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Abstract
The world citrus industry is confronting an unprecedented challenge from citrus
Huanglongbing (HLB). With no resistant commercial citrus varieties or curable
chemicals currently available, HLB remains the top threat to the world citrus industry.
In this paper, two dynamic models of citrus HLB are proposed based on the
preference and diffusion of citrus psyllids. The first model is a single-patch model of
HLB with vector preference. The basic reproduction number of the model is
calculated, and dynamic properties of the single-patch model, including the
existence and local stability of the disease-free equilibrium, are analyzed. By sensitivity
analysis, the parameters that have a significant impact on the basic reproduction
number are identified. Numerical simulations are conducted to demonstrate that the
preference of citrus psyllids is not conducive to disease prevention. Considering the
diffusion of citrus psyllids between two patches, a two-patch diffusion model of HLB
with preference is formulated. The global basic reproduction number of the diffusion
model is determined, and the global stability of the disease-free equilibrium is
established under certain conditions. Finally, numerical simulation results explore
how the preference behavior of the vector and the coupling strength between two
patches affect the HLB transmission.

Keywords: Citrus Huanglongbing; Preference; Diffusion; Basic reproduction number;
Global stability

1 Introduction
Citrus fruits, known as the world’s largest fruit, are extensively grown in diverse regions
and countries including Europe, the Americas, Asia, and South Africa, with the exception
of Antarctica [1]. The development of the citrus industry plays a crucial role in promot-
ing rural employment and increasing farmers’ income, while optimizing the agricultural
industrial structure. It holds a significant position in the national economy, high-quality
agricultural development, and rural revitalization, particularly in many regions of south-
ern China [2]. However, the emergence of citrus Huanglongbing (HLB) poses significant
threats to the citrus industry.

HLB has emerged as the primary disease jeopardizing the global citrus industry because
of its highly destructive nature, rapid onset, fast transmission, and challenges in preven-
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tion and control. The main symptoms of HLB include yellowing of branches, early fruit
drop, mottled spots on leaves, and uneven fruit coloring [3]. As early as the mid-18th cen-
tury, there were reports of HLB related diseases in India [4–6]. China first discovered HLB
in the southern region in 1919 [7]. So far, 11 of the 19 provinces and regions cultivating cit-
rus have suffered from HLB, and the affected area has reached 80% of the total area, with
a production loss of approximately 85% of the total production [8]. Since 2012, significant
outbreaks of HLB have ravaged regions like Ganzhou in Jiangxi Province, resulting in the
removal of over 45 million diseased trees and causing an estimated direct economic loss
exceeding 9 billion yuan [9]. Therefore, understanding the transmission rules of HLB and
researching preventive measures has become a hot topic.

The Asian citrus psyllid (ACP) serves as the sole natural vector for HLB [10–12]. As
a piercing-sucking insect, the pathogenic bacteria of HLB can reside within the psyllid’s
body. When a psyllid carrying the bacteria feeds on a healthy citrus tree, the pathogens en-
ter the plant through its stylet, settle and reproduce within the plant [12]. Due to the adult
psyllid’s ability to fly up to 7 m high and transmit the disease within 5 hours of feeding, the
individual insect transmission rate can reach as high as 70%–80%. Thus, the ACP exhibits
characteristics such as high infectivity, rapid transmission, close spread, lifelong carriage
of pathogens, and lifelong disease transmission [13]. To date, there is a lack of effective
drugs and resistant varieties for the control of HLB, both domestically and internationally.
The three main control measures currently implemented are the prevention and eradica-
tion of psyllids, the removal of infected trees, and the cultivation of disease-free seedlings
[14]. The occurrence and spread of the ACP are closely related to the transmission and
spread of HLB [3]. Therefore, the control of this psyllid becomes paramount in managing
HLB [15].

In recent years, numerous scholars have employed mathematical models to analyze the
epidemiology of HLB, with the aim of controlling disease outbreaks. However, these mod-
els have all assumed that the vector, the ACP, randomly selects host plants. In fact, exist-
ing research has demonstrated that there is a preference of the ACP towards different
host plants [16]. The study by Mann et al. [17] indicates that the ACP exhibits an ini-
tial predilection for feeding on diseased plants rather than healthy ones. However, once it
has consumed from an infected plant, it displays a subsequent preference for uninfected,
healthy plants [12]. In other words, the preference for infected or uninfected host plants
depends on whether the vector is carrying the virus or not. Citrus psyllids that are vectors
of the virus demonstrate a predilection for uninfected plants, while those not harboring
the virus tend to prefer infected plants. This behavior is widely recognized as the ‘condi-
tional preference’ exhibited by the vector [18, 19]. These studies are of considerable sci-
entific importance for uncovering innovative methods to combat HLB, highlighting the
critical need to employ mathematical models for a thorough investigation into how the
host selection behavior of psyllids influences disease spread.

In recent decades, there has been extensive attention given to the study of infectious
disease models regarding the vector’s preference for host selection. In 1987, Kingsolver
[20] explored the impact of mosquito feeding preferences on the transmission of disease
within the framework of a malaria transmission model. They improved the model by re-
placing the constant biting rate with a biting function that takes into account the vector’s
preferential selection of infected hosts. Ultimately, it was conclusively shown that the vec-
tor’s preferences for selecting hosts can significantly modify the dynamics of the model.
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In 2013, Buonomo et al. [21] proposed a malaria transmission model that incorporates
vector’s preferences and analyzed the dynamical properties of the model, obtaining the
basic reproduction number. In 2018, Gandon et al. [22] established a theoretical frame-
work to study the epidemiology and evolution of the manipulation of host choice behavior
of vectors, discussing the diversity of vector behavior in the transmission of diseases be-
tween animals and plants. In 2021, Cunniffe et al. [23] enhanced the generalized model
for vector-borne disease dynamics by exploring the influence of vector preference, such
as landing, resting, and feeding, on the spread of plant diseases within the same host. The
numerical results indicated that preferences of vectors for landing and feeding have an im-
pact on the basic reproduction number and ultimate incidence rate of the disease. Failure
to consider vector preferences would underestimate the risk of disease transmission.

Population diffusion is a widespread phenomenon observed in both the natural world
and human society, with significant implications for disease spread within populations.
In everyday life, diseases can easily spread from one location to another when popula-
tions frequently move between different areas. Furthermore, population dispersal can ei-
ther assist in eradicating a disease, escalate its spread, or even lead to the emergence of
new endemic diseases when isolated patches interact [24–34]. Hethcote [27] proposed
an epidemic model with population dispersal between two patches. Brauer and van den
Driessche [26] proposed a model with immigration of infective individuals. Ruxton [29]
proposed a model with density-dependent migration. Jin [34] studied the effect of popu-
lation dispersal among n patches on the spread of a disease.

However, there are few studies on the impact of citrus psyllid diffusion on HLB disease,
and scholars have not yet considered the mathematical modeling issue of vector prefer-
ences for various citrus tree individuals. This paper introduces a dynamic HLB model that
incorporates psyllid’s preferences, explores the influence of preference behavior on disease
transmission, and offers a fresh perspective for developing innovative strategies for con-
trolling HLB. Based on the citrus psyllid’s preference and diffusion behavior, this paper
constructs both a single-patch model and a two-patch diffusion model for the spread of
HLB. For the single-patch spread model, the basic reproduction number is calculated, and
the dynamic properties of the model are discussed. Numerical simulations verify that cit-
rus psyllid preference hinders disease control. In the two-patch diffusion model, a dwell
time matrix couples the two patches, and the global basic reproduction number is ob-
tained, discussing the conditions required for global stability of the disease-free equilib-
rium. Finally, the paper explores the influence of the citrus psyllid’s preference and diffu-
sion behavior on the trend of disease transmission.

