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Abstract
Consider the well-posedness problem of an anisotropic parabolic equation with a
nonstandard growth order. The weak solution is introduced, an L∞-estimate is
provided, and the existence is established using the parabolically regularized method.

However, the weak solution under consideration is not in L1(0, T ;W1,
−→
p (x)

0 (�)), and
defining the trace becomes a new problem. In this paper, we give a new definition for
the trace of u ∈ L∞(QT ) to solve this problem. Based on the new concept of the
generalized trace and the selection of suitable test functions, the stability theorems of
the weak solutions are obtained.
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1 Introduction
Consider an anisotropic parabolic equation

ut =
N∑

i=1

∂

∂xi

(
ai(x)|uxi |pi(x)–2uxi

)
, (x, t) ∈ QT , (1.1)

with the initial value condition

u(x, 0) = u0(x), x ∈ �, (1.2)

and the boundary value condition

u(x, t) = 0, (x, t) ∈ ∂� × (0, T), (1.3)

where � ⊂R
N is a bounded domain with a smooth boundary ∂�, QT = � × (0, T), d(x) =

dist(x, ∂�) is the distance function from the boundary ∂�, both pi(x) and ai(x) belong to
C1(�), 1 ≤ i ≤ N . Compared with the usual non-Newtonian fluids equation

ut = div(|∇u|p–2∇u), (x, t) ∈ QT ,
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Equation (1.1) incorporates variable exponents pi(x) and is referred to as an evolutionary
equation with a nonstandard growth order.

Equation (1.1) arises in various physics and biology contexts, such as the dynamics of
fluids in porous media [9], anisotropic reaction-diffusion-advection systems [10], and the
spread of epidemic diseases in heterogeneous environments [2, 11]. When pi(x) = pi is a
constant, the earliest study of Equation (1.1) can be traced back to [18] in 1968.

Since the beginning of this century, with the development of the theory of the variable
exponent Sobolev space [13, 17], many mathematicians have shifted their focus to the
solvability of the parabolic equation

ut = div(|∇u|p(x)–2∇u) + f (x, t, u), (x, t) ∈ QT , (1.4)

or its anisotropic version

ut =
N∑

i=1

∂

∂xi

(|uxi |pi(x)–2uxi

)
+ f (x, t, u), (x, t) ∈ QT .

Researchers have investigated the essential changes arising from the nonstandard growth
order p(x) or pi(x) [3, 12, 16]. In recent years, a more general equation than (1.4), namely,

ut = div(a(x)|∇u|p(x)–2∇u) + f (x, t, u), (x, t) ∈ QT , (1.5)

has garnered significant attention. This kind of equation arises from the image denois-
ing [15] and the megascopic double porosity model in a periodic fractured medium [1],
where a(x) is the diffusion coefficient. If a(x) > a > 0, the well-posedness problem and the
blow-up phenomena of weak solution to equation (1.5) have been studied in [4, 20, 22].
Moreover, a more complex equation,

ut = div(a(x, t, u)|∇u|p(x,t)–2∇u) + f (x, t), (x, t) ∈ QT , (1.6)

has also been analyzed. In particular, if a(x, t, u) = |u|α + d0, d0 > 0, α ≥ 2, then the ex-
istence and the uniqueness of weak solutions to Equation (1.6) were discussed in [14].
When a(x, t, u) > a > 0 is not imposed, the existence of weak solution to Equation (1.6)
was studied in [6]; however, no uniqueness results were provided in [6]. In summary, when
a(x, t, u) ≥ 0, the uniqueness of weak solution to Equation (1.6) remains an open problem.

As for the anisotropic case, if ai(x) > a > 0,

ut =
N∑

i=1

∂

∂xi

(
ai(x)|uxi |pi(x)–2uxi

)
+ f (x, t, u), (x, t) ∈ QT ,

then the blow-up and extinction in finite time of the weak solutions have been studied in
[5, 7]. If

ai(x) > 0, x ∈ �, i = 1, 2, . . . , N ,

and
∫

�

ai(x)
– 1

pi(x)–1 dx < ∞, j = 1, 2, . . . , N ,
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the existence of weak solutions to Equation (1.1) with the initial value condition (1.2) was
proved in [27]. Moreover, by imposing various restrictions on the diffusion coefficient
ai(x), several stability theorems for weak solutions have been established in [28] using
the weak characteristic function method. The key contribution of [28] lies in the authors’
attempt to study the stability theorem independently of the boundary value condition
(1.3). Naturally, alternative conditions must be imposed on ai(x) to replace the boundary
value condition (1.3) in [28]. However, based on the related references discussed above,
we observe an important gap that remains to be addressed. Specifically, if there exists an
i0 ∈ {1, 2, . . . , N} such that

∫

�

ai0 (x)
– 1

pi0 (x)–1 dx = ∞, (1.7)

then the boundary value condition (1.3) cannot be imposed in the sense of trace. How,
then, can one prove the stability of weak solutions to equation (1.1)? A typical example is
ai(x) = dpi(x), which gives Equation (1.1) the important characteristic

∫

�

d(x)
– pi(x)

pi(x)–1 dx = ∞, i = 1, 2, . . . , N .

Such a fact invalidates all the stability theorems obtained in [28].
The primary objective of this paper is to provide a method for addressing the well-

posedness problem of Equation (1.1) under the condition that (1.7) holds. A secondary
contribution of this paper is the relaxation of assumptions regarding the existence result
of the weak solution, allowing the diffusion coefficient ai(x) to vanish within the interior
of the domain. In contrast, ai(x) > 0, x ∈ � was the fundamental assumption in our pre-
vious works [27–30]. The novelty of this paper lies in the generalization of the concept
of the classical trace for u ∈ L1(0, T ; W 1,r

0 (�)), r ≥ 1 to L∞(QT ), when ai(x) = dpi(x). This
generalization enables the study of the stability of weak solutions.

The paper is arranged as follows. In Sect. 2, we generalize the concept of the classical
trace for u ∈ L1(0, T ; W 1,r

0 (�)) to a weaker functional space, where r ≥ 1. In Sect. 3, we
define the weak solution to equation (1.1) and present the main theorems of the paper. In
Sect. 4, we obtain the L∞-estimate and prove the existence of a weak solution. In Sect. 5,
we prove two stability theorems. The first theorem focuses on the case ai(x) = dαi , with
αi being a constant. The second theorem addresses the question of defining the trace of
u when u /∈ W 1,1(�), in the case where ai(x) = dpi(x), and studies the stability under the
boundary value condition (1.3).

2 The generalization of the trace
We denote that

p+
i = max

x∈�

pi(x), p–
i = min

x∈�

pi(x)

1 < p0 = min
x∈�

{p1(x), p2(x), . . . , pN–1(x), pN (x)} ,

p0 = max
x∈�

{p1(x), p2(x), . . . , pN–1(x), pN (x)} .
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To summarize the introduction, since ai(x) may be equal to zero both on the boundary
∂� and within the interior of �, the weak solution u(x, t) is generally satisfies only the
condition

∫

�

ai(x)|uxi |pi(x)dx < ∞.

