor-
respond to the SF-SF, R-R, SF-R, and R-SF networks, respectively. Overall, increasing λ

promotes the information diffusion while suppressing epidemic spread. This suggests that
an increase in aware individuals, due to a higher λ, leads to more aware and susceptible
individuals, thereby reducing the disease transmission rate and mitigating the prevalence
of diseases. For the SF-SF network and SF-R network, the information layer’s propagation
accelerates significantly as λ increases from 0.2 to 0.5, with diminishing effects beyond 0.5.
In contrast, when the upper layer is a random network, λ changes have minimal impact
on information propagation, indicating that random networks’ structural heterogeneity
diminishes the influence of the information-propagation rate. Conversely, scale-free net-
works show a more pronounced impact, where increased λ has a notable effect on infor-
mation diffusion. A similar trend is observed in the disease layer, but with sensitivity to
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Figure 4 The time evolutions of ρUS , ρAS , ρUE , ρAE , ρUP , ρAP , ρAI , ρUR , ρAR in the SF-SF network, where both
layers of the network are scale-free. The black curves represent the results from numerical simulations of
system (4), while the brown circles indicate the average values obtained from 50 random simulations

network structure varying as follows: SF-SF network > R-R network > SF-R network >
R-SF network. These results demonstrate that the epidemic spread is more sensitive to
network structure changes.

Figure 6 illustrates the impact of the transmission rate β and network structure on the
time evolutions of ρS , ρI , ρR, ρU , ρA. β has almost no impact on information diffusion (see
the last two columns), consistent with our modeling expectations. However, β significantly
affects the epidemic spread. Specifically, an increase in β advances the high peak arrival
time of the infectious disease, raises the high peak value, and enlarges the final epidemic
size. This effect is particularly pronounced when β increases from 0.2 to 0.5. The final
epidemic size, ordered by network structure, is R-SF < SF-SF < R-R < SF-R, suggesting that
the scale-free network structure in the disease layer tends to reduce the overall epidemic
size.

Figure 7 shows the influence of forgetting rate γ of aware individuals and network struc-
ture on the time evolutions of ρS , ρI , ρR, ρU , ρA. As γ increases, the diffusion of infor-
mation is notably suppressed. The final values of ρU and ρA are almost identical in both
the SF-SF and SF-R networks. In contrast, for the R-R and R-SF networks, the evolution
trends of ρU and ρA are similar. This suggests that scale-free networks exhibit a more
pronounced suppression effect on information diffusion compared to random networks,
making them less conducive to the spread of information. However, as γ increases, the
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Figure 5 The time evolutions of ρS , ρ I , ρR , ρU , ρA are illustrated for the four different network structures,
with varying information-diffusion rates λ. The first, second, third, and fourth rows correspond to the SF-SF
network, R-R network, SF-R network, and R-SF network, respectively

Figure 6 The time evolutions of ρS , ρ I , ρR , ρU , ρA are illustrated for the four different network structures,
with varying transmission rates β . The first, second, third, and fourth rows correspond to the SF-SF network,
R-R network, SF-R network, and R-SF network, respectively

spread of the disease layer is promoted. With fewer aware and susceptible individuals,
the transmission rate is β , resulting in a higher peak infection rate. Consequently, the fi-
nal epidemic sizes follow the order of network structure: R-SF <SF-SF<R-R<SF-R (see the
third columns). This indicates that scale-free networks have a less pronounced effect on
promoting disease spread compared to random networks.

Figure 8 displays the effect of the transmission-rate ratio, δ, on disease spread in a SF-SF
network. As δ increase, ρS decreases, the high peak values of ρE , ρP , ρI become large, and
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Figure 7 The time evolutions of ρS , ρ I , ρR , ρU , ρA are illustrated for the four different network structures,
with varying transmission rates γ . The first, second, third, and fourth rows correspond to the SF-SF network,
R-R network, SF-R network, and R-SF network, respectively

Figure 8 With different ratio of transmission rates δ , the time evolutions of ρS , ρE , ρP , ρ I , ρR on the SF-SF
network

ρR increases. Overall, a higher δ accelerates the spread of the disease and results in a larger
final epidemic size.

The impact of transition proportion p on disease spread is displayed in Fig. 9. We can ob-
serve that when p becomes large, the rate of decrease in ρS slows, and its steady-state value
increases, and then the steady-state value of ρR decreases. However, the high peaks of ρE ,
ρP , and ρI occur earlier and increase in magnitude, particularly with significant changes
in p. Consequently, an increase in p appears to inhibit disease spread. This is because a
higher transition proportion means more exposed individuals E become presymptomatic
individuals P, which leads to a reduction in the number of infectious individuals I (the
infection source), thereby suppressing the epidemic.

