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Abstract
This study establishes a novel three-species host–parasitoid–hyperparasitoid system
with mutual interference effects on parasitoids and hyperparasitoids. We derive the
asymptotic stability conditions for the equilibrium points and classify the impacts of
hyperparasitoids on the dynamical behavior by comparing these stability conditions.
Additionally, we demonstrate the presence of a fold bifurcation in the proposed
three-dimensional model using a novel center manifold projection method. Finally,
we verify our findings through numerical simulations.
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1 Introduction
The host–parasitoid models describe the interactions between insect species, where the
organism being consumed is referred to as the host, while the organism benefiting from
this consumption is identified as the parasitoid. Approximately 8–10% of all insect species
are classified as parasitoids [1], with the majority being wasps; however, some flies, a
few beetles, and moths have also evolved into parasitoids. Given that parasitoid species
are specialists targeting specific hosts, they are frequently employed in biological control
methods [2].

Most existing literature has primarily concentrated on the dynamics of two-species sys-
tems involving a single parasitoid species [3, 4]. Considering that the searching behavior
of parasitoids may be altered in the presence of conspecifics or upon encountering a para-
sitized host, some researchers [5, 6] have improved their models by scaling the parasitoid’s
constant search efficiency to account for mutual interference effects. A general mutual in-
terference host–parasitoid model was given by system (1.1) in [7],

{
Ht+1 = λHte–aP1–m

t ,
Pt+1 = kHt(1 – e–aP1–m

t ),
(1.1)
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where Ht and Pt represent the host and parasitoid densities at generation t, respectively;
m is the mutual interference constant, and a is the quest constant; λ stands for the mean
number of eggs from a host that survive to be the subsequent generation, and k represents
the mean number of eggs from a parasitoid on a host that survive to be the next generation.

In contrast, real insect ecosystems are characterized by the interaction of multiple
species, resulting in complex interrelations. The challenges in linking theoretical mod-
els to practical applications arise from oversimplified assumptions regarding parasitism.
Consequently, there are few significant findings on the changes in dynamical behavior
induced by the presence of a third species. In 1977, Beddington and Hammand [8] pro-
posed a discrete-time host–parasitoid–hyperparasitoid system, identifying several critical
parameters related to its feasibility and stability. Subsequently, Zhang and Zhao [9] mod-
ified this model by incorporating the effects of prolonged diapause in the host, which led
to the observation of various complex dynamic behaviors. Additionally, Broadley et al.
[10] conducted field and laboratory biological control programs to assess the impact of
hyperparasitoids on the efficiency of parasitoids as control agents.

Based on specific biological assumptions, we model a novel three-species host–par-
asitoid–hyperparasitoid system with mutual interference effects on both parasitoids and
hyperparasitoids and investigate the stability and fold bifurcation of the system. We as-
sume that hosts are initially parasitized by primary parasitoids, which subsequently be-
come available for consumption by hyperparasitoids. Hyperparasitism occurs when the
parasitoid is attacked by another hyperparasitoid. Uninfected insects produce the next
generation, while successfully parasitized insects die. The eggs injected by the parasitic
species survive and develop into their subsequent generation. Let Ht , Pt , and Qt denote
the population densities of hosts, parasitoids, and hyperparasitoids in the tth generation,
respectively. The number of encounters He (between hosts and parasitoids) and Pe (be-
tween parasitoids and hyperparasitoids) are quantified as follows [11]:

He := c1HtPt , Pe := c2HeQt ,

where c1 and c2 represent the constant searching efficiencies of parasitoids and hyperpar-
asitoids. Considering the host reproductive rate λ > 1, we derive the following:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ht+1 = λ(Ht – He),

Pt+1 = He – Pe,

Qt+1 = Pe.

(1.2)

Furthermore, by using the Poisson distribution for probabilities of encounters [12], we
obtain the portion of insects without parasitism:

R1(0) = e–c1P, R2(0) = e–c2Q.