This inequality is weaker than

∫

�

|uxi |pi(x)dx < ∞,

and the boundary value condition (1.3) cannot be imposed in sense of the trace in classical
way, i.e., (2.4) below. In some details, for every i, 1 ≤ i ≤ N , we denote that

�1i = {x ∈ ∂� : ai(x) > 0} ,

�2i =
{

x ∈ ∂� : ai(x) = 0, there exists r > 0, such that
∫

�
⋂

Br(x)
ai(y)

– 1
pi(y)–1 dy < +∞

}
,

�3i =
{

x ∈ ∂� : ai(x) = 0, for any small r > 0,
∫

�
⋂

Br(x)
ai(y)

– 1
pi(y)–1 dy = +∞

}
.

Clearly, for every i, we have

∂� = �1i
⋃

�2i
⋃

�3i.

According to the analysis of [26, 29], a part of the boundary value condition of (1.3)

u(x, t) = 0, (x, t) ∈
{( N⋂

i=1

�1i

)
⋃

( N⋂

i=1

�2i

)}
× (0, T),

can be imposed in the classical trace. For example, when ai(x) = dαi , αi < p0 – 1, then we
know

∫
�

d(x)
– αi

pi(x)–1 dx < +∞, and on �2i, the part boundary value condition

u(x, t) = 0, (x, t) ∈ �2i × (0, T),

can be imposed in the classical trace.
The difficulty in determining how to define

u(x, t) = 0, (x, t) ∈ {∂� \ �1} × (0, T), (2.1)

where �1 = {(⋂N
i=1 �1i)

⋃
(
⋂N

i=1 �2i)}. It appears to be extremely challenging to solve this
problem completely and perfectly, and it deserves further discussion. Consider the non-
Newtonian fluid equation in the form

∂u
∂t

– div
(
a(x)|∇u|p–2∇u

)
–

N∑

i=1

bi(x)
∂u
∂xi

+ c(x, t)u = f (x, t),

(x, t) ∈ QT ,

(2.2)
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where p > 1, 0 ≤ a(x) ∈ C(�), bi(x) ∈ C1(�), c(x, t) and f (x, t) are continuous functions
on QT . Define B as the closure of the set C∞

0 (QT ) with respect to the norm

‖u‖B =
∫∫

QT

a(x)
(|u(x, t)|p + |∇u(x, t)|p)dxdt, u ∈ B,

then for u ∈ B, being a weak solution to Equation (2.2), the authors in [26] claimed that
the boundary value condition (1.3) is over determined, and the necessary partial boundary
value condition is

u(x, t) = 0, (x, t) ∈ � × (0, T), (2.3)

with � = (�2
⋃

�3
⋃

�4) ⊆ ∂�, and

�3 = {x ∈ ∂� : a(x) > 0},

�4 = {x ∈ ∂� : a(x) = 0, and there exists r > 0 such that
∫

�
⋂

Br(x)
a(x)

1
p–1 dx < ∞},

�2 = {x ∈ �0 :
N∑

i=1

bi(x)ni(x) < 0},

where Br(x) is the ball centered at x and with radius r, and �0 = ∂� \ (�3
⋃

�4). Proposi-
tion 2.1 in [26] yields that, if u ∈ B, then

u(x, t) = 0, (x, t) ∈ (�3
⋃

�4) × (0, T),

can be defined as in the classical way, i.e.,

u(x, t) = lim
n→∞ un(x, t) = 0, (x, t) ∈ (�3

⋃
�4) × (0, T), (2.4)

where un ∈ C∞
0 (QT ). While

u(x, t) = 0, (x, t) ∈ �2 × (0, T),

is imposed in the sense of that

lim sup
λ→0

∫ T

0

∫
{

x∈∂�λ :
∑N

i=1 bi(x)ni(x)<0
} u2

N∑

i=1

bi(x)ni(x)dσdt = 0, (2.5)

where λ > 0, lim supλ→0 f (λ) = inf
δ>0

{ess sup{f (λ) : |λ| < δ}} is the super limit. One can see
that, if u satisfies (2.4), then it also satisfies (2.5). Thus, one can regard that the boundary
value condition (2.3), which matches up with the non-Newtonian fluid Equation (2.2), is
imposed in a generalized trace defined as (2.5).

For the main Equation (1.1), a new problem arises. Since there is not the convection
term

∑N
i=1 bi(x) ∂u

∂xi
, it is impossible to define the boundary value condition (1.3) in the

sense of (2.5). In other words, if one regards that the boundary value condition (1.3) is
imposed in a sense of a generalized trace, then such a trace cannot be defined as (2.5).
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However, when u ∈ L∞(QT ), if pi(x) = pi, in [30], then the author found that the part
boundary value condition (2.1) can be imposed in the sense of

lim sup
n→∞

⎡

⎣n sup
x∈Dn\D n

2

ai(x)
1
pi |χxi ||u|

⎤

⎦ = 0, i = 1, 2, . . . , N , (2.6)

where Dn = {x ∈ � : χ(x) > 1
n }, and χ is a weak characteristic function of �, i.e., it is a

continuous function when x is near ∂� and satisfies

χ(x) > 0, x ∈ � and χ(x) = 0, x ∈ ∂�.

Now, if u ∈ L∞(QT ) is a weak solution to Equation (1.1), we obviously can generalize
(2.6) as follows:

lim sup
n→∞

⎡

⎣n sup
x∈Dn\D n

2

ai(x)
1

pi(x) |χxi ||u|
⎤

⎦ = 0, i = 1, 2, . . . , N . (2.7)

This allows us to define the boundary value condition (1.3) in the sense of (2.7). However,
a significant disadvantage is that both (2.6) and (2.7) depend on the choice of χ(x). If the
choice of χ(x) is not so good, verifying whether (2.7) holds can become challenging. So,
in this paper, we aim to find another definition of the trace of u ∈ L∞(QT ) to avoid such
a trouble. For simplicity, we only consider the typical case where ai(x) = dpi(x), and using
some idea of [30], we introduce the following new definition about the trace.

Definition 2.1 If u(x, t) ∈ L∞(QT ), then the generalization of trace of u = 0 on ∂� \ �1

can be defined as

lim sup
n→∞

sup
x∈�n\� n

2

d2|u| = 0, (2.8)

where �n =
{

x ∈ � : d2 > 1
n
}

.

By such a generalization, when ai(x) = dpi(x), if one impose the homogeneous bound-
ary value condition (1.3) in the sense of Definition 2.1, the stability of weak solutions to
Equation (1.1) can be proved. This is the main dedication of this paper.