This paper is organized as follows. In Sect. 2, a single-patch model of citrus HLB with
preference is formulated, the basic reproduction number of the model is calculated, dy-
namic properties of the single-patch model including existence and local stability of the
disease-free equilibrium are analyzed, and through sensitivity analysis, the parameters
which have great influence on the basic reproduction number are obtained, and the nu-
merical simulation are carried out to illustrate that the preference of citrus psyllid is not
conducive to the prevention of disease. In Sect. 3, a two-patch diffusion model of HLB with
preference is formulated, the global basic reproduction number of the diffusion model is
given, and the global stability of disease-free equilibrium is proved under certain con-
ditions, and the numerical simulation results show that the influence of preference and
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diffusion of citrus psyllid on disease transmission between two patches. Finally, the con-
clusions with some discussion are given in Sect. 4.

2 The dynamic analysis of single-patch model
2.1 Model formulation of single-patch model
Based on the concept of compartment modeling, we adopt the SI model to describe the
populations of citrus trees and citrus psyllids. The citrus tree population is divided into
two compartments: susceptible Sh and infected Ih. Similarly, the psyllid population is di-
vided into susceptible psyllids Sv and infected psyllids Iv compartments. Furthermore,
Nh and Nv represent the total number of citrus trees and psyllids, respectively, where
Nh = Sh + Ih and Nv = Sv + Iv. According to the transmission mechanism of citrus HLB,
we make the following basic assumptions:

(A1) According to the planting scale of citrus trees in the orchard, we assume that the
orchard adopts an immediate replanting strategy, which means that new trees are imme-
diately planted after symptomatic or dead trees are removed to ensure the total number
of citrus trees in the orchard remains unchanged.

(A2) Considering two control measures: spraying insecticides and removing infected
trees, we assume that θ represents the mortality rate of ACP due to exposure to pesticides,
and d represents the rate of removal of infected trees.

(A3) If we do not consider the psyllid’s host preference behavior, the number of newly
infected citrus trees and psyllids in a unit of time can be assumed as follows (see [23]):

φγ
Sh

Sh + Ih
Iv and φη

Ih

Sh + Ih
Sv,

respectively. Here, φ represents the average number of citrus trees visited by each citrus
psyllid in a unit of time, γ represents the probability of successful virus transmission when
susceptible citrus trees are fed upon by infected psyllids, η represents the probability of
successful virus acquisition when susceptible psyllids feed on infected citrus trees, and

Sh
Sh+Ih

and Ih
Sh+Ih

represent the probabilities of each citrus psyllid visiting susceptible and
infected citrus trees, respectively.

(A4) Assume that � represents the constant input rate of susceptible citrus psyllids,
while μh and μv represent the natural mortality rates of citrus trees and citrus psyllids,
respectively.

Based on the aforementioned assumptions, we present the following HLB transmission
model without considering the vector preference:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh(t)
dt

= μhNh(t) + dIh(t) – φγ
Sh(t)

Sh(t) + Ih(t)
Iv(t) – μhSh(t),

dIh(t)
dt

= φγ
Sh(t)

Sh(t) + Ih(t)
Iv(t) – μhIh(t) – dIh(t),

dSv(t)
dt

= � – φη
Ih(t)

Sh(t) + Ih(t)
Sv(t) – μvSv(t) – θSv(t),

dIv(t)
dt

= φη
Ih(t)

Sh(t) + Ih(t)
Sv(t) – μvIv(t) – θ Iv(t).

(1)

The citrus psyllid is an insect with piercing-sucking mouthparts, using its slender stylet
to penetrate citrus leaf tissue and extract nutritious sap [12]. Through behavioral observa-



Luo et al. Advances in Continuous and Discrete Models         (2024) 2024:56 Page 5 of 23

tions, the psyllid’s feeding behavior can be divided into three stages based on its duration
of stay on the leaves: the range-searching stage, probing and piercing stage, and the resting
and feeding stage. The psyllid also exhibits certain preferences for citrus trees in different
states during the feeding stage [16]. We mainly focus on studying the landing, settling, and
feeding tendencies of the psyllid on citrus trees with varying health conditions, as well as
the impact of psyllid’s feeding probability on model dynamics and the transmission control
of HLB. To this end, we assume that ν̄ (ν̃) represents the landing tendency of susceptible
(infected) psyllids on infected citrus trees, ε̄ (ε̃) represents the settling and feeding ten-
dencies of susceptible (infected) psyllids on infected citrus trees, and ω̄ (ω̃) represents
the probability of susceptible (infected) psyllids settling and feeding on susceptible citrus
trees.

First, let us consider the landing preference of citrus psyllids. It is evident that the ex-
pressions Sh

Sh+ν̄Ih
, Sh

Sh+ν̃Ih
, ν̄Ih

Sh+ν̄Ih
, and ν̃Ih

Sh+ν̃Ih
represent the probabilities of susceptible psyl-

lids landing on susceptible trees, infected psyllids landing on susceptible trees, susceptible
psyllids landing on infected trees, and infected psyllids landing on infected trees, respec-
tively. Clearly, having ν̄ > 1 (ν̃ > 1) indicates that susceptible (infected) psyllids are more
prone to choose infected trees for landing. Conversely, having ν̄ < 1 (ν̃ < 1) suggests that
susceptible (infected) psyllids prefer healthy trees for landing.

From the aforementioned assumptions, ω̄, 1 – ω̄, ω̃, and 1 – ω̃ represent respectively the
probabilities of susceptible psyllids residing and feeding on susceptible trees, susceptible
psyllids not residing and feeding on susceptible trees, infected psyllids residing and feeding
on susceptible trees, and infected psyllids not residing and feeding on susceptible trees.

Next, let us consider the habitat and feeding preferences of citrus psyllids, denoted as ε̄

and ε̃, respectively. It is evident that ε̄ω̄, 1 – ε̄ω̄, ε̃ω̃, and 1 – ε̃ω̃ represent the probabilities
of susceptible psyllids feeding on infected trees, not feeding on infected trees, infected
psyllids feeding on infected trees, and infected psyllids not feeding on infected trees, re-
spectively. Here, ε̄ > 1 (ε̃ > 1) indicates a preference of susceptible (infected) psyllids for
feeding on infected trees, while ε̄ < 1 (ε̃ < 1) indicates a preference of susceptible (infected)
psyllids for feeding on healthy trees. Let 
 represent the duration of psyllid feeding experi-
ences, where the probing phase can be considered instantaneous compared to the feeding
phase. Therefore, the average time each susceptible psyllid spends visiting a susceptible
tree and an infected tree can be given by

�–– = ω̄
 + (1 – ω̄)0 = ω̄
 and �–+ = ε̄ω̄
 + (1 – ε̄ω̄)0 = ε̄ω̄
.

Hence, we can derive that the average period for each susceptible psyllid to visit a citrus
tree is

�– =
Sh

Sh + ν̄Ih
ω̄
 +

ν̄Ih

Sh + ν̄Ih
ω̄ε̄
 =

ω̄
(Sh + ν̄ε̄Ih)

Sh + ν̄Ih
.

Similarly, we can obtain that the average period of each infected psyllid to visit a citrus
tree is

�+ =
Sh

Sh + ν̃Ih
ω̃
 +

ν̃Ih

Sh + ν̃Ih
ω̃ε̃
 =

ω̃
(Sh + ν̃ε̃Ih)

Sh + ν̃Ih
.
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If we take into account the preferences behavior of psyllids, the average numbers of visits
per unit of time to citrus trees by each infected psyllid and each susceptible psyllid are

φ̃ =
Sh + ν̃Ih

ω̃
(Sh + ν̃ε̃Ih)
and φ̄ =

Sh + ν̄Ih

ω̄
(Sh + ν̄ε̄Ih)
.