4.1 Threshold behaviors
In this subsection, we explore how various parameters of system (4) affect epidemic
threshold βc and discuss prevention and control strategies for the influence of parameters.
Figure 10 presents an analysis of the effects of the information-diffusion rate λ, infection-
rate ratio δ, and transition ratio p on the epidemic threshold βc for the SF-SF network (the
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Figure 9 With different transition proportion p, the time evolutions of ρS , ρE , ρP , ρ I , ρR on the SF-SF network

Figure 10 The effects of the information-diffusion rate λ, infection-rate ratio δ , and transition ratio p on the
epidemic threshold βc for the SF-SF network (the first row) and the R-R network (the second row)

first row) and the R-R network (the second row), using contour plots. In Fig. 10(a), with a
fixed δ, βc increases as λ rises. This trend becomes more obvious when λ > 0.2. These re-
sults suggest that higher values of λ and lower values of δ lead to a higher epidemic thresh-
old, which is beneficial for controlling large-scale outbreaks. In Fig. 10(b), with a fixed p,
βc increases as λ increases. Similarly, with a fixed λ, βc rises as p increases. When both λ

and p are large, the increase in βc is more rapid. This indicates that higher values of λ and
p both contribute to raising the epidemic threshold, which helps to suppress the spread of
the disease. In Fig. 10(c), an increase in δ lowers the epidemic threshold, while an increase
in p has the opposite effect. Thus, lower δ and higher p are beneficial for controlling the
disease spread. Figures 10(d) and (e) show similar trends to Figs. 10(a)–(c), but with a lower
threshold in random networks compared to scale-free networks, indicating that random
networks facilitate disease outbreaks more than scale-free networks. Overall, increasing
the information-diffusion rate and transition ratio while decreasing the infection-rate ra-
tio can effectively raise the epidemic threshold and aid in disease-outbreak control.

4.2 Adaptive behavior
After an infectious disease outbreak, individuals often engage in adaptive behaviors, such
as wearing masks, avoiding public spaces, or minimizing direct contact with infected in-
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Figure 11 With different rewiring rate w, the time evolutions of ρS , ρE , ρP , ρ I , ρR on the SF-SF network (the
first row) and the R-R network (the second row)

dividuals, to reduce their risk of infection upon receiving information about the disease.
In this context, we examine how these adaptive behaviors, modeled within the physical
contact layer (i.e., the disease-transmission layer) of our two-layer network model, affect
the dynamics of disease spread. We analyze how these behavioral adaptations impact the
disease spread within this framework.

In the real world, we recognize that susceptible individuals disconnect from infected
individuals with a certain probability only after receiving information about the disease.
In contrast, those who have not been informed generally do not proactively alter their
behavior. Drawing inspiration from the adaptive reconnection mechanism proposed by
Gross et al. [39], we then propose an adaptive reconnection mechanism that integrates
information diffusion. In this mechanism, the aware and susceptible individuals will dis-
connect from infected individuals at a rate w and simultaneously establish connections
with other noninfected individuals (susceptible individuals S or recovered individuals R)
at the same rate w. This mechanism not only reduces the risk of infection transmission
but also helps maintain the normal functioning of individuals’ social interactions. Given
that the adaptive reconnection mechanism of coupled information diffusion has no effect
on the information diffusion of the information layer, we only demonstrate its impact on
the spread of the disease layer here.

In the first row of Fig. 11, which corresponds to the scale-free network, we observe that
as w increases, the rate of ρS decrease slows, and its final steady-state value increases.
Although the peak values of ρE (exposed), ρP (prevented), and ρI (infected) show a slight
decrease, the overall final epidemic size also decreases. In the second row of Fig. 11, which
depicts the random network, a similar trend is observed. However, the impact of increas-
ing w is more pronounced compared to the scale-free network, showing a more significant
effect on the dynamics of disease spread.
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Table 1 Node ranking and influence values across various evaluation methods in the SF-SF network

Number Cncd Node Cnc Number Cd Number Ckc

982 36.2702611819695 982 26 109 9 7 4
765 33.9425323245692 765 25 158 9 34 4
350 33.03543667 350 24 177 9 132 4
780 30.28747531 854 23 178 9 146 4
7 30.18069802 432 22 350 9 315 4

293 30.15126129 178 21 432 9 350 4
907 29.94455449 546 21 436 9 520 4
854 29.93692684 780 21 546 9 528 4
609 29.88513388 907 21 637 9 780 4
15 29.6000679 158 20 765 9 907 4
315 29.55312663 177 20 804 9 982 4
742 28.86077093 293 20 854 9 1 3

Table 2 Node ranking and influence values across various evaluation methods in the R-R network

Number Cncd Node Cnc Number Cd Number Ckc

356 104.2124293 356 87 356 16 7 7
126 103.2896591 126 86 7 15 127 7
322 98.57667371 322 83 126 15 193 7
852 96.72950686 561 82 322 15 256 7
373 96.30750611 373 81 373 15 296 7
561 96.30348442 852 80 561 15 315 7
862 93.65776048 862 77 576 15 339 7
811 93.16825095 864 77 707 15 351 7
864 92.98705289 909 76 16 14 356 7
622 91.64300491 622 75 677 14 419 7
909 91.52642693 811 75 738 14 433 7
315 91.12183607 306 74 852 14 555 7

4.3 Analysis of node influence
In this subsection, we utilize four evaluation methods including degree centrality Cd [40],
K-core centrality Ckc [41], neighborhood core centrality Cnc [42], and neighborhood core
diversity centrality Cncd to rank node influence in SF-SF and R-R networks. The numbers of
the top 12 nodes by influence for each method are listed in Table 1 and Table 2. As observed
from these tables, the rankings produced by the first three methods differ significantly
from each other. In contrast, the fourth method shows some same numbers as the third
method.