At the end of this section, we give a short explanation of the above generalized trace. It
is well-known that, when u is in W 1,p

0 (�) or BV (�), u is almost everywhere differentiable
in �, and the classical trace of u = 0 on the boundary is defined in the sense of (2.4). Since
the weak solution considered in this paper is not in W 1,p

0 (�) or BV (�), we have to define
u = 0 on the boundary in a new way as (2.7) or (2.8). Actually, one can see that, when u(x, t)
is a continuous function in QT , u(x, t) satisfies (2.5), (2.6), (2.7), and (2.8) simultaneously.
Certainly, if for every t ∈ (0, T), u(x, t) in W 1,p

0 (�) or BV (�), then it satisfies (2.5), (2.6),
and (2.8) naturally. Among these generalized traces, (2.5) itself is not comparable with the
other definitions of trace listed above. Definitions (2.6) and (2.7) are similar. Definition
(2.8) is only can be used in the case when ai(x) = dpi(x). If u(x, t) satisfies (2.8), then by a
simple calculation, one can see that (2.6) is true only if χ(x) = d2.
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3 The definitions of weak solutions and the main results
We introduce a function space

V =
{

v ∈ Lp0
(

0, T ; W 1,�p(x)
0 (�)

)
: |vxi | ∈ Lpi(x)(QT ), i = 1, 2, . . . , N

}
,

endowed with the norm ‖u‖V = |u|Lp0
(

0,T ;W 1,�p(x)
0 (�)

) + |∇u|L�p(x)(QT ). Then, V is a separable

and reflexive Banach space [5]. We denote V ∗ by its dual space.

Lemma 3.1 Assume that π : R→R is a piecewise function in C1, satisfying π(0) = 0, and
is out of a compact set π ′ = 0. Let �(s) =

∫ s
0 π(σ )dσ . If u ∈ V and ut ∈ V ∗, we have

∫ T

0
< ut ,π(u) > dt : =< ut ,π(u) >V∗ ,V∩L∞(QT )

=
∫

�

�(u(T))dx –
∫

�

�(u(0))dx.
(3.1)

Lemma 3.1 can be found in [19].

Definition 3.2 A function u(x, t) is said to be a weak solution to Equation (1.1) with the
initial value condition (1.2) if

u ∈ L∞(QT ),
∂u
∂t

∈ V ∗, ai(x)|uxi |pi(x) ∈ L1(QT ), (3.2)

and for any function ϕ ∈ C1
0(QT ), such that

∫ T

0

〈
∂u
∂t

,ϕ
〉

dt +
N∑

i=1

∫∫

QT

ai(x)
∣∣uxi

∣∣pi(x)–2 uxiϕxi dxdt = 0. (3.3)

The initial value condition (1.2) is satisfied in the sense of

lim
t→0

∫

�

u(x, t)ψ(x)dx =
∫

�

u0(x)ψ(x)dx, ∀ψ(x) ∈ C∞
0 (�). (3.4)

By this definition, we can prove the following existence theorem in next section.

Theorem 3.3 Suppose that for every i, 1 ≤ i ≤ N , the measure of �0i = {x ∈ � : ai(x) = 0}
is zero, i.e., ai(x) is almost everywhere positive on �, and a0(x) ∈ Ap0 is a weighted function.
If pi(x) is a log-Hölder continuous function, p0 > 1, u0(x) ∈ W 1,p0

(�)
⋂

L∞(QT ), then there
exists a weak solution of Equation (1.1) with the initial value condition (1.2).

Here, we set

a0(x) = min
x∈�

{a1(x), a2(x), . . . , aN (x)},

and for any p > 1, Ap is the weight function space introduced by B. Muckenhoupt, the
details are given in the next section.
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In fact, a0(x) ∈ Ap0 is not a necessary condition. In the next section, such a condition
is used for L∞-estimate by the De Giorgi method in Theorem 4.7. We believe that by
considering the approximate equation

ut =
N∑

i=1

∂

∂xi

(
(ai(x) + ε)

(|uxi |2 + ε
) pi(x)–2

2 uxi

)
, (x, t) ∈ QT , (3.5)

as in [27], the classical parabolic equation theory [18] can yield a classical solution uε of the
initial-boundary value problem to Equation (3.5). Using the maximal principle, we have

‖uε‖L∞(QT ) ≤ c. (3.6)

The difference lies in that, in [27], ai(x) > 0, x ∈ �. However, in this paper, ai(x) may
be equal to zero at some points in �. Certainly, such a minor difference does not af-
fect the truth of (3.6). The significance of Theorem 4.7 below lies in that, using the De
Giorgi method and the embedding theorem in the weighted Sobolev space, one can inde-
pendently give an L∞-estimate of an anisotropic parabolic equation with a nonstandard
growth order.

In this paper, we are mainly concerned with the stability of the weak solutions. The first
stability result is the following.

Theorem 3.4 Let ai(x) = dαi , αi be a constant, u(x, t) and v(x, t) be two solutions to Equa-
tion (1.1), u0(x) and v0(x) be the corresponding initial values, respectively. If

αi ≥ p+
i – 1, i = 1, 2, . . . , N , (3.7)

then there is
∫

�

|u(x, t) – v(x, t)|dx ≤ c
∫

�

|u0(x) – v0(x)|dx. (3.8)

We noticed that for the non-Newtonian equation

ut = div(dα|∇u|p–2∇u), (x, t) ∈ QT ,

when α ≥ p – 1, the stability (3.8) was proved by Yin-Wang in 2004 [25]. While, α < p – 1,
the stability (3.8) can be true when the boundary value condition

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂� × (0, T)

is imposed in the sense of the classical trace. Theorem 3.4 has partially improved Yin-
Wing’s results.

One can see that if condition (3.7) is assumed in Theorem 3.4, then there is nothing to
do with the boundary value condition. At the same time, as we have introduced above, if
αi < p–

i – 1, the boundary value condition (1.3) can be imposed, the stability is also true
as (3.8). However, since pi(x) is a function on �, there is generally a gap between p–

i – 1
and p+

i – 1. Understanding how to bridge and reconcile this gap is an interesting problem.
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In the other words, if p–
i – 1 ≤ αi ≤ p+

i – 1, is Theorem 3.4 still valid? In this paper, we
directly discuss the stability of weak solutions when ai(x) = dpi(x) and obtain the following
theorem.

Theorem 3.5 Let ai(x) = dpi(x). Suppose that u(x, t) and v(x, t) are two solutions to Equa-
tion (1.1), u0(x) and v0(x) are the corresponding initial values, respectively. The same ho-
mogeneous boundary value condition

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂� × (0, T), (3.9)

is defined as Definition 2.1, then

∫

�

| u(x, s) – v(x, s) |2 dx ≤
∫

�

| u0(x) – v0(x) |2 dx. (3.10)

An open problem is whether the stability condition (3.10) holds when ai(x) = dpi(x) and
the boundary value condition (3.9) is not imposed.

4 The existence
When p(x), q1(x), q2(x) are log-Hölder continuous functions, we have the following basic
lemma.

Lemma 4.1 (i) The space
(
Lp(x)(�), ‖ · ‖Lp(x)(�)

)
,
(
W 1,p(x)(�), ‖ · ‖W 1,p(x)(�)

)
and W 1,p(x)

0 (�)

are reflexive Banach spaces.
(ii) Let q1(x) and q2(x) be real functions with 1

q1(x) + 1
q2(x) = 1 and q1(x) > 1. Then, the

conjugate space of Lq1(x)(�) is Lq2(x)(�). For any u ∈ Lq1(x)(�) and v ∈ Lq2(x)(�), there
holds

∣∣∣∣
∫

�

uvdx
∣∣∣∣≤ 2‖u‖Lq1(x)(�)‖v‖Lq2(x)(�).

