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Abstract
Using the semi-discretization method, one revisits a predator-prey model with a
ratio-dependent Holling-Tanner functional response, which was previously explored
using the forward Euler method. Some complex bifurcation phenomena are found in
a new discrete system. In particular, one observes some dynamical differences
between the two discrete methods not only in the type of fixed point but also in the
existence of bifurcation. Numerical simulations are presented to illustrate the derived
results.
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1 Introduction and preliminaries
In the past few decades, the Leslie predator-prey model has been widely studied in [1–5].
Generally, the Leslie predator-prey model takes the following form:

{
dx
dt = xg(x) – p(x)y,
dy
dt = sy(1 – y

K(x) ),
(1.1)

where x and y represent the population sizes (or densities) of prey and predator, respec-
tively, as functions of time; the predator growth equation belongs to the logistic type; the
carrying capacity K(x) of environment to predator is a function on the population size of
prey; s is the intrinsic growth rate of predator.

It is assumed that the carrying capacity of the environment for the predator is propor-
tional to the prey abundance, i.e., K(x) = x

h , where h is the conversion factor of prey into
predator. Thus, the following model, first introduced by Leslie [6], is obtained:

{
dx
dt = xg(x) – p(x)y,
dy
dt = sy(1 – h y

x ),
(1.2)
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where h y
x is called the Leslie-Gower term. Leslie and Gower [7] and Pielou [8] explored

model (1.2).
In system (1.2), g(x) describes the specific growth rate of the prey in the absence of

predator. It is assumed that the prey grows logistically with growth rate r and carrying ca-
pacity k in the absence of predator, i.e., g(x) = r(1 – x

k ). From this, one derives the following
model from system (1.2):

{
dx
dt = rx(1 – x

k ) – p(x)y,
dy
dt = sy(1 – h y

x ).
(1.3)

Here, the function p(x) is the predator’s functional response to the prey. If one takes
p(x) = mx

Ay+x , it is referred to as a ratio-dependent functional response, where the parameter
m is the maximal predator per capita consumption rate, and the parameter A is the num-
ber of prey necessary to achieve one-half of the maximum rate m. Accordingly, the Leslie
predator-prey model with a ratio-dependent functional response is expressed as follows:

{
dx
dt = rx(1 – x

k ) – mx
Ay+x y,

dy
dt = sy(1 – h y

x ),
(1.4)

where r, k, A, m, s, h are positive constants. In [9], this model is referred to as a ratio-
dependent Holling-Tanner model.

For a complex model, one seeks to study its equivalent and simple form mathematically.
To achieve equivalence and simplicity, the system (1.4) is nondimensionalized using the
following scaling:

rt → t,
x
k

→ x,
m
rk

y → y,

which results in the following system

{
dx
dt = x(1 – x) – xy

αy+x ,
dy
dt = δy(β – y

x ),
(1.5)

where α = rA
m , δ = sh

m ,β = m
hr .

Generally, solving a complicated system of ordinary differential equations without com-
putational assistance is challenging. As a result, one often relies on computers to analyze
such systems. This naturally leads to the consideration of discrete versions of continuous
systems. How can one discretize a continuous system? Various discrete methods and the-
ories, such as the forward Euler method, backward Euler method, and semi-discretization,
can be employed. For a detailed discussion, interested readers are referred to [10–19] and
the references therein.

S. Md and S. Rana in [20] employed the forward Euler method to the system (1.5) to get
and study the following discrete system

{
xn+1 = xn + δxn[(1 – xn) – yn

xn+ayn
],

yn+1 = yn + δyn[d(b – yn
xn

)].
(1.6)

How about applying other discrete methods to the system (1.5)? The goal is to identify dy-
namical differences arising from the application of different discrete methods to the same
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continuous system. Such an approach highlights the significance of various discrete meth-
ods. This serves as a motivation for this paper. To do this, one uses the semi-discretization
method that does not require consideration of the step size and reduces the number of pa-
rameters in the discrete model to derive the discrete model of the system (1.5). For this,
see also [15, 18, 19, 21, 22]. To do this, suppose that [t] denotes the greatest integer not
exceeding t. Consider the average change rate of the system (1.5) at integer number points

{
1

x(t)
dx(t)

dt = (1 – x([t])) – y([t])
αy([t])+x([t]) ,

1
y(t)

dy(t)
dt = δ(β – y([t])

x([t]) ).
(1.7)

It is easy to see that the system (1.7) has piecewise constant arguments, and that a solution
(x(t), y(t)) of the system (1.7) for t ∈ [0, +∞) has the following characteristics:

1. On the interval [0, +∞), x(t) and y(t) are continuous;
2. dx(t)

dt and dy(t)
dt exist for t ∈ [0, +∞) except the points {0, 1, 2, 3, . . .}.

The following system can be obtained by integrating the system (1.7) over the interval
[n, t] for any t ∈ [n, n + 1) and n = 0, 1, 2, . . .

{
x(t) = xne1–xn– yn

αyn+xn (t – n),
y(t) = yneδ(β– yn

xn )(t – n),
(1.8)

where xn = x(n) and yn = y(n). Letting t → (n + 1)– in the system (1.8) produces

{
xn+1 = xne1–xn– yn

αyn+xn ,
yn+1 = yneδ(β– yn

xn ),
(1.9)

where α,β , δ > 0.
In the following, we mainly examine the dynamical properties of the system (1.9), for-

mulating the differences compared to known results.
The rest of the paper is organized as follows: In Sect. 2, the existence and stability of the

fixed points of the system (1.9) are studied. In Sect. 3, we derive the sufficient conditions
for flip bifurcation and Neimark-Sacker bifurcation in the system (1.9) to occur. In Sect. 4,
numerical simulations are presented to display the above theoretical results obtained. In
Sect. 5, we provide concluding remarks.

2 Existence and stability of fixed point
In this section, one considers the existence and stability of the fixed points of the system
(1.9), whose fixed points meet

x = xe1–x– y
αy+x , y = yeδ(β– y

x ).

Due to the biological meanings of the system (1.9), one only considers its nonnegative
fixed points. It is easy to find that the system (1.9) has exactly two nonnegative fixed points
E1 = (1, 0) and E2 = (x0, y0) for α > β–1

β
, where

x0 =
1 + αβ – β

1 + αβ
, y0 = βx0 =

β(1 + αβ – β)

1 + αβ
.
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The Jacobian matrix of the system (1.9) at a fixed point E(x, y) is

J(E) =

⎛
⎝ (1–x)(x+αy)2+xy

(x+αy)2 e1–x– y
x+αy – x2

(x+αy)2 e1–x– y
x+αy

δy2

x2 eδ(β– y
x ) (1 – δy

x )eδ(β– y
x )

⎞
⎠ .

