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Abstract
The goal of this paper is to present a second-order finite difference scheme for
Allen–Cahn equations with Riesz fractional derivative. The discrete maximum bound
principle, the maximum-norm error estimates, and the discrete energy stability of the
proposed scheme are discussed. It is shown that the proposed scheme is
unconditionally energy-stable for any nonnegative stabilization parameter. Two
numerical experiments are performed to verify the theoretical results.

Keywords: Riesz space-fractional Allen–Cahn equation; Finite difference method;
Maximum bound principle; Error estimate; Energy stability

1 Introduction
In this paper, we consider the finite difference approximation for the following 1D space-
fractional Allen–Cahn equation:

∂u(x, t)
∂t

= ε2 ∂αu (x, t)
∂ |x|α – f (u), x ∈ (a, b), t ∈ (0, T], (1)

u(x, 0) = u0(x), x ∈ [a, b], (2)

u(a, t) = u(b, t) = 0, t ∈ (0, T], (3)

where the parameter ε > 0, α ∈ (1, 2), and the nonlinear term f (u) = u3 – u presents the
polynomial double well potential.

Let ∂α

∂|x|α be the Riesz fractional derivative operator defined by

∂αu (x, t)
∂ |x|α = –

1
2 cos απ

2 � (2 – α)

d2

dx2

∫ ∞

–∞
|x – ξ |1–α u (ξ , t)dξ ,

where

� (z) =
∫ ∞

0
tz–1e–tdt, z > 0.
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In recent years, there has been significant interest in using the diffusive-interface phase-
field approach for modeling the mesoscale morphological pattern formation and interface
motion. One of very effective mathematical models describing these physical phenomena
is the Allen–Cahn equation introduced in 1979 [1].

Similar to the classical Allen–Cahn equation, the space-fractional Allen–Cahn equa-
tion (1)–(3) also has the following two intrinsic properties. One is the maximum bound
principle, i.e., if |u0(x)| ≤ 1 for all x ∈ [a, b] then |u(x, t)| ≤ 1 for all x ∈ [a, b] and t ≥ 0.
The other is that the energy function E(u) is decreasing with time: E(u(tn)) ≤ E(u(tm)),
∀tn > tm, where E(u) =

∫ b
a

(
F(u) – 1

2ε2u ∂αu
∂|x|α

)
dx and F(u) = 1

4 (u2 – 1)2. Such two proper-
ties are important in the study of the stability of the solution to the Allen–Cahn equation,
and whether they could be inherited in the discrete level is a significant issue in numer-
ical simulations. Many scholars have attempted to discuss the discrete maximum bound
principle and the discrete energy stability of the finite difference approximations and de-
rived some meaningful results. Tang and Yang [9] discussed the discrete maximum bound
principle and the discrete energy stability of first-order linear implicit–explicit scheme for
the Allen–Cahn equation. By adding a stabilizing term, the proposed scheme is uncon-
ditionally energy-stable when the parameter is greater than 2. Shen et al. [8] analyzed
the discrete maximum bound principle of a first-order linear implicit–explicit scheme for
the generalized Allen-Cahn equation. For temporal discretization, the standard semiim-
plicit scheme and the stabilized semiimplicit scheme were adopted, while for space dis-
cretization, the central finite difference was used for approximating the diffusion term
and the upwind scheme was employed for the advection term. Hou et al. [5] considered
the discrete maximum bound principle, the discrete energy stability, and the error es-
timates of the second-order Crank–Nicolson finite difference scheme for fractional-in-
space Allen–Cahn equations. In that paper, the left and right Riemann–Liouville frac-
tional derivatives were considered. Hou and Leng [4] considered a stabilized second-
order Crank–Nicolson/Adams–Bashforth scheme of the Allen–Cahn equation and ob-
tained the discrete maximum bound principle and the discrete energy stability. Liao et al.
[7] presented a second-order and nonuniform time-stepping maximum bound principle
preserving scheme for time-fractional Allen–Cahn equations. Du et al. [3] proposed the
first- and second-order maximum bound principle preserving exponential time differenc-
ing schemes for the nonlocal Allen–Cahn equation. To obtain a higher-order scheme for
solving the Allen–Cahn equation, Li et al. [6] proposed a new class of maximum princi-
ple preserving numerical schemes, which consists of a kth-order multistep exponential
integrator in time, and a lumped mass finite-element method in space with piecewise rth-
order polynomials and Gauss–Lobatto quadrature. Zhang et al. [12] proposed high-order
(up to fourth) strong stability-preserving implicit–explicit Runge–Kutta schemes for the
time integration of the space-fractional Allen–Cahn equation and discussed the discrete
maximum bound principle and energy stability. Zhang et al. [13] considered the second-
order finite difference method in space and the pth-order Runge–Kutta integration in
time to design a class of maximum principle preserving integrators for the Allen–Cahn
equation. Next, they proposed and analyzed a class of temporal up to fourth-order un-
conditionally structure-preserving single-step methods for Allen–Cahn-type semilinear
parabolic equations in [14]. Zhang et al. [11] presented a systematic two-step approach to
derive temporal up to the eighth-order, unconditionally maximum-principle-preserving
schemes for a semilinear parabolic Sine–Gordon equation and its conservative modifi-
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cation. Zhang et al. [10] developed a class of high-order, large time-stepping and delay-
free integrators for the Cahn–Hilliard-type equation with both viscous regularization and
Oono-type nonlocal interaction that models microphase separation in diblock copolymer
melts.