(iii) There holds that

If ‖u‖Lp(x)(�) = 1, then
∫

�

|u|p(x)dx = 1.

If ‖u‖Lp(x)(�) > 1, then ‖u‖p–

Lp(x)(�)
≤
∫

�

|u|p(x)dx ≤ ‖u‖p+

Lp(x)(�)
.

If ‖u‖Lp(x)(�) < 1, then ‖u‖p+

Lp(x)(�)
≤
∫

�

|u|p(x)dx ≤ ‖u‖p–

Lp(x)(�)
.

(iv) If q1(x) ≤ q2(x), then

Lq1(x)(�) ⊃ Lq2(x)(�).

(v) If q1(x) ≤ q2(x), then

W 1,q2(x)(�) ↪→ W 1,q1(x)(�).
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(vi) (p(x)-Poincarés inequality) If p(x) ∈ C(�), then there is a constant C > 0, such
that

‖u‖Lp(x)(�) ≤ C‖∇u‖Lp(x)(�), ∀u ∈ W 1,p(x)
0 (�).

This implies that ‖∇u‖Lp(x)(�) and ‖u‖W 1,p(x)(�) are equivalent to the norms of W 1,p(x)
0 (�).

This lemma can be found in [13, 17].
In this section, we will prove Theorem 3.3. We first introduce an embedding theorem

related to anisotropic variable exponent space.

Lemma 4.2 Let 1 ≤ m < Nq̄
N–q̄ and 1

q̄ = 1
N

N∑
i=1

1
p+

i
. Then, W 1, �p(x)

0 (�) ↪→ Lm(�) and ‖u‖m ≤

M
( N∏

i=1
‖uxi‖pi(x)

) 1
N

, for all u ∈ W 1, �p(x)
0 (�), where M is a constant independent of u.

This lemma can be generalized from Lemma 1.23 of [8], and when pi(x) = pi is constant,
it was first proved in [23].

Second, we quote the weighted Sobolev space W k,p
0 (�,ω) from [24, Chap. 17], where ω

is the weighted function.
By a weight, we mean a locally integrable function ω on R

N such that ω(x) > 0 a.e. Every
weight ω gives rise to a measure on the measurable subsets ofRN through integration. This
measure will also be denoted by ω. Thus, ω(E) =

∫
E ω(x)dx for measurable sets E ⊂R

N .

Definition 4.3 Let ω be a weight and � be open. For 0 < p < ∞, we define Lp(�,ω) as the
set of measurable functions u on � such that

‖u‖Lp(�,ω) =
(∫

�

|u(x)|pω(x)dx
) 1

p
< ∞.

Definition 4.4 Let k ∈ N and 1 ≤ p < ∞. Let ω be a given family of weight functions ωα ,
|α| ≤ k, ω = {ωα = ωα(x), x ∈ �, |α| ≤ k}. We denote by W k,p(�,ω) the set of all functions
u ∈ Lp(�,ω0) for which the weak derivatives Dαu, with |α| ≤ k, belong to Lp(�,ωα). The
weighted Sobolev space W k,p(�,ω) is a normed linear space if equipped with the norm

‖u‖W k,p(�,ω) =

⎛

⎝
∑

|α|≤k

∫

�

|Dαu|pωαdx

⎞

⎠

1
p

.

If 1 < p < ∞ and ω
– 1

p–1
α ∈ L1

loc(|α| ≤ c), then W k,p(�,ω) is a uniformly convex Banach space.
If we additionally suppose that also ωα ∈ L1

loc(�), then C∞
0 (�) is a subset of W k,p(�,ω), and

we can introduce the space W k,p
0 (�,ω) as the closure of C∞

0 (�) with respect to the norm
‖u‖W k,p(�,ω).

The class of Ap weight was introduced by B. Muckenhoupt, where he showed that Ap

weights are precisely those weights ω for which the Hardy-Littlewood maximal operator
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is bounded from Lp(RN ,ω) to Lp(RN ,ω) (1 < p < ∞), that is,

M : Lp(RN ,ω) → Lp(RN ,ω),

(Mf )(x) = sup
r>0

1
|Br(x)|

∫

Br(x)
|f (y)|dy

is bounded if and only if ω ∈ Ap, i.e., there exists a positive constant C such that

(
1

|B|
∫

B
ωdx

)(
1

|B|
∫

B
ω

– 1
p–1 dx

)p–1

≤ C,

for every ball B ∈R
N .

The union of all Muckenhoupt classes Ap is denoted by A∞, A∞ =
⋃

p>1 Ap.

If ω ∈ Ap, then since ω
– 1

p–1 is a locally integrable, we have Lp(�,ω) ⊂ L1
loc(�) for every

open set �. It thus makes sense to discuss weak derivatives of functions in Lp(�,ω). The
weighted Sobolev space W k,p(�,ω) with weak derivatives Dαu ∈ Lp(�,ω), |α| ≤ k. The
norm of u in W k,p(�,ω) is given by

‖u‖W k,p(�,ω) =

⎛

⎝
∑

|α|≤k

∫

�

|Dαu|pωdx

⎞

⎠

1
p

.

We have the following:
(i) If ω ∈ Ap, then C∞(�) is dense in W k,p(�,ω).
(ii) If ω ∈ Ap, then we have a weighted Poincare inequality.
Let 1 < p < ∞ and ω ∈ Ap. Then, there are positive constants C and δ such that for all

Lipchitz conditions function ϕ defined on B(B = B(x0, R)) and for all 1 ≤ θ ≤ N
N–1 + δ,

(
1

ω(B)

∫

B
|ϕ – ϕB|θpωdx

) 1
θp ≤ CR

(
1

ω(B)

∫

B
|∇ϕ|pωdx

) 1
p

,

where ϕB = 1
ω(B)

∫
B ϕωdx.

Definition 4.5 Let � ∈ R
N be a bounded open set, 1 ≤ p < ∞, k is a nonnegative inte-

ger and ω ∈ Ap. We denote by W k,p(�,ω) the set of all functions u ∈ Lp(�,ω) for which
the weak derivatives Dαu, with |α| ≤ k, belong to Lp(�,ω). The weighted Sobolev space
W k,p(�,ω) is a normed linear space if equipped with the norm

‖u‖W k,p(�,ω) =

⎛

⎝
∫

�

|u(x)|pω(x)dx +
∑

1≤|α|≤k

∫

�

|Dαu|pω(x)dx

⎞

⎠

1
p

.

We also define the space W k,p
0 (�,ω) as the closure of C∞

0 (�) with respect to the norm

‖u‖W k,p
0 (�,ω)

=

⎛

⎝
∑

1≤|α|≤k

∫

�

|Dαu|pω(x)dx

⎞

⎠

1
p

.