The characteristic polynomial of Jacobian matrix J(E) reads as

F(λ) = λ2 – pλ + q,

where

p = Tr(J(E)) =
(1 – x)(x + αy)2 + xy

(x + αy)2 e1–x– y
x+αy + (1 –

δy
x

)eδ(β– y
x ),

q = Det(J(E)) =
(1 – x)(x + αy)2(x – δy) + x2y

x(x + αy)2 e1–x– y
x+αy +δ(β– y

x ).

Before analyzing the properties of the fixed points of the system (1.9), one recalls the fol-
lowing definition and lemma (see [21, pp1682], [22, pp422]).

Definition 2.1 Let E(x, y) be a fixed piont of the system (1.9) with multipliers λ1 and λ2.
(i) If |λ1| < 1 and |λ2| < 1, E(x, y) is called a sink, so a sink is locally
asymptotically stable.
(ii) If |λ1| > 1 and |λ2| > 1, E(x, y) is called a source, so a source is
locally asymptotically unstable.
(iii) If |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1), E(x, y) is called
a saddle.
(iv) If either |λ1| = 1 or |λ2| = 1, E(x, y) is called to be non-hyperbolic.

Lemma 2.2 Let F(λ) = λ2 + Bλ + C, where B and C are two real constants. Suppose λ1 and
λ2 are two roots of F(λ) = 0. Then, the following statements hold.

(i) If F(1) > 0, then
(i.1) |λ1| < 1 and |λ2| < 1 if and only if F(–1) > 0 and C < 1;
(i.2) λ1 = –1 and λ2 �= –1 if and only if F(–1) = 0 and B �= 2;
(i.3) |λ1| < 1 and |λ2| > 1 if and only if F(–1) < 0;
(i.4) |λ1| > 1 and |λ2| > 1 if and only if F(–1) > 0 and C > 1;
(i.5) λ1 and λ2 are a pair of conjugate complex roots and, |λ1| = |λ2| = 1
if and only if –2 < B < 2 and C = 1;
(i.6) λ1 = λ2 = –1 if and only if F(–1) = 0 and B = 2.
(ii) If F(1) = 0, namely, 1 is one root of F(λ) = 0, then another root
λ satisfies |λ| = (<, >)1 if and only if |C| = (<, >)1.
(iii) If F(1) < 0, then F(λ) = 0 has one root lying in (1,∞). Moreover,
(iii.1) the other root λ satisfies λ < (=) – 1 if and only if F(–1) < (=)0;
(iii.2) the other root –1 < λ < 1 if and only if F(–1) > 0.

Now one formulates some results about the stability of the fixed points E1 and E2 in the
following theorems. First, consider the fixed point E1.
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Theorem 2.3 The fixed point E1 = (1, 0) of the system (1.9) is a saddle.

Proof The Jacobian matrix J(E1) of the system (1.9) at the fixed point E1 is given by

J(E1) =

(
0 –1
0 eδβ

)
.

Obviously, |λ1| = 0 < 1 and |λ2| = eδβ > 1, so E1 is a saddle. �

Remark 2.4 In [20], the authors used the forward Euler method to the system (1.5) to
produce the system (1.6). They obtained that the fixed point E1 of the system (1.6) has the
following properties: if δ < 2, then E1 is a saddle; if δ = 2, then E1 is non-hyperbolic; if δ > 2,
then E1 is a source. However, our results display that the fixed point E1 is always a saddle.
This is the first difference between these two different discrete methods.

Now consider the stability of fixed point E2. Let δ0 = 2β+2(1+αβ)(1+β+αβ)
(1+αβ)(1+β+αβ)β and δ1 =

β(2+αβ)–(1+αβ)2

β2(1+αβ)
. Obviously, δ1 < δ0.

Theorem 2.5 For α > β–1
β

, E2 is a positive fixed point of the system (1.9). Moreover, the
following statements about the fixed point E2 hold.

1. When δ < δ0,
a) if δ > δ1, then E2 is a sink;
b) if δ = δ1, then E2 is non-hyperbolic;
c) if δ < δ1, then E2 is a source.

2. When δ = δ0, E2 is non-hyperbolic.
3. When δ > δ0, E2 is a saddle.

Proof The Jacobian matrix J(E2) of the system (1.9) at the fixed point E2 is given by

J(E2) =

(
β(2+αβ)
(1+αβ)2 – 1

(1+αβ)2

δβ2 1 – δβ

)
.

The characteristic polynomial of Jacobian matrix J(E2) can be written as

F(λ) = λ2 – p2λ + q2,

where p2 = β(2+αβ)
(1+αβ)2 + 1 – βδ and

q2 =
β(1 + αβ)(1 – δβ) + β

(1 + αβ)2 =
β(2 + αβ) – δβ2(1 + αβ)

(1 + αβ)2 =
β2(δ1 – δ)

1 + αβ
+ 1.

It is easy to see that

F(1) = βδ(1 –
β

1 + αβ
) =

βδ(1 + αβ – β)

1 + αβ
> 0,

F(–1) =
2β

(1 + αβ)2 + (2 – βδ)(1 +
β

1 + αβ
)
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Table 1 Properties of the fixed point E2

Conditions Eigenvalues Properties Reference

δ < δ0 δ > δ1 |λ1| < 1, |λ2| < 1 sink (i.1)
δ = δ1 |λ1| = |λ2| = 1 non-hyperbolic (i.5)
δ < δ1 |λ1| > 1, |λ2| > 1 source (i.4)

δ = δ0 λ1 = –1,λ2 �= –1 non-hyperbolic (i.2)
δ > δ0 |λ1| > 1, |λ2| < 1 saddle (i.3)

=
2β + 2(1 + αβ)(1 + β + αβ)

(1 + αβ)2 –
(1 + β + αβ)βδ

1 + αβ

=
β(1 + β + αβ)

1 + αβ
(δ0 – δ).

If δ < δ0, then F(–1) > 0. For δ > δ1, q2 < 1. It follows from Lemma 2.2(i.1) that |λ1| < 1 and
|λ2| < 1, so E2 is a sink. For δ = δ1, q2 = 1. It follows from Lemma 2.2(i.5) that |λ1| = |λ2| = 1;
therefore, E2 is non-hyperbolic. For δ < δ1, q2 > 1, which reads |λ1| > 1 and |λ2| > 1 by
Lemma 2.2(i.4), so E2 is a source.

If δ = δ0, then F(–1) = 0. Namely, –1 is a root of the characteristic polynomial; therefore,
E2 is non-hyperbolic.

If δ > δ0, then F(–1) < 0. Lemma 2.2(i.3) shows that |λ1| < 1 and |λ2| > 1, so E2 is a saddle.
�

The results summarized above are presented in Table 1 for illustration.

3 Bifurcation analysis
In this section, one uses the center manifold theorem and bifurcation theory to analyze
the local bifurcation problems of the system (1.9) in the fixed points E1 and E2. For related
work, see [14–19, 23–28].

3.1 Bifurcation of the system (1.9) in the fixed point E1

Theorem 2.3 shows that E1 is always a saddle, so the system (1.9) has no bifurcation in the
fixed point E1.