In this work, we shall present an unconditionally energy-stable second-order finite dif-
ference scheme for the Allen–Cahn equation with Riesz fractional derivative. We can
prove that our scheme is maximum bound principle preserving and the discrete energy
is unconditionally decreasing. Moreover, our theoretical results can be applied to 2D and
3D problems.

The rest of the paper is organized as follows. In Sect. 2, a second-order finite difference
scheme will be presented. The discrete maximum bound principle, the maximum-norm
error estimate and the discrete energy stability of the proposed scheme will be discussed
in Sects. 3–5, respectively. Finally, two numerical examples are given in the last section to
verify the theoretical results.

2 Finite difference approximation
We partition the interval (a, b) into a uniform mesh with the space step h = (b – a)/(N + 1)

and τ = T/M, where N , M are two positive integers. The set of grid points are denoted by
xi = a + (i – 1)h and tn = nτ for 1 ≤ i ≤ N + 2 and 0 ≤ n ≤ M, and we use the notations
un = u(x, tn) and un

i = u(xi, tn). Define

Vh =
{

v : v = {vi} is a grid function in {xi = a + ih}N
i=1

}
.

For any v = {vi} ∈ Vh, we define its pointwise maximum norm

‖v‖∞ = max
1≤i≤N

|vi|.

We adopt a second-order finite difference approach as in [2] to discretize the fractional
operator ∂α

∂|x|α . Hereinafter, we denote by Dh the discretization matrix of the fractional
operator. It is given by

Dh = –
1

hα

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g0 g–1 g–2 . . . g–N+1

g1 g0 g–1 . . . g–N+2

g2 g1 g0 . . . g–N+3
...

...
...

. . .
...

gN–1 gN–2 gN–3 . . . g0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×N

=: –
1

hα
A, (4)

where

g0 =
� (α + 1)

�
(

α
2 + 1

)2 > 0, g–k = gk < 0,
+∞∑

k=–∞
gk = 0, (5)

and

gk+1 =
(

1 –
α + 1

α
2 + k + 1

)
gk < 0, 1 < α < 2. (6)
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Using (4)–(6), one can prove that Dh satisfies the following properties. We omit the proof
of the following lemma.