We need the following basic result.
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Theorem 4.6 (The weighted Sobolev inequality) [24, Theorem 17.3] Let � ⊂ R
N be a

bounded open set and ω be an Ap-weight, 1 < p < ∞. Then, there exist positive constants
C� and δ such that for all f ∈ C∞

0 (�) and 1 ≤ η ≤ N
N–1 + δ

‖f ‖Lηp(�,ω) ≤ C�‖∇f ‖Lp(�,ω).

Now, we consider the regularized parabolic equation

ut =
N∑

i=1

∂

∂xi

(
(ai(x) + ε)|uxi |pi(x)–2uxi

)
, (x, t) ∈ QT , (4.1)

with the usual initial-boundary value conditions

u(x, 0) = u0ε(x), x ∈ �, (4.2)

u(x, t) = 0, (x, t) ∈ ∂� × (0, T), (4.3)

where, u0ε(x) ∈ C∞
0 (�) is strongly convergent to u0(x) in W 1,p0

0 (�), and u0ε(x) → u0(x)

weakly star in L∞(�).
Since pi(x) is a log-Hölder continuous function for every i, 1 ≤ i ≤ N , using a modified

De Giorgi method introduced in Theorem 2.3 of [19], we can prove the following lemma.

Theorem 4.7 Assume that uε ∈ V ∩ L∞(QT ) is a weak solution to the initial-boundary
value problem (4.1)–(4.3). If a0(x) ∈ Ap0 is a weighted function, then there is a constant C
that depends only on p0, N , T , � such that

‖uε‖L∞(QT ) ≤ ‖u0‖L∞(�) + C.

If pi(x) = pi is a constant, such a uniform L∞-estimate also can be found in Theorem 1
in [21].

For simplicity, we only give the proof of Lemma 4.7 when p0 ≥ 2. If 1 < p0 < 2, one can
also prove Lemma 4.7 using a modified De Giorgi method introduced in Theorem 2.3 in
[19]; we omit the details here. We need the following lemma (Lemma 2.1 in [19]).

Lemma 4.8 Let a, b, λ be positive constants, λ > 1
2 + b

a . Define

ϕ(s) =

⎧
⎨

⎩
eλs–1, s ≥ 0,

–e–λs + 1, s ≤ 0.
(4.4)

Then we have:
1. For any s ∈R, there holds

|ϕ(s)| ≥ λ|s|, aϕ′(s) – b |ϕ(s)| ≥ a
2

eλ|s|. (4.5)

2. For any s ≥ d, there are constants d ≥ 0, M > 1 such that

ϕ′(s) ≤ λM
[
ϕ

(
s

p0

)]p0

, ϕ(s) ≤ M
[
ϕ

(
s

p0

)]p0

. (4.6)
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3. Let �(s) =
∫ s

0 ϕ(σ )dσ . If p0 ≥ 2, then there exists c∗ such that

�(s) ≥ c∗
[
ϕ

(
s

p0

)]p0

, ∀s ≥ 0. (4.7)

Proof of Theorem 4.7 Let k be a positive constant satisfying ‖u0‖L∞(�) ≤ k, and let ϕ be
defined as in (4.1) with λ ≥ 1

2 + 2b.
We define

Gk(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u – k, u > k,

u + k, u < –k,

0, |u| ≤ k

and denote χA as the characteristic function of A. Since u ∈ V ∩ L∞(QT ), we know
ϕ(Gk(u)) ∈ V ∩ L∞(QT ). For any τ ∈ [0, T], we choose v = ϕ(Gk(u))χ[0,τ ] as the test func-
tion in (4.1), by the facts vxi = χ[0,τ ]χ{|u| > k}ϕ′(Gk(u))uxi , we have

∫ τ

0
< ut ,ϕ(Gk(u)) > dt

+
N∑

i=1

∫ τ

0

∫

�

(ai(x) + ε)|uxi |pi(x)ϕ′(Gk(u))χ{|u| > k}dxdt = 0.
(4.8)

Denote that Ak(t) = {x ∈ � : |u(x, t)| > k}. Since ‖u0‖L∞(�) ≤ k, we have

∫ τ

0
< ut ,ϕ(Gk(u)) > dt =

∫

�

�(Gk(u))(τ )dx –
∫

�

�(Gk(u0))dx

=
∫

Ak (τ )
�(Gk(u))(τ )dx –

∫

Ak (0)
�(Gk(u0))dx

=
∫

Ak (τ )
�(Gk(u))(τ )dx.

(4.9)

Let a = 1 in (4.5). We have ϕ′ ≥ ϕ′ – b|ϕ| ≥ 1
2 eλ|Gk (u)| > 0. Since |uxi |pi(x) ≥ |uxi |p0 – 1,

i = 1, 2, . . . , N , Equality (4.8) yields

∫

Ak (τ )
�(Gk(u))(τ )dx +

N∑

i=1

∫ τ

0

∫

Ak (t)
(ai(x) + ε)|uxi |p0ϕ′dxdt

≤ c
N∑

i=1

∫ τ

0

∫

Ak (t)
ϕ′dxdt.

(4.10)

Denoting ωk = ϕ( |Gk (u)|
p0

), by p0 ≥ 2, we have

N∑

i=1

∫ τ

0

∫

Ak (t)
(ai(x) + ε)|uxi |p0ϕ′dxdt

≥ 1
2

N∑

i=1

∫ τ

0

∫

Ak (t)
(ai(x) + ε)

∣∣∣∣e
λ

|Gk (u)|
p0 uxi

∣∣∣∣
p0

dxdt (4.11)
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=
1
2

N∑

i=1

∫ τ

0

∫

Ak (t)
(ai(x) + ε)

∣∣∣
p0

λ

∣∣∣
p0 |ωkxi |p0 dxdt

≥ 1
2

N∑

i=1

(
1
λ

)p0 ∫ τ

0

∫

Ak (t)
(ai(x) + ε)|ωkxi |p0 dxdt.

By the definition of Ak , we have Ak(t)\Ak+d(t) = {x ∈ � : k < |u(x, t)| ≤ k + d}. Thus, on
Ak(t)\Ak+d(t), we have 0 < |Gk(u)| ≤ d, ϕ′(Gk(u)) = λeλ|Gk (u)| ≤ λeλd . From (4.6), we have

∫ τ

0

∫

Ak (t)
ϕ′dxdt

≤λM
∫ τ

0

∫

Ak+d(t)
|ωk|p0 dxdt +

∫ τ

0

∫

Ak (t)\Ak+d(t)
ϕ′dxdt

≤λM
∫ τ

0

∫

Ak+d(t)
|ωk|p0 dxdt + λeλd

∫ τ

0

∫

Ak (t)\Ak+d(t)
dxdt.

(4.12)

Combing (4.10), (4.11), and (4.12), we can deduce that

∫

Ak (τ )
�(Gk(u))(τ )dx +

1
2

N∑

i=1

(
1
λ

)p0 ∫ τ

0

∫

Ak (t)
(ai(x) + ε)|ωkxi |p0 dxdt

≤λM
N∑

i=1

∫ τ

0

∫

Ak+d(t)
|ωk|p0 dxdt + λeλd

N∑

i=1

∫ τ

0

∫

Ak (t)\Ak+d(t)
dxdt.