Remark 3.1 In [20], the authors produced the system (1.6) using the forward Euler
method. They found that a flip bifurcation of the system (1.6) exists in the fixed point E1.
However, our results show that the system (1.9) has no bifurcation in the fixed point E1.
So, this is the second dynamical difference between these two different discrete methods.

3.2 Bifurcation of the system (1.9) in the fixed point E2

One can see from Theorem 2.5 that the fixed point E2 is non-hyperbolic when δ = δ0 or
δ = δ1. When the parament δ goes through these critical values δ0 or δ1, the dimensional
numbers for the stable manifold and the unstable manifold of the fixed point E2 vary. Thus,
a bifurcation may occur in each case. One is concerned with the paraments

(α,β , δ) ∈ SE+ = {(α,β , δ) ∈ R3
+

∣∣∣∣α > 0,β > 0, δ > 0,α >
β – 1

β
} .
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3.2.1 Flip bifurcation
Notice that F(–1) = 0 is a necessary condition for a flip bifurcation to occur. When δ = δ0,
F(–1) = 0. So, a flip bifurcation may occur in the fixed point E2. Actually, one has the
following result.

Theorem 3.2 Suppose the parameters (α,β , δ) ∈ SE+ . Then, the system (1.9) undergoes a
flip bifurcation in the fixed point E2 when the parameter δ varies in a small neighborhood
of δ0.

Proof First, let un = xn – x0, vn = yn – y0, which transforms the fixed point E2 = (x0, y0) to
the origin O(0, 0) and the system (1.9) to

{
un+1 = (un + x0)e1–(un+x0)– vn+y0

α(vn+y0)+un+x0 – x0,
vn+1 = (vn + y0)eδ(β– vn+y0

un+x0
) – y0.

(3.1)

Second, giving a small perturbation δ∗ of the parameter δ around δ0, i.e., δ∗ = δ – δ0 with
0 < |δ∗| � 1, the system (3.1) is perturbed into

{
un+1 = (un + x0)e1–(un+x0)– vn+y0

α(vn+y0)+un+x0 – x0,
vn+1 = (vn + y0)e(δ∗+δ0)(β– vn+y0

un+x0
) – y0.

(3.2)

Letting δ∗
n+1 = δ∗

n = δ∗, we can write the system (3.2) as

⎧⎪⎪⎨
⎪⎪⎩

un+1 = (un + x0)e1–(un+x0)– vn+y0
α(vn+y0)+un+x0 – x0,

vn+1 = (vn + y0)e(δ∗
n+δ0)(β– vn+y0

un+x0
) – y0,

δ∗
n+1 = δ∗

n .

(3.3)

Third, performing a Taylor expansion of the system (3.3) at (αn,βn, δ∗
n) = (0, 0, 0) gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1 = a100un + a010vn + a200u2
n + a020v2

n + a110unvn

+a300u3
n + a030v3

n + a210u2
nvn + a120unv2

n + o(ρ3
1 ),

vn+1 = b100un + b010vn + b001δ
∗
n + b200u2

n + b020v2
n

+b002δ
∗
n

2 + b110unvn + b101unδ
∗
n + b011vnδ

∗
n

+b300u3
n + b030v3

n + b003δ
∗
n

3 + b210u2
nvn

+b120unv2
n + b021v2

nδ
∗
n + b201u2

nδ
∗
n + b102unδ

∗
n

2

+b012vnδ
∗
n

2 + b111unvnδ
∗
n + o(ρ3

1 ),
δ∗

n+1 = δ∗
n ,

(3.4)

where ρ1 =
√

u2
n + v2

n + δ∗
n

2,

a100 =
β(2 + αβ)

(1 + αβ)2 , a010 = –
1

(1 + αβ)2 , a110 =
1 – 2β – αβ2 – α2β2

(1 + αβ)4 – β(1 + αβ)3 ,

a200 =
–(1 + αβ)4 + β2(1 + αβ)2 – 2β(1 + αβ) + 2β2(1 + αβ) + β2

2[(1 + αβ)4 – β(1 + αβ)3]
,

a020 =
2α(1 + αβ) + 1

2[(1 + αβ)4 – β(1 + αβ)3]
,
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a030 =
6α2(1 + αβ)2 + 6α(1 + αβ) + 1

6[(1 + αβ)6 – 2β(1 + αβ)5 + β2(1 + αβ)4]
,

a210 =
9α3β3 + 21α2β2 + 12αβ – α2β4 – 2αβ3 – 3α2β2 – 6αβ2 + β + β3

6[(1 + αβ)6 – 2β(1 + αβ)5 + β2(1 + αβ)4]
,

a120 =
2α4β3 + 6α3β2 + 4α2β2 – 4α2β + 2α3β3 + αβ2 – 8α + 4β – 2

6[(1 + αβ)6 – 2β(1 + αβ)5 + β2(1 + αβ)4]
,

a300 =
2(1 + αβ)6 – 3β(1 + αβ)5 – 3β(1 + αβ)4 + β3(1 + αβ)3 – 3β(1 + αβ)2

6[(1 + αβ)6 – 2β(1 + αβ)5 + β2(1 + αβ)4]

+
–6β2(1 + αβ)2 + 3β3(1 + αβ)2 – 4β2(1 + αβ) + β3(1 + αβ) + β3

6[(1 + αβ)6 – 2β(1 + αβ)5 + β2(1 + αβ)4]
,

b100 =
2β2 + 2β(1 + αβ)(1 + β + αβ)

(1 + αβ)(1 + β + αβ)
, b010 =

–2β – (1 + αβ)(1 + β + αβ)

(1 + αβ)(1 + β + αβ)
,

b200 =
2β3 + 2(1 + β + αβ)(1 + αβ)

(1 + β + αβ)2(1 + αβ)2 – β(1 + β + αβ)2(1 + αβ)
,

b020 =
2β + 2(1 + β + αβ)(1 + αβ)

(1 + β + αβ)2(1 + αβ)2 – β(1 + β + αβ)2(1 + αβ)
,

b110 = –
4β2 + 4β(1 + β + αβ)(1 + αβ)

(1 + β + αβ)2(1 + αβ)2 – β(1 + β + αβ)2(1 + αβ)
,

b101 = β2, b011 = –β , b102 = b012 = b002 = b003 = 0,

b030 =
2(1 + β + αβ)3(1 + αβ)3 – 6β2(1 + β + αβ)(1 + αβ) – 4β3

3β2(1 + β + αβ)3(1 + αβ)3[1 – β

(1+αβ) ]
2 ,

b210 =
2(1 + β + αβ)3(1 + αβ)3 – 2β2(1 + β + αβ)(1 + αβ)