Lemma 1 The matrix Dh satisfies the following properties:
• Dh is symmetric;
• Dh is negative definite, i.e., UT DhU < 0, for any nonzero U ∈ RN ;
• The elements of Dh = (bij) satisfy

bii = –d < 0, d ≥ max
i

∑
j �=i

|bij|. (7)

Next, we present the following finite difference scheme to solve equation (1), namely:

Un+1 – Un

τ
+

(
Un+1).3 +

(
Un+1).2 Un + Un+1

(
Un

).2
+
(

Un
).3

4
–

Un+1 + Un

2

+
(
Un+1 – Un).3

12
+ βτ

(
Un+1 – Un) =

ε2Dh
(
Un+1 + Un)

2
, (8)

where 0 ≤ n ≤ M – 1, β ≥ 0 and Un represents the vector of numerical solution at nth
level. Hereinafter we define

Un := (Un
1 , Un

2 , . . . , Un
N )T ,

(Un).2 := ((Un
1 )2, (Un

2 )2, . . . , (Un
N )2)T ,

(Un).3 := ((Un
1 )3, (Un

2 )3, . . . , (Un
N )3)T

and

UnV n := (Un
1 V n

1 , Un
2 V n

2 , . . . , Un
N V n

N )T .

3 The discrete maximum bound principle
In this section, we will discuss the discrete maximum bound principle for the scheme (8).

Theorem 1 Assume the initial value satisfies max
x∈[a,b]

|u0(x)| ≤ 1. Then the fully discrete

scheme (8) preserves the discrete maximum bound principle provided the time step size
satisfies

τ ≤ min

{
1
2

,
hα�

(
α
2 + 1

)2

ε2� (α + 1)

}
.

Proof We prove this theorem by induction. First, it follows from the assumption on u0(x)

that ||U0||∞ ≤ 1. We now assume that the result holds for n = m, i.e., ||Um||∞ ≤ 1. Below
we will check that this upper bound is also true for n = m + 1.

We rewrite (8) as

(
1 –

τ

2
+ βτ 2

)
Um+1 +

τ

3
(
Um+1).3 +

τ

2
Um+1

(
Um

).2
–

τ

2
ε2DhUm+1
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=
(

1 +
τ

2
+ βτ 2

)
Um –

τ

6

(
Um

).3
+

τ

2
ε2DhUm. (9)

Suppose ‖Um+1‖∞ = |Um+1
p |, then |Um+1

p | ≥ |Um+1
j | for all 1 ≤ j ≤ N . The pth component

of (9) is

[
1 –

τ

2
+ βτ 2 +

τ

2

(
Um

p

)2
]

Um+1
p +

τ

3

(
Um+1

p

)3
–

τ

2
ε2

⎛
⎝ N∑

j=1

bpjUm+1
j

⎞
⎠

=
(

1 +
τ

2
+ βτ 2

)
Um

p –
τ

6

(
Um

p

)3
+

τ

2
ε2

⎛
⎝ N∑

j=1

bpjUm
j

⎞
⎠ . (10)

We see from τ ≤ 1
2 and (7) that

[
1 –

τ

2
+ βτ 2 +

τ

2

(
Um

p

)2
]

Um+1
p

⎛
⎝–

τ

2
ε2

N∑
j=1

bpjUm+1
j

⎞
⎠

=
τε2

2

[
1 –

τ

2
+ βτ 2 +

τ

2

(
Um

p

)2
]⎛
⎝d

(
Um+1

p

)2
–
∑
j �=p

bpjUm+1
p Um+1

j

⎞
⎠

≥ τε2

2

[
1 –

τ

2
+ βτ 2 +

τ

2

(
Um

p

)2
]⎡
⎣d

∣∣∣Um+1
p

∣∣∣2
–
∑
j �=p

|bpj||Um+1
p |2

⎤
⎦ ≥ 0.