Moreover, since citrus psyllids transmit viruses through feeding, they must first acquire
the virus before they can transmit it. Therefore, we have γ = ω̃, η = ε̄ω̄. Additionally, the
probability of each infected citrus psyllid visiting a susceptible citrus tree and the proba-
bility of each susceptible psyllid visiting an infected citrus tree are given by

Sh

ω̃
(Sh + ν̃ε̃Ih)
and

ν̄Ih

ω̄
(Sh + ν̄ε̄Ih)
,

respectively.
In conclusion, the population of newly infected citrus trees per unit of time based on the

behavioral tendencies of psyllids and the population of psyllids themselves are as follows:

φ̃ω̃
Sh

ω̃
(Sh + ν̃ε̃Ih)
Iv and φ̄ε̄ω̄

ν̄Ih

ω̄
(Sh + ν̄ε̄Ih)
Sv,

that is,

φ̃
Sh


(Sh + ν̃ε̃Ih)
Iv and φ̄ε̄

ν̄Ih


(Sh + ν̄ε̄Ih)
Sv. (2)

From equations (1) and (2), we establish the following model for the propagation of citrus
HLB single patches based on psyllid-driven behavior:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh(t)
dt

= μhNh(t) + dIh(t) – φ̃
Sh(t)



(

Sh(t) + ν̃ε̃Ih(t)
) Iv(t) – μhSh(t),

dIh(t)
dt

= φ̃
Sh(t)



(

Sh(t) + ν̃ε̃Ih(t)
) Iv(t) – μhIh(t) – dIh(t),

dSv(t)
dt

= � – φ̄ε̄
ν̄Ih(t)



(

Sh(t) + ν̄ε̄Ih(t)
)Sv(t) – μvSv(t) – θSv(t),

dIv(t)
dt

= φ̄ε̄
ν̄Ih(t)



(

Sh(t) + ν̄ε̄Ih(t)
)Sv(t) – μvIv(t) – θ Iv(t).

(3)

The symbols �, μh, μv, d, and θ are defined in system (1), and system (3) satisfies the
initial conditions:

Sh(0) > 0, Ih(0) ≥ 0, Sv(0) ≥ 0, Iv(0) ≥ 0.

From the first two equations of system (3), it is evident that dNh(t)
dt = d(Sh(t)+Ih(t))

dt = 0. We
assume the orchard scale is constant K , that is, Nh(t) ≡ K . Furthermore, from the last two
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equations of system (3), we can deduce that dNv(t)
dt = d(Sv(t)+Iv(t))

dt = �– (μv + θ )Nv(t). Clearly,
we have

lim sup
t→∞

Nv(t) ≤ �

μv + θ
.

Define

� =
{

(Sh, Ih, Sv, Iv) ∈ R4
+| Nh(t) = K , Nv(t) ≤ �

μv+θ

}
.

Clearly, � is a positive invariant set of system (3).

2.2 Existence and stability of the disease-free equilibrium
In this section, we aim to demonstrate the existence of the disease-free equilibrium, com-
pute the basic reproduction number, and analyze the stability of the disease-free equi-
librium. By simple computation, we have the disease-free equilibrium E0 = (S0

h, 0, S0
v , 0) =

(K , 0, �
μv+θ

, 0). The stability of the disease-free equilibrium E0 depends on the basic repro-
duction number of system (3) at that point. This section utilizes the second-generation
matrix method proposed by Driessche and Watmough [35] to calculate the basic repro-
duction number. For system (3), the matrix for the addition of new infections for the dis-
ease is denoted as F1 and the matrix for disease transitions is denoted as V1:

F1 =

⎛

⎜
⎝

0
1

ω̃
2
�ε̄ν̄

Kω̄
2(μv + θ )
0

⎞

⎟
⎠ and V1 =

(
μh + d 0

0 μv + θ

)

. (4)

Thus, we can determine the basic reproduction number of the system as

R0 = ρ(F1V –1
1 ) =

√
�ε̄ν̄

Kω̄ω̃
4(μv + θ )2(μh + d)
=

1

2(μv + θ )

√
�ε̄ν̄

Kω̄ω̃(μh + d)
. (5)

The term ρ(F1V –1
1 ) denotes the spectral radius of the second-generation generator matrix

F1V –1
1 .

Remark 2.1 From equation (5), it can be inferred that the basic reproduction number R0

is independent of the parameters ν̃ and ε̃.

In epidemiology, the basic reproduction number, denoted by R0, is a crucial parameter
used to measure the transmission potential of infectious diseases. Consequently, accord-
ing to Theorem 2 in the literature [36], the following conclusion regarding the stability of
system (3) at the disease-free equilibrium E0 can be derived.

Theorem 2.1 When R0 < 1, the disease-free equilibrium E0 of system (3) is locally asymp-
totically stable; when R0 > 1, the disease-free equilibrium E0 is unstable.

2.3 Sensitivity analysis
The model (3) integrates a variety of parameters, each with its own unique biological sig-
nificance, collectively shaping the dynamics of the disease’s spread through their diverse
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Table 1 The parameter values of the single patch model (3)

Parameter Description Baseline
values

Unit Reference

K Environmental carrying capacity of citrus trees 2000 – [37]
� Birth rate of ACP 924 day–1 [37]

 Feeding time of ACP 18 day–1 Assumed
ε̄ Preference of susceptible ACP to inhabit and feed on

infected citrus trees
1.6 – Assumed

ε̃ Preference of infected ACP to inhabit and feed on infected
citrus trees

1.6 – Assumed

ῡ Susceptible ACP preference for landing on infected citrus
trees

2 – Assumed

υ̃ Preference of infected ACP for landing on infected citrus
trees

2 – Assumed

ω̄ Probability of predation of susceptible ACP on susceptible
citrus trees

0.5 – [23]

ω̃ The probability of infected ACP inhabiting and feeding on
susceptible citrus trees

0.5 – [23]

μh Natural mortality rate of citrus tree 0.00011 day–1 [37]
μv Natural mortality rate of ACP 0.026 day–1 [37]
θ Mortality rate of ACP due to exposure to pesticides 0.3 day–1 [37]
d The roguing rate of infected citrus trees 0.04 day–1 Assumed

Figure 1 Sensitivity analysis and uncertainty analysis of the basic reproduction number R0: (a) the sensitivity
indices of R0 and (b) histogram obtained from LHS using a sample size of 1000 for R0

impacts. In this section, we will utilize Matlab software to conduct a sensitivity analysis
of the model’s uncertain parameters in relation to the basic reproduction number R0 by
calculating partial rank correlation coefficients (PRCC). The magnitudes of these PRCCs
indicate the sensitivity of each parameter, with values closer to 1 or –1 denoting stronger
sensitivity. Additionally, the sign of the PRCC signifies whether the parameter is positively
or negatively correlated with R0.

Selecting parameters, we let 
 = 6, while the values of other parameters are listed in Ta-
ble 1. From the results of sensitivity analysis, it can be observed from Fig. 1(a) that R0 is
positively correlated with parameters �, ε̄, and ν̄ , while being negatively correlated with
parameters K , 
, ω̄, ω̃, μh, μv, θ , and d. This indicates that increasing the values of μh and
μv, as well as decreasing the values of ε̄ and ν̄ , can effectively reduce R0, which contributes
to the control of HLB epidemic. In particular, among all the parameters, 
 and θ exert the
greatest impact on R0, while μh has the least impact. The sensitivity of these parameters
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provides potential intervention strategies for reducing HLB. During the HLB outbreak,
extending the feeding duration of ACP on citrus trees is recommended. This strategy re-
duces the frequency at which each psyllid visits different trees, diminishing the likelihood
of contact between psyllids and citrus trees, and consequently, decreasing the risk of HLB
transmission. Additionally, stringent control measures should be enforced to regulate the
population of ACP, thereby effectively managing the spread of HLB in orchards. For un-
certainty analysis, we can seen from Fig. 1(b) that about 60.7% of the distribution of R0 is
greater than 1. This implies that persistent HLB bacterial infection is likely to occur.