5 Conclusions and discussions
In this paper, we develop a two-layered network propagation dynamic model to capture
the early stages of the COVID-19 outbreak, before control measures were implemented,
and to account for the diffusion of disease-related information on online social networks.
The upper layer represents information diffusion using the UAU model, while the lower
layer models disease dynamics with the SEPIR model. We assume that aware and suscepti-
ble individuals, who take preventive measures like reducing public activities, maintaining
social distancing, and paying attention to personal hygiene, are infected at a rate δ times
lower than unaware and susceptible individuals, where 0 ≤ δ ≤ 1. Furthermore, once un-
aware and exposed individuals (UE) transition to the unaware and infected individuals
(UA), they will immediately actively acquire disease information and transition into an
aware and infected individual (AI), thus the UA state is excluded from the model.
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Once an unaware and susceptible individual is infected, they immediately acquire dis-
ease information and transition to the aware and infected state (AI), thus the UA state is
excluded from the model.

Utilizing the micro-Markov-chain approach, we constructed a UAU–SEPIR model
comprising nine coupling states. Our analysis reveals that the epidemic threshold βc of the
disease layer is influenced by the information diffusion dynamics and the disease layer’s
network topology. Additionally, the proportion 1 – p of exposed individuals who progress
to the infected state and the recovery rate r2 from the infected to the recovered state also
significantly impact βc.

We validate the rationality of the UAU–SEPIR propagation dynamics model (4) through
random simulations, and further study the interaction between information diffusion and
infectious-disease spread across four two-layered network types: SF-SF, R-R, SF-R, and R-
SF. Our findings reveal: 1) An increased information-diffusion rate λ enhances informa-
tion diffusion, which in turn suppresses disease transmission. Disease spread is more sen-
sitive to network-structure changes; 2) An increased infection rate β accelerates disease
spread, leading to an earlier peak and higher peak value, thereby increasing the epidemic
size, although the effect diminishes when β > 0.5. Scale-free network structures in the dis-
ease layer tend to reduce the final epidemic size; 3) A higher individual forgetting rate γ

significantly impedes information diffusion but accelerates disease spread, increasing the
high peak value of infection. The final epidemic sizes follow the order: R-SF<SF-SF<R-
R<SF-R; 4) A higher infection-rate ratio δ accelerates disease spread, whereas a larger
transition proportion p inhibits it; 5) A larger information-diffusion rate λ, a larger transi-
tion proportion p, and a smaller δ raise the epidemic threshold, making it easier to control
a large-scale outbreak of the disease.

In addition, considering that individuals typically engage in adaptive behaviors, such as
severing contact with infected individuals upon receiving disease-related information, we
incorporated this adaptive behavior into our two-layered network propagation dynam-
ics model. Specifically, aware and susceptible individuals (US) actively disconnect from
infected individuals (I) and establish connections with noninfected individuals (S or R).
Numerical simulations reveal that, within both scale-free and random networks in the dis-
ease layer, an increase in rewiring rate w leads to a reduction in both the high peak value
of infection and final epidemic size. This effect is notably more pronounced in random
networks, suggesting that adaptive behaviors are more effective at curbing disease spread
in such networks.

This paper considers the early stage of the COVID-19 outbreak, focusing on the inter-
action between information diffusion and disease spread in the two-layered network. As
the pandemic progressed, people were influenced by the mass-media coverage of COVID-
19 [43–45], leading them to adopt active prevention and control measures, such as home
isolation and vaccination. These actions contribute to changes in network structure over
time. Consequently, future research can explore the impact of mass media on sudden in-
fectious disease events within the framework of time-varying networks.

Appendix: The time evolution on the densities of various disease states and
information states
Figure 12 shows that for both layers of the network, which are random networks, the nu-
merical results align well with the random simulation results. The time evolutions shown
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Figure 12 The time evolutions of ρUS , ρAS , ρUE , ρAE , ρUP , ρAP , ρAI , ρUR , ρAR in the R-R network. The black
curves represent the results from numerical simulations of system (4), while the brown circles indicate the
average values obtained from 50 random simulations. Parameters are λ = 0.28, γ = 0.3, β = 0.24, δ = 0.2,
σ = 1/7, p = 0.2, r1 = 0.14, r2 = 0.33

in Fig. 12 are basically consistent with the density changes of the corresponding states
shown in Fig. 4, hence they will not be repeated here.
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