So, we find that
(
1 – τ

2 + βτ 2)Um+1
p + τ

2

(
Um

p

)2
Um+1

p , τ
3

(
Um+1

p

)3
, and – τ

2 ε2 ∑bpjUm+1
j are

nonpositive or nonnegative simultaneously. Then, we have

∣∣∣∣∣∣
(

1 –
τ

2
+ βτ 2

)
Um+1

p +
τ

2

(
Um

p

)2
Um+1

p –
τ

2
ε2

N∑
j=1

bpjUm+1
j +

τ

3

(
Um+1

p

)3

∣∣∣∣∣∣

=
∣∣∣∣
(

1 –
τ

2
+ βτ 2

)
Um+1

p +
τ

2

(
Um

p

)2
Um+1

p

∣∣∣∣ +

∣∣∣∣∣∣
τ

2
ε2

N∑
j=1

bpjUm+1
j

∣∣∣∣∣∣ +
∣∣∣∣τ3

(
Um+1

p

)3
∣∣∣∣

≥
(

1 –
τ

2
+ βτ 2 +

τ

2

(
Um

p

)2
)∣∣∣Um+1

p

∣∣∣ +
τ

3

∣∣∣Um+1
p

∣∣∣3
. (11)

Taking the absolute value of (10) and using (11), we easily obtain

(
1 –

τ

2
+ βτ 2

) ∣∣∣Um+1
p

∣∣∣ +
τ

2

(
Um

p

)2 ∣∣∣Um+1
p

∣∣∣ +
τ

3

∣∣∣Um+1
p

∣∣∣3

≤
∣∣∣∣∣∣
1
2

Um
p +

τ

2
ε2

N∑
j=1

bpjUm
j

∣∣∣∣∣∣ +
∣∣∣∣τ2 Um

p –
τ

6

(
Um

p

)3
∣∣∣∣ + βτ 2

∣∣∣Um
p

∣∣∣ +
1
2

∣∣∣Um
p

∣∣∣ . (12)

Notice that
∣∣∣∣∣∣
1
2

Um
p +

τ

2
ε2

N∑
j=1

bpjUm
j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
(

1
2

+
τ

2
ε2bpp

)
Um

p +
τ

2
ε2

∑
j �=p

bpjUm
j

∣∣∣∣∣∣ .
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If

1
2

+
τ

2
ε2bpp =

1
2

–
τε2� (α + 1)

2hα�
(

α
2 + 1

)2 ≥ 0,

namely

τ ≤ hα�
(

α
2 + 1

)2

ε2� (α + 1)
,

then we have
∣∣∣∣∣∣
(

1
2

+
τ

2
ε2bpp

)
Um

p +
τ

2
ε2

∑
j �=p

bpjUm
j

∣∣∣∣∣∣ ≤
(

1
2

+
τ

2
ε2bpp

)∣∣∣Um
p

∣∣∣ +
τ

2
ε2

∑
j �=p

∣∣bpj
∣∣ ∣∣∣Um

j

∣∣∣

≤ 1
2

+
τ

2
ε2bpp +

τ

2
ε2

∑
j �=p

∣∣bpj
∣∣

=
1
2

+
τ

2
ε2

⎛
⎝∑

j �=p

∣∣bpj
∣∣ – d

⎞
⎠

≤ 1
2

, (13)

where we used (7) and ‖Um‖∞ ≤ 1.
Let g(x) = τ

2 x – τ
6 x3, x ∈ [–1, 1]. It is easy to see that g ′(x) = τ

2 – τ
2 x2 and g ′(x) ≥ 0 for

x ∈ [–1, 1]. As g (1) = –g (–1) = τ
3 , we have

∣∣g (x)
∣∣ ≤ τ

3 , so

∣∣∣∣τ2 Um
p –

τ

6

(
Um

p

)3
∣∣∣∣ ≤ τ

3
. (14)

Using (12)–(14) and ‖Um‖∞ ≤ 1, we get

(
1 –

τ

2
+ βτ 2

) ∣∣∣Um+1
p

∣∣∣ +
τ

2

(
Um

p

)2 ∣∣∣Um+1
p

∣∣∣ +
τ

3
∣∣Um+1∣∣3

≤ 1
2

+
τ

3
+ βτ 2 +

1
2

∣∣∣Um
p

∣∣∣ . (15)