2.4 Numerical simulation
In this section, we will evaluate the preference behavior of the citrus psyllid and the feed-
ing probability of the psyllid on susceptible citrus trees using numerical simulations with
Matlab. We are interested in studying the impact of these factors on the basic reproduction
number R0 and the final disease incidence rate I∞

S∞+I∞ . The parameter values are presented
in Table 1. For this purpose, we discuss the following two scenarios based on the objectives
of this section.

Figure 2 illustrates the numerical simulation when there is no distinction between the
preference behavior and feeding probability of the susceptible psyllids and infected psyl-
lids, i.e., ν̃ = ν̄ = ν , ε̃ = ε̄ = ε, ω̃ = ω̄ = ω. The results show that the value of R0 increases with
the increase of psyllid landing preference ν and habitat feeding preference ε (Figs. 2(a)
and 2(b)), indicating that the preference behavior of the psyllids is unfavorable for disease
control. When ω is small, R0 becomes extremely sensitive, and thereafter, it decreases with

Figure 2 The basic reproduction number R0 and the final disease incidence rate I∞
S∞+I∞ , as well as their

dependence on the parameters ν , ε and ω, without distinguishing between susceptible and infectious
psyllids. (a) The impact of parameter ν on R0 and

I∞
S∞+I∞ . (b) The impact of parameter ε on R0 and

I∞
S∞+I∞ . (c)

The impact of parameter ω on R0 and
I∞

S∞+I∞ . (d) The contour graph of R0 as a function of parameters ν and

ε . The points on the red line correspond to R0 equal to 1. (e) The contour graph of I∞
S∞+I∞ as a function of

parameters ν and ε
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the increase of ω (Fig. 2(c)). This indicates that increasing the feeding probability of citrus
psyllids on susceptible trees is beneficial for disease control. Furthermore, the final disease
incidence rate I∞

S∞+I∞ is nonmonotonic with respect to the parameters of psyllid landing
preference ν , habitat feeding preference ε, and feeding probability ω. Figures 2(d) and 2(e)
present contour plots of the basic reproduction number R0 and the final disease incidence
rate I∞

S∞+I∞ when varying the parameters ε and ν .
Figure 3 represents the numerical simulation graph for distinguishing between suscep-

tible psyllids and infected psyllids in their behavior preference. The parameters ν̄ and ε̃

respectively denote the landing preference of susceptible psyllids and infected psyllids on
infected trees, while the parameters ε̄ and ε̃ represent the habitat and feeding preference
of susceptible psyllids and infected psyllids on infected trees. The results show that the
basic reproduction number R0 does not vary with the landing preference parameter (ν̃) of
infected psyllids on infected trees or the habitat and feeding preference parameter (ε̃) of
infected psyllids. However, the basic reproduction number R0 increases with the increase
in the landing preference parameter (ν̄) of susceptible psyllids on infected trees and the
habitat and feeding preference parameter (ε̄) of susceptible psyllids (Figs. 3(a) and 3(b)).
This result is consistent with the expression of R0 and indicates that the behavior pref-
erence of susceptible psyllids towards infected citrus trees hinders the control of HLB.
Meanwhile, when the parameters ν̃ and ε̃ are less than 1, the final incidence rate of the
disease in the host, I∞

S∞+I∞ , remains insensitive. However, as the parameters ν̄ and ε̄ in-
crease, it is evident that the incidence rate of citrus trees in the orchard increases due
to the landing and habitat and feeding preference of susceptible psyllids. This becomes a
major obstacle in controlling HLB. Conversely, the final incidence rate of the disease in
the host, I∞

S∞+I∞ , decreases with the increase of parameters ν̃ and ε̃. Hence, enhancing the
behavior preference of infected psyllids towards infected trees is beneficial in preventing
the occurrence and spread of the disease. Figures 3(c)–3(h) show the contour plots of the
final incidence rate of the disease in the host, I∞

S∞+I∞ , as it varies with the parameters ν̄ and
ν̃ , ν̄ and ε̃, ν̄ and ε̄, as well as ν̄ and ε̃.

3 The dynamic analysis of dual patch diffusion model
3.1 Model formulation of dual patch diffusion model
In this section, we will examine the spread of HLB in a heterogeneous environment char-
acterized by two distinct patches. Let us consider patch-1 as a well-maintained orchard,
whereas patch-2 denotes a neglected orchard. In the sections that follow, we intend to ex-
amine the dispersal patterns of the psyllid population and explore how psyllid behavior
influences the dynamics of citrus HLB transmission.

Let Nhi(t) and Nvi(t) be the total number of citrus trees and psyllids in patch i (i = 1, 2)

at time t, then Nhi(t) = Shi(t) + Ihi(t) and Nvi(t) = Svi(t) + Ivi(t). We introduce a matrix of
residence times [38], denoted as P, to link the two distinct patches, where

P =

(
p11 p12

p21 p22

)

,

with the elements, denoted as pij, within the matrix P reflecting the proportion of time that
citrus psyllids stay in patch j compared to patch i. Hence, the values of pij fall within the
interval [0, 1], with the constraint that

∑2
j=1 pij = 1, for i = 1, 2. It is important to note that
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Figure 3 The basic reproduction number R0 and the final disease incidence rate I∞
S∞+I∞ as well as their

dependence on the parameters ν̄ , ν̃ , ε̄ and ε̃ , when distinguishing between susceptible and infectious
psyllids. (a) The impact of parameter ν̄ or ν̃ on R0 and

I∞
S∞+I∞ . (b) The impact of parameter ε̄ or ε̃ on R0 and

I∞
S∞+I∞ . (c) The contour graph of I∞

S∞+I∞ as a function of parameters ν̄ and ν̃ . The points on the red line

correspond to R0 equal to 1. (d) The contour graph of I∞
S∞+I∞ as a function of parameters ε̃ and ν̃ . Note that

R0 does not depend on parameters ε̃ and ν̃ . (e) The contour graph of I∞
S∞+I∞ as a function of parameters ε̄

and ν̃ . The points on the red line correspond to R0 equal to 1. (f ) The contour graph of I∞
S∞+I∞ as a function of

parameters ε̃ and ν̄ . The points on the red line correspond to R0 equal to 1. (g) The contour graph of I∞
S∞+I∞

as a function of parameters ε̄ and ν̄ . The points on the red line correspond to R0 equal to 1. (h) The contour
graph of I∞

S∞+I∞ as a function of parameters ε̃ and ε̄ . The points on the red line correspond to R0 equal to 1



Luo et al. Advances in Continuous and Discrete Models         (2024) 2024:56 Page 12 of 23

in the natural environment, citrus trees do not move between patches. Only citrus psyllids
have the ability to disperse between the two patches. Since susceptible trees in patch i can
be infected by vectors from both patch i and disease-carrying psyllids from patch j, the
average number of infected psyllids visiting citrus trees in patch i per unit time is

φ̃i =
Shi + ν̃iIhi

ω̃i
(Shi + ν̃iε̃iIhi)
.

The probability that each infected citrus psyllid visits a susceptible citrus tree in patch i is

Shi

ω̃i
(Shi + ν̃iε̃iIhi)
.