Therefore,

Ht+1 = λ(Ht – He) = λ
[
Ht – Ht(1 – e–c1Pt )

]
,

Pt+1 = He – Pe = He – He(1 – e–c2Qt ) = Ht(1 – e–c1Pt )e–c2Qt ,

Qt+1 = Pe = He(1 – e–c2Qt ) = Ht(1 – e–c1Pt )(1 – e–c2Qt ).
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Considering the mutual interference effects within the parasitoids and hyperparasitoids,
constant searching efficiencies can be modified to c1 = aPt

–m and c2 = bQt
–n. System (1.2)

is modified to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ht+1 = λHte–aP1–m
t ,

Pt+1 = Ht(1 – e–aP1–m
t )e–bQ1–n

t ,

Qt+1 = Ht(1 – e–aP1–m
t )(1 – e–bQ1–n

t ),

(1.3)

where m ∈ (0, 1) and n ∈ (0, 1) denote the mutual interference of parasitoids and hyper-
parasitoids, respectively; a > 0 and b > 0 are two quest constants.

2 Stability analysis
The positive equilibrium points are obtained by setting Ht+1 = Ht = H∗, Pt+1 = Pt = P∗, and
Qt+1 = Qt = Q∗ in system (1.3). Solving system (1.3), we get

P∗ =
(

lnλ

a

) 1
1–m

,

Q∗ = P∗(ebQ∗1–n
– 1),

H∗ =
λ

(
lnλ
a

) 1
1–m

λ – 1
ebQ∗1–n

.

Due to the high nonlinearities, we can only illustrate that system (1.3) has positive equi-

librium points (H∗, P∗, Q∗) ∈
(

λ( lnλ
a )

1
1–m

λ–1 , +∞
)

× {( lnλ
a )

1
1–m } × (0, +∞).

The Jacobian matrix of system (1.3) calculated at the positive equilibrium (H∗, P∗, Q∗) is
given by

J(H∗ ,P∗ ,Q∗) =

⎛
⎜⎝

1 –a(1 – m)H∗P∗–m 0
P∗/H∗ a(1 – m)P∗–m(H∗e–bQ∗1–n

– P∗) –b(1 – n)Q∗–nP∗

Q∗/H∗ a(1 – m)P∗–m[H∗(1 – e–bQ∗1–n
) – Q∗] b(1 – n)Q∗–nP∗

⎞
⎟⎠ .

The corresponding characteristic polynomial is

P1(γ ) = γ 3 + a1γ
2 + a2γ + a3, (2.1)

where a1 = –
[

1 + M
λ

+ NP∗
(1–m)H∗ lnλ

]
, a2 = M + NP∗

(1–m)H∗ lnλ
+ N

λ
, a3 = –N , M = (1–m)λ lnλ

λ–1 , N =

b(1 – m)(1 – n)H∗Q∗–n lnλ, and � = 1 + λ
λ–N

[
N(1 – N)

(
1 – P∗

(1–m)H∗ lnλ

)]
.

Lemma 1 ([12]) The equilibrium point of a three-dimensional discrete system is locally
asymptotically stable if all eigenvalues of its characteristic polynomial lie inside the unit
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disk if and only if

(1) P1(1) = 1 + a1 + a2 + a3 > 0,

(2) P1(–1) = –1 + a1 – a2 + a3 < 0,

(3) D+
2 = 1 + a2 – a3(a1 + a3) > 0,

(4) D–
2 = 1 – a2 + a3(a1 – a3) > 0.

Theorem 1 Suppose that N < 1; then the positive equilibrium point (H∗, P∗, Q∗) of system
(1.3) is locally asymptotically stable if and only if

N < M < �.