Suppose
∥∥Um+1

∥∥∞ > 1, then (15) becomes

1 –
τ

2
+

τ

2

∣∣∣Um
p

∣∣∣2
<

1
2

+
1
2

∣∣∣Um
p

∣∣∣ ,

namely

–τ

∣∣∣Um
p

∣∣∣2
+
∣∣∣Um

p

∣∣∣ + τ – 1 > 0,

which is in contradiction with
∣∣∣Um

p

∣∣∣ ≤ ‖Um‖∞ ≤ 1 provided that τ ≤ 1
2 . Thus, we have∥∥Um+1

∥∥∞ ≤ 1. Then the proof of this theorem is completed. �
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Remark 1 If β < 0, the discrete maximum bound principle also holds for τ ≤
min

{
1
2 , hα�

(
α
2 +1

)2

ε2�(α+1)

}
and 1 – τ

2 + βτ 2 ≥ 0, so the constraint on the time step should be

τ ≤ min

{
1
2 , 1–

√
1–16β

4β
, hα�

(
α
2 +1

)2

ε2�(α+1)

}
.

4 The maximum-norm error estimate
In this section, we shall discuss the maximum-norm error estimate based on the discrete
maximum bound principle obtained in Theorem 1. Let C(ε,β , T) be a constant which
depends on ε, β , T , and the regularity of the exact solution, but is independent of h and
τ . Other constants C, C(ε), and C(ε,β) can be defined similarly.

Theorem 2 Suppose the exact solution u(x, t) is smooth, and the initial value is smooth
and bounded by 1, i.e., max

x∈[a,b]
|u0(x)| ≤ 1. Assume that all the conditions in Theorem 1 are

valid. Moreover, assume that τ ≤ τ0 (τ0 =
√

25+2β–5
2β

for β > 0 and τ0 = 1
10 for β = 0). Then

for all 1 ≤ n ≤ M, we have

‖uuun – Un‖∞ ≤ C(ε,β , T)(τ 2 + h2), (16)

where uuun := (un
1, un

2, . . . , un
N )T represents the vector of exact solution at the nth level.

Proof First, we discretize (1) in space and time, respectively, to get

uuun+1 – uuun

τ
+

(uuun+1).3 – uuun+1

2
+

(uuun).3 – uuun

2
=

ε2Dh(uuun+1 + uuun)

2
+ ρρρn, (17)

where ρρρn := (ρn
1 ,ρn

2 , . . . ,ρn
N )T and |ρn

i | ≤ C(ε)(τ 2 + h2), 1 ≤ i ≤ N , 0 ≤ n ≤ M – 1.
Next, letting en = uuun – Un and subtracting (8) from (17), we obtain

en+1 – en

τ
–

ε2Dh
(
en+1 + en)
2

= ρρρn +
en+1 + en

2
+
(
Un+1 – Un).3

12
+ βτ

(
Un+1 – Un)

+

(
Un+1).3 +

(
Un+1).2 Un + Un+1

(
Un

).2
+
(

Un
).3

4
–
(
uuun+1).3 + (uuun).3

2
.

We rewrite it as

(
1 –

τ

2

)
en+1 –

τε2

2
Dhen+1

=
[(

1 +
τ

2

)
en +

τε2

2
Dhen

]
+
[τ

2
(
Un).3 –

τ

2
(
uuun).3

]

+
[τ

2
(
Un+1).3 –

τ

2
(
uuun+1).3

]
–
[τ

4
(
Un+1 – Un).2 (Un+1 + Un)]

+
τ

12
(
Un+1 – Un).3 + βτ

(
Un+1 – Un) + τρρρn =:

7∑
i=1

Qi. (18)



Xu et al. Advances in Continuous and Discrete Models          (2025) 2025:2 Page 8 of 15

For τ ≤ 1
2 , we get

∥∥∥∥
(

1 –
τ

2

)
en+1 –

τε2

2
Dhen+1

∥∥∥∥∞
≥

(
1 –

τ

2

)∥∥en+1∥∥∞ . (19)