3(1 + β + αβ)3(1 + αβ)3[1 – β

(1+αβ) ]
2

+
4β(1 + β + αβ)2(1 + αβ)2 – 4β3

3(1 + β + αβ)3(1 + αβ)3[1 – β

(1+αβ) ]
2 ,

b201 =
2β3 + 2β2(1 + β + αβ)(1 + αβ) – β2

3[(1 + β + αβ)(1 + αβ) – β(1 + β + αβ)]
,

b021 =
2β + 2(1 + β + αβ)(1 + αβ) – 1

3[(1 + β + αβ)(1 + αβ) – β(1 + β + αβ)]
,

b111 = –
2β2 + 2β(1 + β + αβ)(1 + αβ) – β

3[(1 + β + αβ)(1 + αβ) – β(1 + β + αβ)]
,

b300 =
10β2(1 + β + αβ)2(1 + αβ)2 + 6(1 + β + αβ)3(1 + αβ)3

3(1 + β + αβ)3(1 + αβ)3[1 – β

(1+αβ) ]
2

+
–4β3(1 + β + αβ)2(1 + αβ)2 + 4β2 + 4β3(1 + β + αβ)(1 + αβ)

3(1 + β + αβ)3(1 + αβ)3[1 – β

(1+αβ) ]
2 ,

b120 =
(1 + β + αβ)3(1 + αβ)3 – 8β2(1 + β + αβ)(1 + αβ)

3β(1 + β + αβ)3(1 + αβ)3[1 – β

(1+αβ) ]
2

+
–3β(1 + β + αβ)2(1 + αβ)2 – β2(1 + β + αβ)2(1 + αβ)2

3β(1 + β + αβ)3(1 + αβ)3[1 – β

(1+αβ) ]
2
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+
–β(1 + β + αβ)3(1 + αβ)3 – 4β3

3β(1 + β + αβ)3(1 + αβ)3[1 – β

(1+αβ) ]
2 .

Let

J(E2) =

⎛
⎜⎝

a100 a010 0
b100 b010 0

0 0 1

⎞
⎟⎠ ,

i.e.,

J(E2) =

⎛
⎜⎝

β(2+αβ)
(1+αβ)2 – 1

(1+αβ)2 0
2β2+2β(1+αβ)(1+β+αβ)

(1+αβ)(1+β+αβ)
–2β–(1+αβ)(1+β+αβ)

(1+αβ)(1+β+αβ) 0
0 0 1

⎞
⎟⎠ .

Compute three eigenvalues of J(E2) to obtain

λ1,2 =
β(2 + αβ)(1+β+αβ)–2β(1+αβ)–(1+αβ)2(1+β+αβ) ∓ μ

2(1+αβ)2(1+β+αβ)
, λ3 = 1,

and their corresponding eigenvectors are

(ξ1,η1, θ1)T = (2(1 + β + αβ), K + μ, 0)T ,

(ξ2,η2, θ2)T = (2(1 + β + αβ), K – μ, 0)T ,

(ξ3,η3, θ3)T = (0, 0, 1)T ,

where

K = (1 + β + αβ)[(1 + αβ)2 + αβ2 + 2β] + 2β(1 + αβ),

μ = (1 + β + αβ)[(1 + αβ)2 + αβ2] + 2β2.

One can see that λ1 = β(2+αβ)(1+β+αβ)–2β(1+αβ)–(1+αβ)2(1+β+αβ)–μ

2(1+αβ)2(1+β+αβ)
= –1.

Take T1 =

⎛
⎜⎜⎜⎝

ξ1 ξ2 ξ3

η1 η2 η3

θ1 θ2 θ3

⎞
⎟⎟⎟⎠, namely,

T1 =

⎛
⎜⎝

2(1 + β + αβ) 2(1 + β + αβ) 0
K + μ K – μ 0

0 0 1

⎞
⎟⎠ .

Then, its inverse matrix is

T1
–1 =

⎛
⎜⎝

μ–K
4μ(1+β+αβ)

1
2μ

0
μ+K

4μ(1+β+αβ) – 1
2μ

0
0 0 1

⎞
⎟⎠ .
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Taking the following transformation

(un, vn, δ∗
n)T = T1(Xn, Yn,ωn)T ,

the system (3.4) is changed into the following form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xn+1 = –Xn + F(Xn, Yn,ωn) + o(ρ3
2 ),

Yn+1 = λ2Yn + G(Xn, Yn,ωn) + o(ρ3
2 ),

ωn+1 = ωn,

(3.5)

where ρ2 =
√

X2
n + Y 2

n + ω2
n,

F(Xn, Yn,ωn) = m200X2
n + m020Y 2

n + m002ωn
2 + m110XnYn + m101Xnωn

+ m011Ynωn + m300X3
n + m030Y 3

n + m003ωn
3 + m210X2

nYn

+ m120XnY 2
n + m201X2

nωn + m102Xnωn
2 + m021Y 2

n ωn

+ m012Ynωn
2 + m111XnYnωn,

G(Xn, Yn,ωn) = l200X2
n + l020Y 2

n + l002ωn
2 + l110XnYn + l101Xnωn

+ l011Ynωn + l300X3
n + l030Y 3

n + l003ωn
3 + l210X2

nYn

+ l120XnY 2
n + l201X2

nωn + l102Xnωn
2 + l021Y 2

n ωn

+ l012Ynωn
2 + l111XnYnωn,

m102 = m012 = m002 = m003 = 0,

m200 = 4(Aa200 +
b200

2μ
)(1 + β + αβ)2

+ 2(Aa110 +
b110

2μ
)(1 + β + αβ)(K + μ) + (Aa020 +

b020

2μ
)(K + μ)2,

m110 = 8(Aa200 +
b200

2μ
)(1 + β + αβ)2

+ 4(Aa110 +
b110

2μ
)(1 + β + αβ)K + 2(Aa020 +

b020

2μ
)(K2 – μ2),

m020 = 4(Aa200 +
b200

2μ
)(1 + β + αβ)2

+ 2(Aa110 +
b110

2μ
)(1 + β + αβ)(K – μ) + (Aa020 +

b020

2μ
)(K – μ)2,

m101 =
b011

2μ
(K + μ) +

b101

μ
(1 + β + αβ),

m011 =
b011

2μ
(K – μ) +

b101

μ
(1 + β + αβ),

m300 = 8(Aa300 +
b300

2μ
)(1 + β + αβ)3 + (Aa030 +

b030

2μ
)(K + μ)3
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+ 4(Aa210 +
b210

2μ
)(1 + β + αβ)2(K + μ)

+ 2(Aa120 +
b120

2μ
)(1 + β + αβ)(K + μ)2,

m030 = 8(Aa300 +
b300

2μ
)(1 + β + αβ)3 + (Aa030 +

b030

2μ
)(K – μ)3

+ 4(Aa210 +
b210

2μ
)(1 + β + αβ)2(K – μ)

+ 2(Aa120 +
b120

2μ
)(1 + β + αβ)(K – μ)2,

m210 = 24(Aa300 +
b300

2μ
)(1 + β + αβ)3 + 3(Aa030 +

b030

2μ
)(K – μ)(K + μ)2

+ 4(Aa210 +
b210

2μ
)(1 + β + αβ)2(3K + μ)