Similarly, susceptible psyllids in patch i can acquire the virus when they come into con-
tact with infected citrus trees. Therefore, the average number of citrus trees visited by
susceptible psyllids in patch i per unit time is

φ̄i =
Shi + ν̄iIhi

ω̄i
(Shi + ν̄iε̄iIhi)
.

Furthermore, the probability of susceptible psyllids visiting infected trees in patch i is

ν̄iIhi

ω̄i
(Shi + ν̄iε̄iIhi)
.

Hence, the number of newly infected citrus tree and citrus psyllid per unit time is given
by

φ̃1
Sh1


(Sh1 + ν̃1ε̃1Ih1)
(p11Iv1 + p21Iv2)

and

(
p11φ̄1ε̄1

ν̄1Ih1


(Sh1 + ν̄1ε̄1Ih1)
+ p12φ̄2ε̄2

ν̄2Ih2


(Sh2 + ν̄2ε̄2Ih2)

)
Sv1.

The number of newly infected citrus tree and citrus psyllid per unit of time is as follows:

φ̃2
Sh2


(Sh2 + ν̃2ε̃2Ih2)
(p12Iv1 + p22Iv2)

and

(
p21φ̄1ε̄1

ν̄1Ih1


(Sh1 + ν̄1ε̄1Ih1)
+ p22φ̄2ε̄2

ν̄2Ih2


(Sh2 + ν̄2ε̄2Ih2)

)
Sv2.
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Based on the above discussions and assumptions, we formulate the following diffusion
model of citrus HLB, characterized by two patches:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dShi(t)
dt

= μhiNhi(t) + diIhi(t) – φ̃i
Shi(t)



(

Shi(t) + ν̃iε̃iIhi(t)
)
(∑2

j=1 pjiIvj(t)
)

– μhiShi(t),

dIhi(t)
dt

= φ̃i
Shi(t)



(

Shi(t) + ν̃iε̃iIhi(t)
)
(∑2

j=1 pjiIvj(t)
)

– μhiIhi(t) – diIhi(t),

dSvi(t)
dt

= �i – Svi(t)
(∑2

j=1 pijφ̄jε̄j
ν̄jIhj(t)



(

Shj(t) + ν̄jε̄jIhj(t)
)
)

– μviSvi(t) – θiSvi(t),

dIvi(t)
dt

= Svi(t)
(∑2

j=1 pijφ̄jε̄j
ν̄jIhj(t)



(

Shj(t) + ν̄jε̄jIhj(t)
)
)

– μviIvi(t) – θiIvi(t).

(6)

The subscripts i (i = 1, 2) are used to distinguish between the two patches, and the model
parameters have the same meanings as those in the single patch model (3). The system (6)
satisfies the initial conditions:

Shi(0) ≥ 0, Ihi(0) ≥ 0, Svi(0) ≥ 0, Ivi(0)) ≥ 0. (7)

3.2 Analysis of the dynamics of model (6)
In this section, we will study the threshold dynamics of the diffusion model with two
patches (6). For the convenience of subsequent discussions, we denote

NH(t) = Nh1(t) + Nh2(t), NV (t) = Nv1(t) + Nv2(t),

�V = 2 max{�1,�2}, μV (t) = min{μv1 + θ1,μv2 + θ2}.

Adding the first two equations of system (6), we obtain

dNhi(t)
dt

≡ 0, i = 1, 2. (8)

This means that the number of citrus fruit plantations in the orchard remains constant. We
assume that the sizes of Orchard 1 and Orchard 2 are denoted as K1 and K2, respectively.
Consequently, we can derive NH(t) = Nh1(t) + Nh2(t) = K1 + K2. Thus, we define the set as
follows:

� =
{

(Sh1, Ih1, Sv1, Iv1, Sh2, Ih2, Sv2, Iv2) ∈ R8
+| NH(t) = K1 + K2, NV (t) ≤ �V

μV

}
.

3.3 The nonnegativity and boundedness of the solution
Theorem 3.1 Let x(t) = (Sh1(t), Ih1(t), Sv1(t), Iv1(t), Sh2(t), Ih2(t), Sv2(t), Iv2(t)) be the solution
of system (6) with initial values (7). Then, for t ≥ 0, the components of x(t) are nonnegative
and bounded. The set � is a forward invariant set of system (6).
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Proof First, we demonstrate the nonnegativity of the solution. Since both initial values of
the host and vector populations are nonnegative, the right-hand side of the system (6) is
continuous on the set � and satisfies a local Lipschitz condition. According to [39], it is
known that the system (6) has a unique solution on the interval [0, τ ), where 0 < τ ≤ +∞.
Suppose the solution of the model is negative, then there exists a first time t̂ > 0 such that

t̂ = inf {t | Sh1(t) = 0 or Ih1(t) = 0 or Sv1(t) = 0 or Iv1(t) = 0 or Sh2(t) = 0

or Ih2(t) = 0 or Sv2(t) = 0 or Iv2(t) = 0} .

If Sh1(t̂) = 0, then we have Sv1(t) > 0, Sh1(t) > 0, Ih1(t) > 0, Iv1(t) > 0, Sh2(t) > 0, Ih2(t) > 0,
Sv2(t) > 0, Iv2(t) > 0, for t ∈ (0, t̂). It is obvious that dSv1(t̂)

dt < 0. From the third equation of
system (6), we obtain

dSv1(t̂)
dt

= �1 > 0.

This is a contradiction. Hence, for all t ≥ 0, it follows that Sv1(t) ≥ 0. Similarly, we can
obtain that for all t ≥ 0, Sh1(t) ≥ 0, Ih1(t) ≥ 0, Iv1(t) ≥ 0, Sh2(t) ≥ 0, Ih2(t) ≥ 0, Sv2(t) ≥ 0,
and Iv2(t) ≥ 0. Therefore, for all t ≥ 0, we have x(t) ≥ 0.

Next, we demonstrate the boundedness of the solution. By adding the last two equations
of the system (6), we have the differential equation dNvi(t)

dt = �i –(μvi +θi)Nvi(t). This implies
that, as t → ∞, Nvi(t) → �i

μvi+θi
for i = 1, 2. Hence, dNV (t)

dt = dNv1(t)
dt + dNv2(t)

dt = �1 + �2 –
(μv1 + θ1)Nv1(t) – (μv2 + θ2)Nv2(t) ≤ 2 max{�1,�2} – min{μv1 + θ1,μv2 + θ2}NV (t) = 2�V –
μV NV (t). Thus, as t → ∞, lim supt→+∞ NV (t) → �V

μV
, indicating that NV (t) is bounded.

Therefore, the set � is a forward invariant set for the system (6). �

Next, we shall delve into the examination of the nonnegativity and boundedness of the
solution to the provided model (6).

3.4 The disease-free equilibrium and the basic reproduction number
In the diffusion model, there are four infection terms, namely Ih1, Iv1, Ih2, and Iv2. Let all the
infection terms be equal to zero, i.e., Ih1(t) = Iv1(t) = Ih2(t) = Iv2(t) = 0. Then the disease-
free equilibrium can be represented as

E0 =
(
S0

h1, 0, S0
v1, 0, S0

h2, 0, S0
v2, 0

)
=

(

K1, 0,
�1

μv1 + θ1
, 0, K2, 0,

�2

μv2 + θ2
, 0

)

.