(4.13)

By (4.7), we have

∫

Ak (τ )
�(Gk(u))(τ )dx ≥ C∗

∫

Ak (τ )
|ωk|p0 dx. (4.14)

Substituting (4.14) into (4.13) and taking the supremum for τ ∈ [0, t1] with t1 ≤ T , we
have

C∗
∫

Ak (τ )
|ωk|p0 dx +

1
2

N∑

i=1

(
1
λ

)p0 ∫ t1

0

∫

Ak (t)
(ai(x) + ε)|ωkxi |p0 dxdt

≤λM
N∑

i=1

∫ t1

0

∫

Ak (t)
|ωk|p0 dxdt + λeλd

N∑

i=1

∫ t1

0

∫

Ak (t)\Ak+d(t)
dxdt.

(4.15)

Since p0 > 1, 1 < N
N–p0

≤ N
N–1 + δ is obviously true. Moreover, since p0 ≥ 2, we have

a0(x)|∇ωk|p0 ≤ 2(
p0
2 –1)(N–1) ≤

N∑

i=1

ai(x)|ωkxi |p0 . (4.16)
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By that a0 ∈ Ap0 and inequality (4.16), we can use Theorem 4.6 and the Hölder inequality
to obtain

(∫ t1

0

∫

Ak (t)
|ωk|p0

N + p0

N
dxdt

) N
N+p0

=
(∫ t1

0

∫

Ak (t)
|ωk|p0 |ωk|p0

p0
N dxdt

) N
N+p0

≤
⎛

⎝
∫ t1

0

(∫

Ak (t)
a0 |ωk|p0 dx

) p0
N
(∫

Ak (t)
a0 |ωk|

Np0
N–p0 dx

)N–p0
N

dt

⎞

⎠

N
N+p0

≤
⎛

⎝
(

sup
τ∈[0,t1]

∫

Ak (τ )
a0 |ωk|p0 dx

) p0
N ∫ t1

0

(∫

Ak (t)
a0 |ωk|

Np0
N–p0 dx

)N–p0
N

dt

⎞

⎠

N
N+p0

(4.17)

≤
⎛

⎝C(p0, N , |�|)
(

sup
τ∈[0,t1]

∫

Ak (τ )
|ωk|p0 dx

) p0
N (∫ t1

0

∫

Ak (t)
a0 |∇ωk|p0 dxdt

)⎞

⎠

N
N+p0

≤ C(p0, N , |�|)
(

sup
τ∈[0,t1]

∫

Ak (τ )
|ωk|p0 dx +

∫ t1

0

∫

Ak (t)
a0|∇ωk|p0 dxdt

)

≤ C(p0, N , |�|)

×
(

sup
τ∈[0,t1]

∫

Ak (τ )
|ωk|p0 dx + 2(

p0
2 –1)(N–1)

N∑

i=1

∫ t1

0

∫

Ak (t)
ai(x)|ωkxi |p0 dxdt

)

≤ C(p0, N , |�|)
(

sup
τ∈[0,t1]

∫

Ak (τ )
|ωk|p0 dx +

N∑

i=1

∫ t1

0

∫

Ak (t)
(ai(x) + ε)|ωkxi |p0 dxdt

)
,

where, C(p0, N , |�|) depends on N , p0, |�| but is independent of t1 ≤ T .
Hence, from (4.15), it follows that

Jkt1 : =
(∫ t1

0

∫

Ak (t)
|ωk|p0

N+p0
N dxdt

) N
N+p0

≤ C

( N∑

i=1

∫ t1

0

∫

Ak (t)
|ωk|p0 dxdt +

N∑

i=1

∫ t1

0

∫

Ak (t)\Ak+d(t)
dxdt

)
,

where C is independent of t1.
Consequently, by the Hölder inequality and r > N+p0

p0
, we have

Jkt1 : ≤ C
N∑

i=1

{(∫ t1

0

∫

Ak (t)
|ωk|p0

N+p0
N dxdt

) N
N+p0

(∫ t1

0

∫

Ak (t)
dxdt

) p0
N+p0

}

+ C
N∑

i=1

{(∫ t1

0

∫

Ak (t)
dxdt

) 1
r
(∫ t1

0
μ(Ak(t))dt

)1– 1
r
}
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≤ C
N∑

i=1

{(∫ t1

0

∫

Ak (t)
|ωk|p0

N+p0
N dxdt

) N
N+p0

(t1μ(�))
p0

N+p0 –
1
r

}

+ C
N∑

i=1

{(∫ t1

o
μ(Ak(t))dt

)1– 1
r
}

,

where μ(�) is the measure of �.
Now, if we choose t1 small enough such that

C
N∑

i=1

{
(t1μ(�))

p0
N+p0

– 1
r
}

≤ 1
2

, (4.18)

we have

Jkt1 ≤ c
N∑

i=1

{(∫ t1

0
μ(Ak(t))dt

)1– 1
r
}

. (4.19)

For any l > k ≥ ‖u0‖L∞(�), using (4.5), we obtain that

Jkt1 ≥
⎛

⎝
∫ t1

0

∫

Ak (t)

∣∣∣∣
λGk(u)

p0

∣∣∣∣
p0

N+p0
N

dxdt

⎞

⎠

N
N+p0

≥
(

λ

p0

)p0 (∫ t1

0

∫

Ak (t)
(|u| – k)p0

N+p0
N dxdt

) N
N+p0

≥
(

λ

p0

)p0

(l – k)p0

(∫ t1

0
μ(Al(t))dt

) N
N+p0

.

(4.20)

Let ψk =
∫ t1

0 μ(Ak(t))dt. It follows from (4.19) and (4.20) that

ψl ≤ C

(l – k)
p0(N+p0)

N
ψ

(1– 1
r )

N+p0
N

k . (4.21)

Since r > N+p0
N implies (1 – 1

r ) N+p0
N > 1, according to the iteration lemma [31], we know

that ψ(‖u0‖L∞(�) + C) = 0, where C depends on p0, N , t1, r, b, �. The above discussion
shows that, for any given λ, Lemma 4.8 implies

|u(x, t)|L∞(Qt1 ) ≤ ‖u0(x)‖L∞(�) + C. (4.22)

Moreover, we split [0, T] into a series subinterval [0, t1], [t1, t2], . . . , [tn–1, T], such that
on every [ti, ti+1], Inequality (4.18) is true. Then by a similar method, we can also ob-
tain Inequality (4.22). By such a consideration, we can deduce that ‖u(x, t)‖L∞(QT ) ≤
‖u0(x)‖L∞(�) + C, where C depends on p0, N , T , r, b, �. �

Proof of Theorem 3.3 By Lemma 4.7, multiplying (4.1) by uε yields

N∑

i=1

∫∫

QT

ai(x)
∣∣uεxi

∣∣pi(x) dxdt ≤ c. (4.23)
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Since for every i, ai(x) ∈ C1(�) is positive almost everywhere in �, if we denote that

D0i = {x ∈ � : ai(x) > 0}, i = 1, 2, . . . , N ,

then

|D0i| = mes D0i = mes � = |�|, i = 1, 2, . . . , N ,

which implies

mes
N⋂

i=1

D0i = |�|. (4.24)

Thus, for every point x ∈⋂N
i=1 D0i, there is a neighbourhood Ux ∈⋂N

i=1 D0i, when x ∈ Ux,
ai(x) > 0 for every i. From (4.23), we have

∫ T

0

∫

Ux

∣∣uεxi

∣∣pi(x) dxdt ≤ c, i = 1, 2, . . . , N .