+ 2(Aa120 +
b120

2μ
)(1 + β + αβ)[(K + μ)2 + 2(K2 – μ2)],

m120 = 24(Aa300 +
b300

2μ
)(1 + β + αβ)3 + 3(Aa030 +

b030

2μ
)(K – μ)2(K + μ)

+ 4(Aa210 +
b210

2μ
)(1 + β + αβ)2(3K – μ)

+ 2(Aa120 +
b120

2μ
)(1 + β + αβ)[(K – μ)2 + 2(K2 – μ2)],

m201 =
b201

μ
2(1 + β + αβ)2 +

b021

2μ
(K + μ)2 +

b111

μ
(1 + β + αβ)(K + μ),

m021 =
b201

μ
2(1 + β + αβ)2 +

b021

2μ
(K – μ)2 +

b111

μ
(1 + β + αβ)(K – μ),

m111 =
b201

μ
2(1 + β + αβ)2 +

b021

2μ
(K2 – μ2) +

b111

μ
2(1 + β + αβ)K ,

l102 = l012 = l002 = l003 = 0,

l200 = 4(Ba200 –
b200

2μ
)(1 + β + αβ)2

+ 2(Ba110 –
b110

2μ
)(1 + β + αβ)(K + μ) + (Ba020 –

b020

2μ
)(K + μ)2,

l110 = 8(Ba200 –
b200

2μ
)(1 + β + αβ)2 + 4(Ba110 –

b110

2μ
)(1 + β + αβ)K

+ 2(Ba020 –
b020

2μ
)(K2 – μ2),

l020 = 4(Ba200 –
b200

2μ
)(1 + β + αβ)2

+ 2(Ba110 –
b110

2μ
)(1 + β + αβ)(K – μ) + (Ba020 –

b020

2μ
)(K – μ)2,

l101 = –
b011

2μ
(K + μ) –

b101

μ
(1 + β + αβ),
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l011 = –
b011

2μ
(K – μ) –

b101

μ
(1 + β + αβ),

l300 = 8(Ba300 –
b300

2μ
)(1 + β + αβ)3 + (Ba030 –

b030

2μ
)(K + μ)3

+ 4(Ba210 –
b210

2μ
)(1 + β + αβ)2(K + μ)

+ 2(Ba120 –
b120

2μ
)(1 + β + αβ)(K + μ)2,

l030 = 8(Ba300 –
b300

2μ
)(1 + β + αβ)3 + (Ba030 –

b030

2μ
)(K – μ)3

+ 4(Ba210 –
b210

2μ
)(1 + β + αβ)2(K – μ)

+ 2(Ba120 –
b120

2μ
)(1 + β + αβ)(K – μ)2,

l210 = 24(Ba300 –
b300

2μ
)(1 + β + αβ)3 + 3(Ba030 –

b030

2μ
)(K – μ)(K + μ)2

+ 4(Ba210 –
b210

2μ
)(1 + β + αβ)2(3K + μ)

+ 2(Ba120 –
b120

2μ
)(1 + β + αβ)[(K – μ)2 + 2(K2 – μ2)],

l120 = 24(Ba300 –
b300

2μ
)(1 + β + αβ)3 + 3(Ba030 –

b030

2μ
)(K – μ)2(K + μ)

+ 4(Ba210 –
b210

2μ
)(1 + β + αβ)2(3K – μ)

+ 2(Ba120 –
b120

2μ
)(1 + β + αβ)[(K + μ)2 + 2(K2 – μ2)],

l201 = –
b201

μ
2(1 + β + αβ)2 –

b021

2μ
(K + μ)2 –

b111

μ
(1 + β + αβ)(K + μ),

l021 = –
b201

μ
2(1 + β + αβ)2 –

b021

2μ
(K – μ)2 –

b111

μ
(1 + β + αβ)(K – μ),

l111 = –
b201

μ
2(1 + β + αβ)2 –

b021

2μ
(K2 – μ2) –

b111

μ
2(1 + β + αβ)K ,

where A = – β(1+αβ)
μ(1+β+αβ) , B = (1+αβ)2+β(2+αβ)

2μ
.

Next, suppose on the center manifold

Yn = h(Xn,ωn) = h20X2
n + h11Xnωn + h02ω

2
n + o(ρ2

3 ),

where ρ3 =
√

X2
n + ω2

n. According to

Yn+1 = h(Xn+1,ωn+1) = λ2h(Xn,ωn) + G(Xn, h(Xn,ωn),ωn) + o(ρ3
3 ),

h(Xn+1,ωn+1) = h20(–Xn + F(Xn, h(Xn,ωn),ωn))2

+ h11(–Xn + F(Xn, h(Xn,ωn),ωn))ωn + h02ω
2
n + o(ρ3

3 ),
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comparing the corresponding coefficients of terms with the same orders in the above cen-
ter manifold equation, one gets

h20 = 0, h11 = 0, h02 = 0.

So the system (3.5) restricted to the center manifold takes as

Xn+1 = f (Xn,ωn) = –Xn + F(Xn, h(Xn,ωn),ωn) + o(ρ3
3 )

= –Xn + l200X2
n + l101Xnωn + l300X3

n + l201X2
nωn + o(ρ3

3 ),

and

f 2(Xn,ωn) = f (f (Xn,ωn),ωn)

= Xn – 2l101Xnωn – (2l300 + 2l2
200)X3

n

+ (l101 – 2l200l101)X2
nωn + l2

101Xnω
2
n + o(ρ3

3 ).

Thereout, one has

f (Xn,ωn)|(0,0) = 0,
∂f
∂Xn

|(0,0) = –1,
∂f 2

∂ωn
|(0,0) = 0,

∂2f 2

∂X2
n
|(0,0) = 0,

∂2f 2

∂Xn∂ωn
|(0,0) =

b011(K + μ) + 2b101(1 + β + αβ)

μ

= –
2β(1 + αβ)(1 + β + αβ)(1 + β2 + αβ)

μ
< 0( �= 0),

∂3f 2

12∂X3
n
|(0,0) = –l300 – l2

200

< –
(1 + β + αβ)3

6μ2[(1 + αβ)8 – 2β(1 + αβ)7 + β2(1 + αβ)6]

× {[β(2 + αβ) + (1 + αβ)2]4[6α2(1 + αβ)2 + 6α(1 + αβ) + 1]

+ [β(2 + αβ) + (1 + αβ)2]3

∗ [2α4β3 + 6α3β2 + 4α2β2 + 2α3β3 + αβ3 + 4β]

+ [β(2 + αβ) + (1 + αβ)2]3[12β2(1 + β + αβ)(1 + αβ) + 8β3]

+ [β(2 + αβ) + (1 + αβ)2]2[9α3β3 + 18α2β2 + 9β3 + 12αβ + 5β]

+ [β(2 + αβ) + (1 + αβ)2]2[6β(1 + β + αβ)2(1 + αβ)2]

+ [β(2 + αβ) + (1 + αβ)2]

∗ [2(1 + αβ)6 + β3(1 + αβ)3 + 3β3(1 + αβ)2]

+ [β(2 + αβ) + (1 + αβ)2][4β2(1 + β + αβ)(1 + αβ) + 8β3]

+ [8β3(1 + β + αβ)2(1 + αβ)2} < 0( �= 0).
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According to (21.1.42)–(21.1.46) in [26, pp507], all the conditions for the occurrence of
a flip bifurcation are satisfied; hence, it is valid for the occurrence of a flip bifurcation in
the fixed point E2. The proof is over. �

3.2.2 Neimark-Sacker bifurcation
When δ = δ1, a pair of imaginary roots with |λ1| = |λ2| = 1 occur, implying a necessary
condition holds for a Neimark-Sacker bifurcation to occur, hence, there may be a Neimark-
Sacker bifurcation in the fixed point E2. In fact, one has the following result.