In order to analyze the stability of the system (6), it is necessary to obtain the threshold
condition for HLB. By utilizing the method of the next generation matrix defined in [35],
we can determine the basic reproduction number R0 of the system (6). Based on the model
(6), the additional infection term F and the transition term V are given as follows:

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φ̃1 (p11Iv1 + p21Iv2)
Sh1


(Sh1 + ν̃1ε̃1Ih1)

Sv1

(

p11φ̄1ε̄1
ν̄1Ih1


(Sh1 + ν̄1ε̄1Ih1)
+ p12φ̄2ε̄2

ν̄2Ih2


(Sh2 + ν̄2ε̄2Ih2)

)

φ̃2 (p12Iv1 + p22Iv2)
Sh2


(Sh2 + ν̃2ε̃2Ih2)

Sv2

(

p21φ̄1ε̄1
ν̄1Ih1


(Sh1 + ν̄1ε̄1Ih1)
+ p22φ̄2ε̄2

ν̄2Ih2


(Sh2 + ν̄2ε̄2Ih2)

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(μh1 + d1)Ih1

(μv1 + θ1)Iv1

(μh2 + d2)Ih2

(μv2 + θ2)Iv2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The matrix for the addition of new infections, denoted as F2, and the matrix for disease
transitions, denoted as V2, are calculated as:

F2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
p11

ω̃1
2 0
p21

ω̃1
2
p11ε̄1ν̄1

K1ω̄1
2 S0
v1 0

p12ε̄2ν̄2

K2ω̄2
2 S0
v1 0

0
p12

ω̃2
2 0
p22

ω̃2
2
p21ε̄1ν̄1

K1ω̄1
2 S0
v2 0

p22ε̄2ν̄2

K2ω̄2
2 S0
v2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (9)

V2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

μh1 + d1 0 0 0

0 μv1 + θ1 0 0

0 0 μh2 + d2 0

0 0 0 μv2 + θ2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (10)

A simple computation yields

F2V –1
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
p11

ω̃1
2(μv1 + θ1)
0

p21
ω̃1
2(μv2 + θ2)

p11ε̄1ν̄1S0
v1

K1ω̄1
2(μh1 + d1)
0

p12ε̄2ν̄2S0
v1

K2ω̄2
2(μh2 + d2)
0

0
p12

ω̃2
2(μv1 + θ1)
0

p22
ω̃2
2(μv2 + θ2)

p21ε̄1ν̄1S0
v2

K1ω̄1
2(μh1 + d1)
0

p22ε̄2ν̄2S0
v2

K2ω̄2
2(μh2 + d2)
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Hence, the expression for the global basic reproduction number of the diffusion model
(6) is given by

R̃0 = ρ(F2V –1
2 ) =

√
ϕ1 + √

ϕ2

2
,

where ρ(F2V –1
2 ) denotes the spectral radius of the matrix F2V –1

2 , and

ϕ1 =
p2

11ε̄1ν̄1�1

K1ω̄1ω̃1
4(μv1 + θ1)2(μh1 + d1)
+

p2
21ε̄1ν̄1�2

K1ω̄1ω̃1
4(μv2 + θ2)2(μh1 + d1)

+
p2

22ε̄2ν̄2�2

K2ω̄2ω̃2
4(μv2 + θ2)2(μh2 + d2)
+

p2
12ε̄2ν̄2�1

K2ω̄2ω̃2
4(μv1 + θ1)2(μh2 + d2)
,

ϕ2 = ϕ2
1 – 4

[
ε̄1ν̄1ε̄2ν̄2�1�2(p11p22 – p12p21)2

K1K2ω̄1ω̃1ω̄2ω̃2
8(μv1 + θ1)2(μv2 + θ2)2(μh1 + d1)(μh2 + d2)

]

> 0.
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Remark 3.2. When the two patches are uncoupled, i.e., p11 = 1 and p22 = 1, the local
basic reproduction numbers of the two patches can be obtained as follows:

R01 =

√
ε̄1ν̄1�1

K1ω̄1ω̃1
4(μv1 + θ1)2(μh1 + d1)
, R02 =

√
ε̄2ν̄2�2

K2ω̄2ω̃2
4(μv2 + θ2)2(μh2 + d2)
.

Remark 3.3. The above ϕ1 and ϕ2 can be expressed using R01 and R02, respectively, that
is,

ϕ1 = R2
01(p2

11 + p2
21

�2(μv1 + θ1)2

�1(μv2 + θ2)2 ) + R2
02

(

p2
22 + p2

12
�1(μv2 + θ2)2

�2(μv1 + θ1)2

)

,

ϕ2 = ϕ2
1 – 4R2

01R2
02(p11p22 – p12p21)2.

The overall basic reproduction number, R̃0, is related to two local basic reproduction num-
bers, R01 and R02.

Next, let us discuss the local asymptotic stability of the equilibrium point E0 and present
the following theorem.

Theorem 3.2 If R̃0 < 1, then the disease-free equilibrium E0 of the bistable system (6) is
locally asymptotically stable, whereas E0 is unstable if R̃0 > 1.

Theorem 3.2 illustrates that, when R̃0 < 1, the presence of a few infected individuals will
not lead to a widespread epidemic. In order to eradicate the disease without relying on the
initial number of infected individuals, it is imperative to discuss the global stability of the
disease-free equilibrium.

3.5 The global stability of the disease-free equilibrium
Here we discuss the global stability of the disease-free equilibrium E0 using the methods
proposed by Castillo-Chavez et al. [40].

Theorem 3.3 If R̃0 < 1 and ε̃1 ≥ 0.5, ε̃2 ≥ 0.5, ε̄1 > 1, ν̄1 > 1, ε̄2 > 1, ν̄2 > 1, the disease-free
equilibrium E0 of the bistable system is globally asymptotically stable.

Proof System (6) can be rewritten as follows:

dX
dt

= F(X, Y ),

dY
dt

= G(X, Y ), G(X, 0) = 0.
(11)

The vector X = (Sh1(t), Sv1(t), Sh2(t), Sv2(t)) ∈ R
4 represents the uninfected compartments

in system (6), while Y = (Ih1(t), Iv1(t), Ih2(t), Iv2(t)) ∈ R
4 represents the infected compart-

ments in the system (6). The disease-free equilibrium is E0 = (X∗, 0), given the initial state
X∗ = (S0

h1, S0
v1, S0

h2, S0
v2) = (K1, �1

μv1+θ1
, K2, �2

μv2+θ2
), with 0 denoting the zero vector. Global sta-

bility of the disease-free equilibrium can be proven when the following two conditions
hold:

(H1) For the differential equation dX
dt = F(X, 0), X∗ is globally asymptotically stable.
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(H2) G(X, Y ) can be rewritten as A∗Y – Ĝ(X, Y ), where the matrix A∗ is defined as
DY (X∗, 0), an M matrix. Additionally, it holds that Ĝ(X, Y ) ≥ 0 for all X, Y ∈ �.

It is evident from equation (6) that X = (Sh1, Sv1, Sh2, Sv2) and Y = (Ih1, Iv1, Ih2, Iv2). There-
fore, we can conclude that

F(X, Y ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μh1Nh1 + d1Ih1 – φ̃1(
∑2

j=1 pj1Ivj)
Sh1


(Sh1 + ν̃1ε̃1Ih1)
– μh1Sh1

�1 – Sv1(
∑2

j=1 p1jφ̄jε̄j
ν̄jIhj


(Shj + ν̄jε̄jIhj)
) – (μv1 + θ1)Sv1

μh2Nh2 + d2Ih2 – φ̃2(
∑2

j=1 pj2Ivj)
Sh2


(Sh2 + ν̃2ε̃2Ih2)
– μh2Sh2

�2 – Sv2(
∑2

j=1 p1jφ̄jε̄j
ν̄jIhj


(Shj + ν̄jε̄jIhj)
) – (μv2 + θ2)Sv2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Consider the equilibrium point in the absence of any disturbances, denoted as E0 = (X∗, 0),
thus

F(X, 0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

μh1K1 – μh1Sh1

�1 – (μv1 + θ1)Sv1

μh2K2 – μh2Sh2

�2 – (μv2 + θ2)Sv2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It is evident that, as t → ∞,

Sh1(t) → K1, Sv1(t) → �1

μv1 + θ1
, Sh2 → K2, Sv2(t) → �2

μv2 + θ2
.