By Lemma 4.2, we know that there is a function u ∈ Lm(Ux × (0, T)) and

uε → u, in Lm(Ux × (0, T))

and so

uε → u, a.e. (x, t) ∈ (Ux × (0, T)).

By (4.24), we know

uε → u, a.e. (x, t) ∈ QT . (4.25)

Meanwhile, for each v ∈ V , by the definition of the norm V and pi(x)-Hölder inequality,
since ai(x) ∈ C1(�), we have

sup
‖v‖≤1

∣∣∣∣∣<
N∑

i=1

(
ai(x)|uxi |pi(x)–2uxi

)
xi

, v >

∣∣∣∣∣

= sup
‖v‖≤1

∣∣∣∣∣

N∑

i=1

∫∫

QT

ai(x)|uxi |pi(x)–2uxi vxi dxdt

∣∣∣∣∣

≤c sup
‖v‖≤1

N∑

i=1

(∫∫

QT

ai(x)|uxi |pi(x)dxdt
) 1

p1i ‖vxi‖Lpi(x)(QT )

≤c,

where pi1 = p+
i or p–

i according to ‖ai(x)uxi‖Lpi(x)(�) > 1 or ≤ 1 from (iii) of Lemma 4.1.
Thus, we have

∥∥∥∥
∂uε

∂t

∥∥∥∥
V∗

≤ c. (4.26)
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Hence, from (4.23), (4.25), and (4.26), there exist a function u and an N-dimensional
vector

−→
ζ = (ζ1, . . . , ζn) such that

u ∈ L∞(QT ),
∂u
∂t

∈ V ∗, ζi ∈ L1
(

0, T ; L
pi(x)

pi(x)–1 (�)

)
,

and

uε ⇀ u, weakly star in L∞(QT ),

∂uε

∂t
⇀

∂u
∂t

in V ∗,

ai(x)
∣∣uεxi

∣∣pi(x)–2 uεxi ⇀ ζi in L1
(

0, T ; L
pi(x)

pi(x)–1 (�)

)
.

Similar to the proof of Theorem in [27], we can show that

N∑

i=1

∫∫

QT

ai(x)
∣∣uxi

∣∣pi(x)–2 uxiϕxi dxdt =
N∑

i=1

∫∫

QT

ζi(x)ϕxi dxdt, (4.27)

for any function ϕ ∈ C1
0(QT ). Then, we have (3.2) and (3.3).

At last, similar to the general evolutionary p(x)-Laplacian equation [8], we are able to
show (3.4).

Thus, u satisfies Equation (1.1) with the initial value (1.2) in the sense of Definition 3.2.
�

5 Proofs of Theorem 3.4 and Theorem 3.5
For n > 0 being a natural number, let

hn(s) = 2n(1 – n|s|)+, gn(s) =
∫ s

0
hn(τ )dτ .

Obviously,

lim
η→0

gn(s) = sgns, lim
η→0

sg ′
n(s) = 0.

Proof of Theorem 3.4 Let u(x, t) and v(x, t) be two weak solutions to Equation (1.1) with
the initial values u0(x) and v0(x), respectively, but without any boundary value condition.
We define

φn(x) =

⎧
⎪⎨

⎪⎩

1, if x ∈ � n
2

,
n(d(x) – 1

n ), if x ∈ �n \ � n
2

,
0, if x ∈ � \ �n,

where �n =
{

x ∈ � : d(x) > 1
n
}

.
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Then, we can take χ[τ ,s]φngn(u – v) as the test function in which χ[τ ,s] is the characteristic
function of [τ , s] ⊂ (0, T). From Definition 3.2, we have

∫ s

τ

∫

�

φngn(u – v)
∂(u – v)

∂t
dxdt

+
N∑

i=1

∫ s

τ

∫

�

dαi
(∣∣uxi

∣∣pi(x)–2 uxi –
∣∣vxi

∣∣pi(x)–2 vxi

)

× (uxi – vxi )g
′
n(u – v)φn(x)dxdt

+
N∑

i=1

∫ s

τ

∫

�n\� n
2

dαi
(∣∣uxi

∣∣pi(x)–2 uxi –
∣∣vxi

∣∣pi(x)–2 vxi

)

× (uxi – vxi )gn(u – v)φnxi dxdt

= 0.

(5.1)

First, we notice that

∫

�

dαi
(∣∣uxi

∣∣pi(x)–2 uxi –
∣∣vxi

∣∣pi(x)–2 vxi

)
(uxi – vxi )g

′
n(u – v)φn(x)dx ≥ 0, (5.2)

and then by Lemma 3.1, we have

lim
n→∞

∫ s

τ

∫

�

φn(x)gn(u – v)
∂(u – v)

∂t
dxdt

=
∫

�

|u – v|(x, s)dx –
∫

�

|u – v|(x, τ )dx.
(5.3)

Second, since φnxi = ndxi when x ∈ �n \ � n
2

, using the fact that |dxi | ≤ |∇d| = 1, Lemma
4.1, and (3.7), we deduce that

∣∣∣∣
∫

�

dαi
(∣∣uxi

∣∣pi(x)–2 uxi –
∣∣vxi

∣∣pi(x)–2 vxi

)
φnxi gn(u – v)dx

∣∣∣∣

=

∣∣∣∣∣∣

∫

�n\� n
2

dαi
(∣∣uxi

∣∣pi(x)–2 uxi –
∣∣vxi

∣∣pi(x)–2 vxi

)
φnxi gn(u – v)dx

∣∣∣∣∣∣

≤n
∫

�n\� n
2

dαi
(∣∣uxi

∣∣pi(x)–1 +
∣∣vxi

∣∣pi(x)–1
) ∣∣dxi gn(u – v)

∣∣dx

≤cn

⎛

⎝
∫

�n\� n
2

dαi
(∣∣uxi

∣∣pi(x) +
∣∣vxi

∣∣pi(x)
)

dx

⎞

⎠

1
q+

i
⎛

⎝
∫

�n\� n
2

dαi |dxi |pi(x)dx

⎞

⎠

1
p+

i

(5.4)

≤c

⎡

⎢⎣

⎛

⎝
∫

�n\� n
2

dαi |uxi |pi(x)dx

⎞

⎠

1
q+

i

+

⎛

⎝
∫

�n\� n
2

dαi |vxi |pi(x)dx

⎞

⎠

1
q+

i

⎤

⎥⎦

· n

⎛

⎝
∫

�n\� n
2

dαi dx

⎞

⎠

1
p+

i
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≤c

⎛

⎝
∫

�n\� n
2

dαi |uxi |pi(x)dx

⎞

⎠

1
q+

i

+ c

⎛

⎝
∫

�n\� n
2

dαi |vxi |pi(x)dx

⎞

⎠

1
q+

i

.