Theorem 3.3 Suppose the parameters (α,β , δ) ∈ SE+ and α < β–2+
√

β2+4β

2β
. Then, the system

(1.9) undergoes a Neimark-Sacker bifurcation in the fixed point E2 when the parament δ

varies in a small neighborhood of δ1. Furthermore, if in (3.9) L < (>)0, then an attracting
(repelling) invariant closed curve bifurcates from the fixed point E2 for δ > (<)δ1.

Proof Giving a small perturbation δ∗∗ of the parameter δ around δ1 in the system (3.1),
i.e., δ∗∗ = δ – δ1 with 0 < |δ∗∗| � 1, the perturbation of the system (3.1) reads

{
un+1 = (un + x0)e1–(un+x0)– vn+y0

α(vn+y0)+un+x0 – x0,
vn+1 = (vn + y0)e(δ∗∗+δ1)(β– vn+y0

un+x0
) – y0.

(3.6)

The characteristic equation of the linearized equation of the system (3.6) at the equilib-
rium point (0, 0) is

F(λ) = λ2 – p(δ∗∗)λ + q(δ∗∗) = 0,

where

p(δ∗∗) =
β(2 + αβ)

(1 + αβ)2 + 1 – β(δ∗∗ + δ1) and q(δ∗∗) = –
β2δ∗∗

1 + αβ
+ 1.

It is easy to derive p2(0) – 4q(0) < 0 when α < β–2+
√

β2+4β

2β
, so, when 0 < |δ∗| � 1, the two

roots of F(λ) = 0 are as follows:

λ1,2(δ∗∗) =
p(δ∗∗) ± √

p2(δ∗∗) – 4q(δ∗∗)

2
=

p(δ∗∗) ± i
√

4q(δ∗∗) – p2(δ∗∗)

2
.

Moreover,

(|λ1,2(δ∗∗)|)∣∣
δ∗∗=0 =

√
q(δ∗∗)

∣∣
δ∗∗=0 = 1.

The occurrence of the Neimark-Sacker bifurcation requires the following two conditions
to be satisfied:

1.
(

d|λ1,2(δ∗∗)|
dδ∗∗

)∣∣∣∣
δ∗∗=0

�= 0;

2. λi
1,2(0) �= 1, i = 1, 2, 3, 4.

By calculation, one finds

(d|λ1,2(δ∗∗)|
dδ∗∗

)∣∣∣∣
δ∗∗=0

= –
β2

αβ + 1
< 0( �= 0).

Obviously λi
1,2(0) �= 1, i = 1, 2, 3, 4. So, the two conditions are satisfied.
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In order to derive the normal form of the system (3.6), one expands (3.6) in power series
up to the third-order term around the origin to get

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un+1 = c10un + c01vn + c20u2
n + c11unvn + c02v2

n

+c30u3
n + c21u2

nvn + c12unv2
n + c03v3

n + o(ρ3
4 ),

vn+1 = d10un + d01vn + d20u2
n + d11unvn + d02v2

n

+d30u3
n + d21u2

nvn + d12unv2
n + d03v3

n + o(ρ3
4 ),

(3.7)

where ρ4 =
√

u2
n + v2

n,

c10 = a100, c01 = a010, c20 = a200, c11 = a110,

c02 = a020, c30 = a300, c21 = a210, c12 = a120, c03 = a030,

d10 =
β(2 + αβ) – (1 + αβ)2

1 + αβ
, d01 =

–β + (1 + αβ)2

β(1 + αβ)
,

d20 =
(1 + αβ)4 + β(1 + αβ)3 – αβ3(2 + αβ) – β(1 + αβ)2(3 + αβ)

2[β(1 + αβ)2 – β2(1 + αβ)]
,

d02 =
αβ2(1 + αβ)2 + (1 + αβ)4 – αβ3(2 + αβ) – β(2 + αβ)(1 + αβ)2

2[β3(1 + αβ)2 – β4(1 + αβ)]
,

d11 =
αβ3(2 + αβ) + β(2 + αβ)(1 + αβ)2 – αβ2(1 + αβ)2 – (1 + αβ)4

β2(1 + αβ)2 – β3(1 + αβ)
,

d30 =
(6β2 – 4β3 + 2αβ3)(1 + αβ)(2 + αβ) + 4β2(1 + αβ)3

6[β(1 + αβ)2 – 2β2(1 + αβ) + β3]

+
–αβ4(2 + αβ)2 + 2β(1 + αβ)3(αβ – 1) – β2(2 + αβ)2(1 + αβ)2

6[β(1 + αβ)2 – 2β2(1 + αβ) + β3]

+
–αβ2(1 + αβ)2 – (1 + αβ)4

6[β(1 + αβ)2 – 2β2(1 + αβ) + β3]
,

d03 =
[β(2 + αβ) – (1 + αβ)2]

2
[β(1 + 2αβ) + (1 + αβ)2]

6[β5(1 + αβ)3 – 2β6(1 + αβ)2 + β7(1 + αβ)]
,

d21 =
[3β3(2 – α + αβ)(1 + αβ) + 3αβ3(2 + αβ)][β(2 + αβ) – (1 + αβ)2]

2[β3(1 + αβ)3 – 2β4(1 + αβ)2 + β5(1 + αβ)]

+
[(3β – 4β2)(1 + αβ)2 – 3(1 + αβ)4][β(2 + αβ) – (1 + αβ)2]

2[β3(1 + αβ)3 – 2β4(1 + αβ)2 + β5(1 + αβ)]
,

d12 =
[(1 + αβ)4 + 2β(1 + αβ)3][β(2 + αβ) – (1 + αβ)2]

2[β4(1 + αβ)3 – 2β5(1 + αβ)2 + β6(1 + αβ)]

+
[β2(1 + αβ)2 – 4β2(2 + αβ)(1 + αβ)][β(2 + αβ) – (1 + αβ)2]

2[β4(1 + αβ)3 – 2β5(1 + αβ)2 + β6(1 + αβ)]
.