Given that limt→∞ X(t) = X∗, when R̃0 < 1, the subsystem dX(t)
dt = F(X, 0) has a glob-

ally asymptotically stable equilibrium point X∗ = (K1, �1
μv1+θ1

, K2, �2
μv2+θ2

), satisfying condi-
tion (H1).

Next, we aim to demonstrate that, for (X, Y ) ∈ �, we have Ĝ(X, Y ) ≥ 0. In fact,

G(X, Y ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φ̃1(
∑2

j=1 pj1Ivj)
Sh1


(Sh1 + ν̃1ε̃1Ih1)
– μh1Ih1 – d1Ih1

Sv1(
∑2

j=1 p1jφ̄jε̄j
ν̄jIhj


(Shj + ν̄jε̄jIhj)
) – (μv1 + θ1)Iv1

φ̃2(
∑2

j=1 pj2Ivj)
Sh2


(Sh2 + ν̃2ε̃2Ih2)
– μh2Ih1 – d2Ih2

Sv2(
∑2

j=1 p2jφ̄jε̄j
ν̄jIhj


(Shj + ν̄jε̄jIhj)
) – (μv2 + θ2)Iv2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By calculating, we can obtain the matrix A∗ as

A∗ = F2 – V2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(μh1 + d1)
p11

ω̃1
2 0
p21

ω̃1
2
p11ε̄1ν̄1

K1ω̄1
2 S0
v1 –(μv1 + θ1)

p12ε̄2ν̄2

K2ω̄2
2 S0
v1 0

0
p12

ω̃2
2 –(μh2 + d2)
p22

ω̃2
2
p21ε̄1ν̄1

K1ω̄1
2 S0
v2 0

p22ε̄2ν̄2

K2ω̄2
2 S0
v2 –(μv2 + θ2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.



Luo et al. Advances in Continuous and Discrete Models         (2024) 2024:56 Page 18 of 23

Hence,

Ĝ(X, Y ) = A∗Y – G(X, Y )

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p11Iv1 + p21Iv2

ω̃1
2 –
Sh1(Sh1 + ν̃1Ih1)

ω̃1
2(Sh1 + ν̃1ε̃1Ih1)2 (p11Iv1 + p21Iv2)

p11ε̄1ν̄1S0
v1Ih1

ω̄1
2 +
p12ε̄2ν̄2S0

v1Ih2

ω̄2
2 – Sv1(
p11ε̄1ν̄1Ih1(Sh1 + ν̄1Ih1)

ω̄1
2(Sh1 + ν̄1ε̄1Ih1)2

+
p12ε̄2ν̄2Ih2(Sh2 + ν̄2Ih2)

ω̄2
2(Sh2 + ν̄2ε̄2Ih2)2 )

p12Iv1 + p22Iv2

ω̃2
2 –
Sh2(Sh2 + ν̃2Ih2)

ω̃2
2(Sh2 + ν̃2ε̃2Ih2)2 (p12Iv1 + p22Iv2)

p21ε̄1ν̄1S0
v2Ih1

ω̄1
2 +
p22ε̄2ν̄2S0

v2Ih2

ω̄2
2

–Sv2(
p21ε̄1ν̄1Ih1(Sh1 + ν̄1Ih1)

ω̄1
2(Sh1 + ν̄1ε̄1Ih1)2 +
p22ε̄2ν̄2Ih2(Sh2 + ν̄2Ih2)

ω̄2
2(Sh2 + ν̄2ε̄2Ih2)2 )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It is evident that, in order to ensure Ĝ(X, Y ) ≥ 0, certain conditions must be satisfied. If
ε̃1 ≥ 0.5, the first element of matrix Ĝ(X, Y ) satisfies

(p11Iv1 + p21Iv2)(ν̃2
1 ε̃1

2I2
h1 + Sh1Ih1ν̃1(2ε̃1 – 1))

ω̃1
2(Sh1 + ν̃1ε̃1Ih1)2 ≥ 0.

Furthermore, if ε̄1 > 1, ν̄1 > 1, ε̄2 > 1, and ν̄2 > 1, the second element of matrix Ĝ(X, Y )

satisfies

p11ε̄1ν̄1S0
v1Ih1

ω̄1
2 +
p12ε̄2ν̄2S0

v1Ih2

ω̄2
2 – Sv1(
p11ε̄1ν̄1Ih1(Sh1 + ν̄1Ih1)

ω̄1
2(Sh1 + ν̄1ε̄1Ih1)2 +
p12ε̄2ν̄2Ih2(Sh2 + ν̄2Ih2)

ω̄2
2(Sh2 + ν̄2ε̄2Ih2)2 )

=
p11ε̄1ν̄1Ih1

ω̄1
2 [S0
v1 –

Sv1(Sh1 + ν̄1Ih1)

(Sh1 + ν̄1ε̄1Ih1)2 ] +
p12ε̄2ν̄2Ih2

ω̄2
2 [S0
v1 –

Sv1(Sh2 + ν̄2Ih2)

(Sh2 + ν̄2ε̄2Ih2)2 ] ≥ 0.

Similarly, if ε̃2 ≥ 0.5 and ε̄1 > 1, ν̄1 > 1, ε̄2 > 1, ν̄2 > 1, it can be ensured that the third and
fourth elements of the matrix Ĝ(X, Y ) are greater than or equal to zero. In conclusion,
when ε̃1 ≥ 0.5, ε̃2 ≥ 0.5, ε̄1 > 1, ν̄1 > 1, ε̄2 > 1, and ν̄2 > 1, for any X, Y ∈ �, Ĝ(X, Y ) ≥ 0.
Moreover, since it is an M matrix, condition (H2) holds. Therefore, when R̃0 < 1 and ε̃1 ≥
0.5, ε̃2 ≥ 0.5, ε̄1 > 1, ν̄1 > 1, ε̄2 > 1, and ν̄2 > 1, the disease-free equilibrium E0 of the system
(6) is globally asymptotically stable. �

3.6 Numerical simulation
In this section, we will assess the attributive behavior and feeding probability of citrus
psyllids through numerical simulation, and examine the impact of their behavior on the
spread of HLB between two patches. Additionally, we will explore the effects of varying
coupling strengths on the dispersion of psyllid populations and its consequences on the
system identified in equation (6).

It is noted that there exist three different coupling situations between two patches: uni-
directional coupling, symmetric coupling, and asymmetric coupling. Unidirectional cou-
pling refers to a situation where citrus psyllids can only diffuse from patch i to patch j,
resulting in pjj = 1. Symmetric coupling occurs when the residence time of citrus psyllids
after diffusing from patch i to patch j is equal to the residence time after diffusing from
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patch j to patch i, i.e., pij = pji. Conversely, asymmetric coupling occurs when the residence
time of citrus psyllids after diffusing from patch i to patch j is greater than the residence
time after diffusing from patch j to patch i, i.e., pij > pji. Additionally, diffusion can be cat-
egorized as either weak or strong based on diffusion capability. In this paper, we consider
the following five coupling scenarios:

(S1) No diffusion between patches: the two patches are isolated. The citrus psyllid in
patch-1 will not spread to patch-2, and the citrus psyllid in patch-2 will also not spread to
patch-1. In other words, p11 = p22 = 1, p12 = p21 = 0;

(S2) Unidirectional weak diffusion: The citrus psyllid in patch-1 will diffuse to patch-2
weakly, while the citrus psyllid in patch-2 will not diffuse to patch-1. Let p11 = 0.8, p12 = 0.2,
p21 = 0, and p22 = 1;

(S3) Unidirectional strong diffusion: The citrus aphids in patch-1 will spread to patch-2
and exhibit strong diffusion, while the citrus aphids in patch-2 will not spread to patch-1.
Let p11 = 0.2, p12 = 0.8, p21 = 0, p22 = 1;

(S4) Bidirectional weak diffusion: The citrus psyllid in patch-1 will diffuse to patch-2,
and the citrus psyllid in patch-2 will also diffuse to patch-1, both are weak diffusions. Let
p11 = 0.8, p12 = 0.2, p21 = 0.2, p22 = 0.8;

(S5) Bidirectional strong diffusion: The citrus psyllids in patch-1 will spread to patch-
2, and the citrus psyllids in patch-2 will also spread to patch-1, both exhibiting strong
diffusion. Let p11 = 0.2, p12 = 0.8, p21 = 0.8, and p22 = 0.2.