Next, we estimate Q1–Q7 respectively. For τ ≤ hα�
(

α
2 +1

)2

ε2�(α+1)
, we have

‖Q1‖∞ ≤
∥∥∥en +

τ

2
ε2Dhen

∥∥∥
∞

+
τ

2
∥∥en∥∥∞ ≤

(
1 +

τ

2

)∥∥en∥∥∞ . (20)

Since equation (1) preserves the maximum bound principle, we know that ‖uuun‖∞ ≤ 1
for any n ≥ 0. So, since ‖uuun‖∞ ≤ 1, ‖Un‖∞ ≤ 1,

∥∥uuun+1
∥∥∞ ≤ 1, and

∥∥Un+1
∥∥∞ ≤ 1, we can

estimate Q2 and Q3 as

‖Q2‖∞ =
∥∥∥–

τ

2
(
uuun).3 +

τ

2
(
Un).3

∥∥∥
∞

=
∥∥∥–

τ

2

[(
uuun).2 +

(
Un).2 + uuunUn

]
en
∥∥∥

∞

≤ 3
2
τ
∥∥en∥∥∞ (21)

and

‖Q3‖∞ =
∥∥∥–

τ

2
(
uuun+1).3 +

τ

2
(
Un+1).3

∥∥∥
∞

=
∥∥∥–

τ

2

[(
uuun+1).2 +

(
Un+1).2 + uuun+1Un+1

]
en+1

∥∥∥
∞

≤ 3
2
τ
∥∥en+1∥∥∞ . (22)

Using ‖uuun‖∞ ≤ 1,‖Un‖∞ ≤ 1,
∥∥uuun+1

∥∥∞ ≤ 1,
∥∥Un+1

∥∥∞ ≤ 1, and Cauchy mean value the-
orem, we conclude that

‖Q4‖∞ =
∥∥∥τ

4
(
Un+1 – Un).2 (Un+1 + Un)∥∥∥

∞

≤
∥∥∥τ

4
(
Un+1 + Un) [(uuun+1 – uuun).2 –

(
Un+1 – Un).2

]∥∥∥
∞

+
∥∥∥τ

4
(
Un+1 + Un) (uuun+1 – uuun).2

∥∥∥
∞

≤
∥∥∥τ

4
(
Un+1 + Un) (uuun+1 – uuun + Un+1 – Un) (en+1 – en)∥∥∥

∞
+ Cτ 3

≤ 2τ
∥∥en+1∥∥∞ + 2τ

∥∥en∥∥∞ + Cτ 3, (23)

‖Q5‖∞ ≤
∥∥∥ τ

12
(
Un+1 – Un).3 –

τ

12
(
uuun+1 – uuun).3

∥∥∥
∞

+
∥∥∥ τ

12
(
uuun+1 – uuun).3

∥∥∥
∞

≤
∥∥∥ τ

12

[(
Un+1 – Un).2 +

(
uuun+1 – uuun).2 +

(
Un+1 – Un) (uuun+1 – uuun)]

× (
en+1 – en)∥∥∞ +

∥∥∥ τ

12
(
uuun+1 – uuun).3

∥∥∥
∞

≤ τ
∥∥en+1 – en∥∥∞ + Cτ 4

≤ τ
(∥∥en+1∥∥∞ +

∥∥en∥∥∞
)

+ Cτ 3 (24)
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and

‖Q6‖∞ = βτ 2 ∥∥uuun+1 – uuun –
(
en+1 – en)∥∥∞

≤ βτ 2 (∥∥uuun+1 – uuun∥∥∞ +
∥∥en+1∥∥∞ +

∥∥en∥∥∞
)

≤ C (β) τ 3 + βτ 2 ∥∥en+1∥∥∞ + βτ 2 ∥∥en∥∥∞ . (25)

From (18)–(25), we find that

(
1 – 5τ – βτ 2)∥∥en+1∥∥∞ ≤ (

1 + 5τ + βτ 2)∥∥en∥∥∞ + C (ε,β) τ
(
τ 2 + h2) ,

namely

(
1 – 5τ – βτ 2) (∥∥en+1∥∥∞ –

∥∥en∥∥∞
) ≤ (

10τ + 2βτ 2)∥∥en∥∥∞ + C (ε,β) τ
(
τ 2 + h2) .