Let

J(E2) =

(
c10 c01

d10 d01

)
,
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namely,

J(E2) =

(
β(2+αβ)
(1+αβ)2 – 1

(1+αβ)2

β(2+αβ)–(1+αβ)2

1+αβ

–β+(1+αβ)2

β(1+αβ)

)
.

It is not difficult to derive that the two eigenvalues of the matrix J(E2) are

λ1,2 =
β2(2 + αβ) – β(1 + αβ) + (1 + αβ)3 ± iγ

2β(1 + αβ)2 ,

where γ =
√

4β2(1 + αβ)4 – [β2(2 + αβ) – β(1 + αβ) + (1 + αβ)3]
2.

Their corresponding eigenvectors are

v1,2 =

⎛
⎝–2β

M

⎞
⎠ ± i

⎛
⎝0

γ

⎞
⎠ ,

where M = β2(2 + αβ) – β(1 + αβ) + (1 + αβ)3.
Let

T2 =

(
0 –2β

γ M

)
, then T2

–1 =

⎛
⎝ M

2βγ
1
γ

– 1
2β

0

⎞
⎠ .

Take the transformation of variables:

(u, v)T = T2(X, Y )T ,

then the system (3.7) is transformed into the following form

⎧⎨
⎩

X → e10X + e01Y + F(X, Y ) + o(ρ3
5 ),

Y → f10X + f01Y + G(X, Y ) + o(ρ3
5 ),

(3.8)

where ρ5 =
√

X2 + Y 2,

F(X, Y ) = e20X2 + e11XY + e02Y 2 + e30X3 + e21X2Y + e12XY 2 + e03Y 3,

G(X, Y ) = f20X2 + f11XY + f02Y 2 + f30X3 + f21X2Y + f12XY 2 + f03Y 3,

e10 = (
M

2βγ
c01 +

1
γ

d01)γ , e01 = (
M

2βγ
c01 +

1
γ

d01)M – (
M

2βγ
c10 +

1
γ

d10)2β ,

f10 = –
γ

2β
c01γ , f01 = –

M
2β

c01 + c10,

e20 = (
M

2βγ
c02 +

1
γ

d02)γ 2, e30 = (
M

2βγ
c03 +

1
γ

d03)γ 3,

e02 = (
M

2βγ
c02 +

1
γ

d02)M2 + 4(
M

2βγ
c20 +

1
γ

d20)β2
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– 2(
M

2βγ
c11 +

1
γ

d11)βM,

e11 = 2(
M

2βγ
c02 +

1
γ

d02)γ M – 2(
M

2βγ
c11 +

1
γ

d11)βγ ,

e03 = (
M

2βγ
c03 +

1
γ

d03)M3 – 8(
M

2βγ
c30 +

1
γ

d30)β3

– 2(
M

2βγ
c12 +

1
γ

d12)βM2 + 4(
M

2βγ
c21 +

1
γ

d21)β2M,

e21 = 3(
M

2βγ
c03 +

1
γ

d03)γ 2M – 2(
M

2βγ
c12 +

1
γ

d12)βγ 2,

e12 = 3(
M

2βγ
c03 +

1
γ

d03)γ M2 – 4(
M

2βγ
c12 +

1
γ

d12)βLγ

+ 4(
M

2βγ
c21 +

1
γ

d21)β2γ ,

f02 = –
1

2β
(4β2c20 + M2c02 – 2βMc11),

f11 = –
1

2β
(2γ Mc02 – 2βγ c11), f30 = –

γ 3

2β
c03,

f03 = –
1

2β
(–8β3c30 + M3c03 + 4β2Mc21 – 2βM2c12),

f21 = –
1

2β
(3γ 2Mc03 – 2βγ 2c12),

f12 = –
1

2β
(3M2γ c03 + 4β2γ c21 – 4βMγ c12).

Furthermore,

FXX = 2(
M

2βγ
c02 +

1
γ

d02)γ 2, FXXX = 6(
M

2βγ
c03 +

1
γ

d03)γ 3,

FXY = 2(
M

2βγ
c02 +

1
γ

d02)γ M – 2(
M

2βγ
c11 +

1
γ

d11)βγ ,

FYY = 2(
M

2βγ
c02 +

1
γ

d02)M2 + 8(
M

2βγ
c20 +

1
γ

d20)β2

– 4(
M

2βγ
c11 +

1
γ

d11)βM,

FXXY = 6(
M

2βγ
c03 +

1
γ

d03)γ 2M – 4(
M

2βγ
c12 +

1
γ

d12)βγ 2,

FXYY = 6(
M

2βγ
c03 +

1
γ

d03)γ M2 – 8(
M

2βγ
c12 +

1
γ

d12)βMγ

+ 8(
M

2βγ
c21 +

1
γ

d21)β2γ ,

FYYY = 3(
M

2βγ
c03 +

1
γ

d03)M3 – 24(
M

2βγ
c30 +

1
γ

d30)β3

– 6(
M

2βγ
c12 +

1
γ

d12)βM2 + 12(
M

2βγ
c21 +

1
γ

d21)β2M,
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GXX = –
γ 2

β
c02, GXY = –

1
2β

(2γ Mc02 – 2βγ c11),

GYY = –
1
β

(4β2c20 + M2c02 – 2βMc11),

GXXX = –
3γ 3

β
c03, GXXY = –

1
β

(3γ 2Mc03 – 2βγ 2c12),

GXYY = –
1
β

(3M2γ c03 + 4β2γ c21 – 4βMγ c12),

GYYY = –
3
β

(–8β3c30 + M3c03 + 4β2Mc21 – 2βM2c12).

In order to determine the direction and the stability of an invariant closed orbit bifurcated
from Neimark-Sacker bifurcation of the system (3.8), one needs to calculate the discrimi-
nating quantity

L = –Re
( (1 – 2λ1)λ2

2
1 – λ1

ζ20ζ11

)
–

1
2
|ζ11|2 – |ζ02|2 + Re(λ2ζ21), (3.9)

where

ζ20 =
1
8

[FXX – FYY + 2GXY + i(GXX – GYY – 2FXY )],

ζ11 =
1
4

[FXX + FYY + i(GXX + GYY )],

ζ02 =
1
8

[FXX – FYY – 2GXY + i(GXX – GYY + 2FXY )],

ζ21 =
1

16
[FXXX + FXYY + GXXY + GYYY

+ i(GXXX + GXYY – FXXY – FYYY )],

and L is required not to be zero [25–28]. Some calculations display

ζ20 =
1
8

[2(
M

2βγ
c02 +

1
γ

d02)γ 2 – 2(
M

2βγ
c02 +

1
γ

d02)L2 – 8(
M

2βγ
c20 +

1
γ

d20)β2

+ 4(
M

2βγ
c11 +

1
γ

d11)βM –
1
β

(2γ Mc02 – 2βγ c11)]