Due to the differences in the environment of patch-1 and patch-2, the parameters cho-
sen for each patch are also different. The parameter values for patch-1 are shown in Ta-
ble 1, while the selected parameters for patch-2 are as follows: K2 = 1000, �2 = 462, θ2 = 0,
d2 = 0.02, and the remaining parameters are the same as those for patch-1. In subsequent
discussions, unless otherwise specified, we will use the aforementioned parameter values.

Figure 4 depicts the variation of the preference parameters and feeding probabilities of
patch-1 and patch-2, as well as the basic reproduction number R̃0 of system (6) under
five different coupling scenarios. It can be observed that the influence of preference pa-
rameters and feeding probabilities on the basic reproduction number R̃0 is consistent in
the first three coupling scenarios (uncoupled, unidirectional weak diffusion, and unidi-
rectional strong diffusion). This suggests that the threshold dynamics of the coupled sys-
tem (6) are primarily determined by the diffusion from patch-1 to patch-2 and the absence
of diffusion between the two patches. Furthermore, the basic reproduction number R̃0 re-
mains unchanged with variations in the landing and habitat preferences (ν̃i, ε̃i, i = 1, 2)
of the infected aphids on diseased citrus trees. On the other hand, it increases with an
increase in the landing and habitat preferences (ν̄i, ε̄i, i = 1, 2) of susceptible aphids on
infected citrus trees, and decreases as the feeding probability (ω̄i, ω̃i, i = 1, 2) of suscepti-
ble and infected aphids on susceptible citrus trees increases. Additionally, Figs. 4(a)–4(f )
demonstrate that the basic reproduction number is minimized under strong diffusion in-
tensity, followed by weak diffusion intensity, and maximized when there is no diffusion
between the two patches. This suggests that increasing the dispersion intensity of the cit-
rus psyllid between patch-1 and patch-2 is advantageous for the control of citrus HLB
disease.

Figure 5 depicts the influence of different coupling strengths and diffusion coefficients
on the basic reproduction number R̃0, when R01 varies with a fixed value of R02. We assume
that patch-2 is the neglected orchard, and patch-1 is the well-managed orchard. Here,
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Figure 4 Graph of changes in the basic reproduction number, R̃0, under five different coupling scenarios: (a)
when ν̄1 = ν̄2, R̃0 is influenced by ν̄1; (b) when ν̃1 = ν̃2, R̃0 is influenced by ν̃1; (c) when ε̄1 = ε̄2, R̃0 is
influenced by ε̄1; (d) when ε̃1 = ε̃2, R̃0 is influenced by ε̃1; (e) when ω̄1 = ω̄2, R̃0 is influenced by ω̄1; and (f )
when ω̃1 = ω̃2, R̃0 is influenced by ω̃1

R01 = 0.4790 and R02 = 2.0356. It can be observed that when p22 takes smaller values, R̃0

decreases to less than 1 with varying p11. The dependence of R̃0 on p11 and p22 in the
diffusion system is nonmonotonic. Furthermore, when psyllids do not spread from patch-
2 to patch-1, that is, when p22 = 0, R̃0 is less than 1 for p11 ∈ [0.1, 0.8], while for other
cases it is greater than 1. This implies that an appropriate coupling strength leads to the
transition of system (6) from a uniformly persistent state to an extinct state, and coupling
strength that is too strong or too weak is not conducive to disease control.

Figure 6 illustrates the impact of different preference parameters on the basic reproduc-
tion number R̃0 of the diffusion system. Here, Pν̄ = ν̄

1+ν̄
represents the landing preference
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Figure 5 Investigating the impact of p11 and p22 on the fundamental reproduction number, R̃0, with
R01 = 0.5354 and R02 = 2.0356: (a) the relationship between R̃0 and p11 under five different values of p22; (b)
The contour graph of R̃0 as a function of parameters p11 and p12

Figure 6 The influence of different preferences on the basic reproduction number, denoted as R̃0, varies: (a)
the contour graph of R̃0 as a function of parameters Pν̄ and �ε̄ ; (b) the contour graph of R̃0 as a function of
parameters Pω̃ and �ω̄

of susceptible psyllids on infected citrus trees, �ε̄ = ε̄
1+ε̄

represents the habitat and feeding
preference of susceptible psyllids on infected citrus trees, Pω̃ = ω̃

1+ω̃
represents the feeding

preference of infected psyllids on susceptible citrus trees, and �ω̄ = ω̄
1+ω̄

represents the
feeding preference of susceptible psyllids on susceptible citrus trees. It can be seen from
Fig. 6 that when both Pν̄ , �ε̄ take smaller values, and Pω̃ , �ω̄ take larger values simul-
taneously, it ensures that the basic reproduction number R̃0 < 1. Conversely, if R̃0 > 1, it
indicates the opposite scenario. Therefore, reducing the landing and habitat/feeding pref-
erences of susceptible psyllids on infected citrus trees, or increasing the feeding proba-
bilities of susceptible psyllids on susceptible citrus trees and infected psyllids on infected
citrus trees, is advantageous for controlling the spread of HLB.

4 Conclusion
Based on the preference and diffusion behavior of the ACP, we establish two dynamic
models: (1) an HLB transmission model based on psyllid preference (model (3)) and (2)
a diffusion model for citrus HLB based on psyllid preference (model (6)). When the HLB
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is only transmitted within a single patch, we calculate the disease-free equilibrium and
the basic reproduction number of model (3). We analyze the local stability of the disease-
free equilibrium and conduct sensitivity analysis on the system parameters to identify the
parameters that have a significant impact on the basic reproduction number R0. Finally,
through numerical simulations, we explore the effects of psyllid preference and feeding
probability on R0 and the final disease incidence ( I∞

S∞+I∞ ), under two scenarios: distinguish-
ing or not psyllid preference and feeding probability. The results show that the preference
of susceptible psyllids for infected trees hinders disease control, while the preference of
infected psyllids for infected trees aids in disease suppression. When the ACP disperses
between two patches, assuming patch-1 represents a well-managed orchard and patch-2
represents a management-deficient orchard, we couple the two patches using residence
time matrices. We calculate the basic reproduction number of the spread model (6) and
prove that, under certain conditions, the disease-free equilibrium of system (6) is globally
asymptotically stable. Furthermore, by some numerical simulations, we investigate the dy-
namic changes of the model under five different levels of coupling strength. The results
suggest that increasing the dispersal strength of the ACP between the two patches facili-
tates disease control. Additionally, for the case of unidirectional diffusion, where psyllids
only disperse from patch 1 to patch 2, appropriate diffusion will facilitate disease control,
but both large- and small-scale diffusion will not be beneficial for disease control.
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