Here and the after, qi(x) = pi(x)
pi(x)–1 and q+

i = max
x∈�

qi(x).

Accordingly, we have

lim
n→∞

∣∣∣∣
∫ s

τ

∫

�

dαi
(∣∣uxi

∣∣pi(x)–2 uxi –
∣∣vxi

∣∣pi(x)–2 vxi

)
φnxi gn(u – v)dxdt

∣∣∣∣

≤c lim
n→∞

[(∫

�\�n

dαi |uxi |pi(x)dx
) 1

q+
i +

(∫

�\�n

dαi |vxi |pi(x)dx
) 1

q+
i

]

=0.

(5.5)

Let η → 0 in (5.1). From (5.2)–(5.5), we have
∫

�

|u(x, s) – v(x, s)|dx ≤
∫

�

|u(x, τ ) – v(x, τ )|dx.

Due to the arbitrariness of τ , we obtain
∫

�

|u(x, s) – v(x, s)|dx ≤ c
∫

�

|u0(x) – v0(x)|dx.

The proof is complete. �

Proof of Theorem 3.5 Let u(x, t) and v(x, t) be two weak solutions to Equation (1.1) with
the initial values u0(x) and v0(x), respectively. Define

ϕn(x) =

⎧
⎪⎨

⎪⎩

1, if x ∈ D n
2

,
n(d2 – 1

n ), if x ∈ Dn \ D n
2

,
0, if x ∈ � \ Dn,

(5.6)

where Dn = {x ∈ � : d2 > 1
n }. Take

ϕ = χ[τ ,s](u – v)ϕn(x),

where χ[τ ,s] is the characteristic function on [τ , s]. Then, we have

∫∫

QT

[(
∂u
∂t

–
∂v
∂t

)
ϕ +

N∑

i=1

dpi(x)
(∣∣uxi

∣∣pi(x)–2 uxi –
∣∣vxi

∣∣pi(x)–2 vxi

)
ϕxi

]
dxdt = 0. (5.7)

Let us analyze the next term of the left-hand side of (5.7):

∫ s

τ

∫

�

dpi(x)
(|uxi |pi(x)–2uxi – |vxi |pi(x)–2vxi

)
[(u – v)ϕn]xi dxdt

=
∫ s

τ

∫

�

dpi(x)
(|uxi |pi(x)–2uxi – |vxi |pi(x)–2vxi

)
(u – v)xiϕndxdt

+n
∫ s

τ

∫

Dn\D n
2

dpi(x)
(|uxi |pi(x)–2uxi – |vxi |pi(x)–2vxi

)
(u – v)2ddxi dxdt.

(5.8)



Zhan Advances in Continuous and Discrete Models         (2024) 2024:55 Page 21 of 23

First, we have
∫∫

Qτ s

dpi(x)ϕn(x)
(|uxi |pi(x)–2uxi – |vxi |pi(x)–2vxi

)
(u – v)xi dxdt ≥ 0. (5.9)

Second, by the generalization of the trace defined in Definition 2.1, we know

lim sup
n→∞

⎡

⎣n sup
x∈Dn\D n

2

d2|u – v|
⎤

⎦ = 0, i = 1, 2, . . . , N ,

for the second term on the right-hand side of (5.8), using the Young inequality, we have

lim sup
n→∞

∣∣∣∣
∫∫

Qτ s

(u – v)dpi(x)
(|uxi |pi(x)–2uxi – |vxi |pi(x)–2vxi

)
ϕnxi dxdt

∣∣∣∣

≤ lim sup
n→∞

n
∫ s

τ

∫

Dn\D n
2

|u – v|dpi(x)–1 (|uxi |pi(x)–1 + |vxi |pi(x)–1)2d2|dxi |dxdt

≤c lim sup
n→∞

n
∫ s

τ

∫

Dn\D n
2

dpi(x)
(|uxi |pi(x) + |vxi |pi(x)

) |u – v|d2dxdt

+c lim sup
n→∞

n
∫ s

τ

∫

Dn\D n
2

dpi(x)|u – v|d2dxdt

≤c lim sup
n→∞

n sup
x∈Dn\D n

2

[
d2|u – v|]

×
∫ s

τ

∫

Dn\D n
2

dpi(x)
(|uxi |pi(x) + |vxi |pi(x)

)
dxdt

+c lim sup
n→∞

n sup
x∈Dn\D n

2

d2|u – v|.

(5.10)

Inequality (5.10) yields

lim sup
n→∞

∣∣∣∣
∫∫

Qτ s

(u – v)dpi(x)
(|uxi |pi(x)–2uxi – |vxi |pi(x)–2vxi

)
ϕnxi dxdt

∣∣∣∣ = 0. (5.11)

Third, we have

lim
n→∞

∫∫

Qτ s

(u – v)ϕn(x)
∂(u – v)

∂t
dxdt

=
∫

�

[u(x, s) – v(x, s)]2dx –
∫

�

[u(x, τ ) – v(x, τ )]2dx.
(5.12)

In view of (5.8)–(5.12), letting n → ∞ in (5.7) leads to
∫

�

| u(x, s) – v(x, s) |2 dx ≤
∫

�

| u(x, τ ) – v(x, τ ) |2 dx.

Due to the arbitrariness of τ , we obtain
∫

�

| u(x, s) – v(x, s) |2 dx ≤
∫

�

| u0(x) – v0(x) |2 dx.

This means that the stability (3.10) is true. �
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6 Conclusion
Equations of the type (1.1) and their elliptic counterparts appear in numerous mathemat-
ical models from fluid mechanics, image processing, and virus spread modeling. As noted
by the author in the introduction, while the existence of weak solution to Equation (1.1) has
been studied extensively in the literature, the uniqueness of weak solution, except some
special cases, remains an open problem. The difficulties mainly arise from both the de-
generacy of the diffusion coefficient ai(x) and the integral singularity

∫
�

ai(x)dx = ∞.
In this paper, using the parabolically regularized method, the existence of such weak

solution is proved, even allowing ai(x) = 0 within the interior of the domain �. Moreover,
a reasonable boundary value condition (1.3) is imposed in the generalized trace defined in
Definition 2.1. Two stability theorems for weak solutions are also established, applicable
when ai(x) = dαi , with αi being a constant, and when ai(x) = dpi(x).

Certainly, if ai(x) is only with
∫
�

ai(x)dx = ∞, the generalization of the classical trace of
u ∈ L1(0, T ; W 1,r(�)) to u ∈ L∞(QT ) remains an unsolved problem. In fact, if ai(x) > a–

i > 0,
then the well-posedness problem of the evolutionary parabolic equation with nonstandard
growth order was studied intensively by Antontsev and Shmarev in [2–8]. While ai(x)

exhibits the degeneracy in �, especially when
∫
�

ai(x)dx = ∞, the well-posedness problem
of the evolutionary parabolic equation with nonstandard growth order is very important
and becomes more difficult. A key difficulty lies in formulating a reasonable boundary
value condition. This paper makes some essential progress in addressing this issue.
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