+
1
8

i[–
γ 2

β
c02 +

1
β

(4β2c20 + M2c02 – 2βMc11)],

ζ11 =
1
4

[2(
M

2βγ
c02 +

1
γ

d02)γ 2 + 2(
M

2βγ
c02 +

1
γ

d02)M2

+ 8(
M

2βγ
c20 +

1
γ

d20)β2 – 4(
M

2βγ
c11 +

1
γ

d11)βM]

+
1
4

i[–
γ 2

β
c02 –

1
β

(4β2c20 + M2c02 – 2βMc11)],

ζ02 =
1
8

[2(
M

2βγ
c02 +

1
γ

d02)γ 2 – 2(
M

2βγ
c02 +

1
γ

d02)M2

– 8(
M

2βγ
c20 +

1
γ

d20)β2
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+ 4(
M

2βγ
c11 +

1
γ

d11)βM +
1
β

(2γ Mc02 – 2βγ c11)]

+
1
8

i[–
γ 2

β
c02 +

1
β

(4β2c20 + M2c02 – 2βMc11)

+ 4(
M

2βγ
c02 +

1
γ

d02)γ M – 4(
M

2βγ
c11 +

1
γ

d11)βγ ],

ζ21 =
1

16
[6(

M
2βγ

c03 +
1
γ

d03)γ 3 – 6(
M

2βγ
c03 +

1
γ

d03)γ M2

+ 8(
M

2βγ
c12 +

1
γ

d12)βMγ

– 8(
M

2βγ
c21 +

1
γ

d21)β2γ –
1
β

(3γ 2Mc03 – 2βγ 2c12)

–
3
β

(–8β3c30 + M3c03 + 4β2Mc21 – 2βM2c12)]

+
1

16
i[–

3γ 3

β
c03 –

1
β

(3M2γ c03 + 4β2γ c21 – 4βMγ c12)

– 6(
M

2βγ
c03 +

1
γ

d03)γ 2M + 4(
M

2βγ
c12 +

1
γ

d12)βγ 2

– 3(
M

2βγ
c03 +

1
γ

d03)M3 + 24(
M

2βγ
c30 +

1
γ

d30)β3

+ 6(
M

2βγ
c12 +

1
γ

d12)βM2 – 12(
M

2βγ
c21 +

1
γ

d21)β2M].

Based on the above analysis, one can see that the system (1.9) undergoes a Neimark-Sacker
bifurcation in the fixed point E2 when the parament δ varies in a small neighborhood of δ1

for α < β–2+
√

β2+4β

2β
. In addition, if in (3.9) L < (>)0, then an attracting (repelling) invariant

closed curve bifurcates from the fixed point E2 for δ > (<)δ1. So, the proof of the Theo-
rem 3.3 is completed. �

Remark 3.4 The occurrence of a Neimark-Sacker bifurcation causes the system to jump
from stable window to chaotic states through periodic and quasi-periodic states, and trig-
ger a route to chaos.

4 Numerical simulation
In this section, to illustrate theoretical analysis derived above, we present the bifurcation
diagrams, phase portraits, and Lyapunov exponents for specific parameter values using
Matlab software with an automatic resolution ratio. The following cases of bifurcation
parameters are considered.

Vary δ in the range (0.02, 1.2) and fix α = 0.8,β = 2.5 with the initial values (x0, y0) =
(0.16, 0.42). Figure 1 shows that there are two bifurcations in the system (1.9). Now we
explore the details.

First, let δ ∈ (0.8, 1.2). One can obtain Fig. 2(a) and observe the existence of a flip bifur-
cation in the fixed point E2 = (0.16667, 0.41667) when δ = δ0 = 0.92, which is in accordance
with the result in Theorem 3.2. Figure 2(b) means the spectrum of maximum Lyapunov
exponent.
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Figure 1 Bifurcation of the system (1.9) in (δ,
x)-plane for δ ∈ (0.02, 1.2)

Figure 2 Bifurcation of the system (1.9) in (δ, x)-plane and maximal Lyapunov exponent

Then, let δ ∈ (0.02, 0.06). Figure 2(c) shows the bifurcation diagram in (δ, x)-plane from
which the fixed point E2 is stable when δ > δ1 = 0.053 and unstable when δ < δ1. Hence, a
Neimark-Sacker bifurcation occurs in E2 when δ = δ1, whose multipliers are λ1,2 = 89±√

179i
90

with |λ1,2| = 1. The corresponding maximum Lyapunov exponent diagram of the system
(1.9) is plotted in Fig. 2(d).

Take the initial values (x0, y0) = (0.16, 0.42), (0.16, 0.2) in Fig. 3 and Fig. 4, respectively.
These figures show that the dynamical properties of the fixed point E2 change from un-
stable to stable as the value of the parameter δ increases, and there is an occurrence of
invariant closed curve around E2 when δ = δ1. Figure 3 displays that the bifurcated closed
orbit is stable outside while Fig. 4 indicates that the bifurcated closed orbit is stable inside,
which agrees with the result of Theorem 3.3.
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Figure 3 Phase portraits of the system (1.9) with α = 0.8,β = 2.5 and different δ and the initial value
(x0, y0) = (0.16, 0.2) inside the closed orbit

Figure 4 Phase portraits for the system (1.9) with α = 0.8,β = 2.5 and different δ and the initial value
(x0, y0) = (0.16, 0.42) outside the closed orbit

5 Conclusion
In this paper, we revisit a predator-prey model with a ratio-dependent Holling-Tanner
functional response. By applying the semi-discretization method instead of the forward
Euler method, the system (1.5) is transformed into the system (1.9). Under given para-
metric conditions, we comprehensively demonstrate the existence and stability of two
nonnegative fixed points E1 = (1, 0) and E2 = ( 1+αβ–β

αβ+1 , β(1+αβ–β)
αβ+1 ). Moreover, one derives

the sufficient conditions for the occurrence of the flip bifurcation and Neimark-Sacker bi-
furcation. In particular, the positive equilibrium E2 is shown to be asymptotically stable
when δ > δ1 = β(αβ+2)–(αβ+1)2

β2(αβ+1)
and unstable when δ < δ1. Hence, the system (1.9) undergoes a

Neimark-Sacker bifurcation when the parameter δ goes through the critical value δ1. This
displays the coexistence of prey and predator when the parameter δ = δ1.

We made a surprising discovery: for the same differential system (1.5), different discrete
methods—the forward Euler method used in [20] and the semi-discretization method em-
ployed in this paper—can lead to different conclusions. Specifically, the fixed point E1 is a
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saddle for δ < 2 in [20], whereas our results show that the fixed point E1 is always a saddle.
Additionally, a flip bifurcation is reported at E1 in [20], while our findings indicate that no
bifurcation occurs at E1.

This finding highlights the importance of approaching the problem from different angles
or directions to gain a comprehensive understanding. Considering various perspectives
may sometimes lead to differing or entirely new results.
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