Summing over n from 0 to l – 1, we derive

(
1 – 5τ – βτ 2) (∥∥el∥∥∞ –

∥∥e0∥∥∞
)

≤
l–1∑
n=0

(
10τ + 2βτ 2)∥∥en∥∥∞ + C (ε,β , T)

(
τ 2 + h2) , (26)

where e0 = 000. If 1 – 5τ – βτ 2 ≥ 1
2 , namely τ ≤

√
25+2β–5

2β
for β > 0 and τ ≤ 1

10 for β = 0, then
(26) becomes

∥∥el∥∥∞ ≤
l–1∑
n=0

(
20τ + 4βτ 2)∥∥en∥∥∞ + C (ε,β , T)

(
τ 2 + h2)

≤
l–1∑
n=0

(
10 + 2

√
25 + 2β

)
τ
∥∥en∥∥∞ + C (ε,β , T)

(
τ 2 + h2) . (27)

Applying the discrete Gronwall’ inequality to (27), we get

∥∥el∥∥∞ ≤ C (ε,β , T)
(
τ 2 + h2) ,

completing the proof of the theorem. �

5 The discrete energy stability
In this section, we consider the discrete energy stability for the scheme (8). Define the
following discrete energy:

Eh(U) =
h
4

N∑
i=1

(U2
i – 1)2 –

hε2

2
UT DhU .

Theorem 3 The scheme (8) is unconditionally energy-stable, namely

Eh(Un+1) ≤ Eh(Un), n = 0, 1, . . . , M – 1. (28)
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Proof Taking the difference of the discrete energy between two successive time levels, we
get

Eh(Un+1) – Eh(Un)

=
h
4

N∑
i=1

[(
(Un+1

i )2 – 1
)2

–
(

(Un
i )2 – 1

)2
]

–
hε2

2

(
(Un+1)T DhUn+1 – (Un)T DhUn

)

=
h
4

N∑
i=1

[
(Un+1

i )3 + (Un
i )3 + Un+1

i (Un
i )2 + Un

i (Un+1
i )2 – 2(Un+1

i + Un
i )
]

(Un+1
i – Un

i )

–
hε2

2
(Un+1 – Un)T Dh(Un+1 + Un), (29)

where we used the symmetry of the matrix Dh.
Taking the L2 inner product of (8) with h(Un+1 – Un)T , one obtains

h
τ

N∑
i=1

(
Un+1

i – Un
i
)2 +

h
4

N∑
i=1

[((
Un+1

i
)2 – 1

)2
–
((

Un
i
)2 – 1

)2
]

+
h

12

N∑
i=1

(
Un+1

i – Un
i
)4 + hβτ

N∑
i=1

(
Un+1

i – Un
i
)2

=
hε2

2
(
Un+1 – Un)T Dh

(
Un+1 + Un) . (30)

Thus, from (29)–(30), we conclude that

Eh
(
Un+1) – Eh

(
Un)

=
h
4

N∑
i=1

[(
1 –

(
Un+1

i
)2
)2

–
(

1 –
(
Un

i
)2
)2

]

–
hε2

2

[(
Un+1)T DhUn+1 –

(
Un)T DhUn

]

= –
h
τ

N∑
i=1

(
Un+1

i – Un
i
)2 –

h
12

N∑
i=1

(
Un+1

i – Un
i
)4 – hβτ 2

N∑
i=1

(
Un+1

i – Un
i
)2

≤ 0.

The proof is ended. �

6 Numerical experiment
In this paper, we provide two numerical examples to validate the theoretical results. The
standard Newton method is used to solve the scheme (8).
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Table 1 The errors of ‖UM – U2M‖∞ with h = 1/500, α = 1.5, and β = 1.

τ ‖UM – U2M‖∞ (T = 1) Order ‖UM – U2M‖∞ (T = 2) Order

1/10 8.938867e – 04 – 4.066691e – 03 –
1/20 2.267380e – 04 1.9791 1.032046e – 03 1.9783
1/40 5.717947e – 05 1.9875 2.602393e – 04 1.9876
1/80 1.447069e – 05 1.9824 6.583920e – 05 1.9828

Table 2 The errors of ‖UM – U2M‖∞ with h = 1/500, α = 1.4, and β = 2.

τ ‖UM – U2M‖∞ (T = 1) Order ‖UM – U2M‖∞ (T = 2) Order

1/10 1.836433e – 03 – 8.388713e – 03 –
1/20 4.713861e – 04 1.9619 2.158389e – 03 1.9585
1/40 1.188754e – 04 1.9875 5.445636e – 04 1.9868
1/80 2.990516e – 05 1.9910 1.369927e – 04 1.9910

Table 3 The errors of ‖UM – U2M‖∞ with h = 1/500, α = 1.6, and β = 3.

τ ‖UM – U2M‖∞ (T = 1) Order ‖UM – U2M‖∞ (T = 2) Order

1/10 4.467633e – 03 – 2.033645e – 02 –
1/20 1.192390e – 03 1.9057 5.470029e – 03 1.8944
1/40 3.034203e – 04 1.9745 1.394373e – 03 1.9719
1/80 7.633834e – 05 1.9908 3.509387e – 04 1.9903

Example 1 We consider the 1D Allen–Cahn equation with the initial value

u0(x) = 0.05 sin 2πx, x ∈ (0, 1).

For other corresponding data, we set ε = 0.01.

We mainly test the convergence rate for temporal discretization. As no analytical so-
lution is available for this numerical experiment, we define the numerical solution er-
rors in the discrete L∞ norm as ‖UM – U2M‖∞. First, fix h = 1/500 and choose (α,β) =
(1.5, 1), (1.4, 2), (1.6, 3). We display the errors of ‖UM – U2M‖∞ for different τ in Ta-
bles 1–3, respectively. We find that the convergence orders of the errors are very close
to 2. These are consistent with the convergence result obtained in Theorem 2.

Second, letting (α,β) = (1.5, 1) and h = 1/100, the supremum norm of the numerical
solutions and the discrete energy with different τ are checked in Figs. 1–2, respectively.
We can clearly see that the numerical solutions preserve the discrete maximum bound
principle, and the discrete energy is decreasing for τ = 0.02, 0.05, and 0.1. For (α,β) =
(1.8, 4) and fixed h = 1/100, the same phenomenon can be observed in Figs. 3–4. These
numerical results are also consistent with the theoretical results obtained in Theorems 1
and 3.

Example 2 We consider the 2D Allen–Cahn equation with the parameter ε = 0.01 and the
initial value

u0(x, y) = 0.2(sin 2x sin 3y + sin 4x sin 5y), x, y ∈ (0,π).

For (α,β) = (1.5, 1), (1.8, 0) and h = π/50, the supremum norm of the numerical solutions
and the discrete energy with different τ are plotted in Figs. 5–10, respectively. We find that
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Figure 1 The supremum norm of numerical solutions for different τ

Figure 2 The discrete energy for different τ

Figure 3 The supremum norm of numerical solutions for different τ

Figure 4 The discrete energy for different τ

the numerical solutions preserve the discrete maximum bound principle in Figs. 5 and 8.
Moreover, we see from Figs. 6, 7, 9, and 10 that the discrete energy is decreasing even if
τ = 1.
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Figure 5 The supremum norm of numerical solutions for different τ

Figure 6 The discrete energy for different τ

Figure 7 The discrete energy for different τ

Figure 8 The supremum norm of numerical solutions for different τ
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Figure 9 The discrete energy for different τ

Figure 10 The discrete energy for different τ
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