Proof P1(1) = (1 – 1
λ

)(M – N) > 0 if and only if M > N ; P1(–1) = –2
[

1 + NP∗
(1–m)H∗ lnλ

]
–

(1 + 1
λ

)(M + N) < 0 always holds. D+
2 = M(1 – N

λ
) + (1 – N)

[
1 + NP∗

(1–m)H∗ lnλ

]
+ N( 1

λ
– N)

and D–
2 = M( N

λ
– 1) + 1 + N

[
(1 – N)

(
1 – P∗

(1–m)H∗ lnλ

)
– 1

λ

]
. D+

2 + D–
2 = 2(1 – N2) ≤ 0

for N ≥ 1, which is contradictory. Therefore, we assume that N < 1. D+
2 > 0 iff M >

λ
λ–N

[
N(N – 1

λ
) – (1 – N)

(
1 + NP∗

(1–m)H∗ lnλ

)]
, which always holds for N < 1. D–

2 > 0 iff M <
�. �

We compare the stability of the two-species host–parasitoid system (1.1) with the three-
species host-parasitoid-hyperparasitoid system (1.3) to identify the effect of the hyperpar-
asitoid Q on the dynamical behavior:

1. When 0 < M < 1, the two-species equilibrium (H∗, P∗) is stable [7]. If N < 1, then
stable coexistence of the host, parasitoid, and hyperparasitoid is possible for
N < M < min{1,�}, where introducing the hyperparasitoid Q results in an increase in

the host’s population level (if Q∗ > 0, H∗ > λ( lnλ
a )

1
1–m

λ–1 ). Conversely, for M ≤ N , the
hyperparasitoid Q disrupts the stability. If N ≥ 1, then the three-species equilibrium
becomes unstable, indicating that Q destabilizes the interaction.

2. When M ≥ 1, the two-species equilibrium (H∗, P∗) is consistently unstable. If N < 1,
then a stable three-species equilibrium exists for M < �, during which the
hyperparasitoid stabilizes the interaction.

3 Fold bifurcation
The fold bifurcation serves as a biological switch that can create or destroy equilib-
rium points. It occurs when two equilibrium points—one stable and the other unstable—
approach and annihilate each other as a bifurcation parameter is varied [13]. Fold bifur-
cation is associated with sudden population changes, such as sudden extinction events or
rapid population booms. Therefore, recognizing and understanding the fold bifurcation
is vital for effective population management and conservation strategies.

3.1 Explicit criterion for the eigenvalue condition
The explicit criterion provides eigenvalue conditions for determining whether system (1.3)
undergoes a fold bifurcation. The characteristic polynomial (2.1) has one real root equal



Jia and Jung Advances in Continuous and Discrete Models         (2024) 2024:54 Page 5 of 10

to 1 and all other roots are inside the unit circle if and only if [14]

P1(1) = 0, P1(–1) < 0, D+
2 > 0, D–

2 > 0.

Proposition 2 Assume N < 1 and M < �. If b = λ
(1–n)(λ–1)H∗Q∗–n , then system (1.3) has one

eigenvalue γ1 = 1, and all other eigenvalues are inside the open unit disk.

Proof Similar to the proof of Theorem 1, if M = N , i.e., b = λ
(1–n)(λ–1)H∗Q∗–n , we obtain

P1(1) = 0. When N < 1 and M < �, the conditions P1(–1) < 0, D+
2 > 0, and D–

2 > 0 are satis-
fied. �

3.2 Center manifold computation by the projection method
We rewrite system (1.3) in the following three-dimensional map:

X �→ f (X, b), X ∈R
3, b ∈R, (3.1)

where X = (H , P, Q) and b is the bifurcation parameter. We assume that system (1.3) under-
goes a fold bifurcation at (X∗, b0). Under the coordinate transformation [15], h = H – H∗,
v = P –P∗, w = Q–Q∗, and μ = b–b0, the fold bifurcation point becomes (x,μ) = (0, 0, 0, 0),
where x = (h, v, w) ∈R

3. The map (3.1) becomes

x �→ Jx + F(x,μ), x ∈ R
3, μ ∈R, (3.2)

where J = DXf (X∗, b0) and F(x,μ) = f – Jx. The Jacobian matrix J has one eigenvalue γ1 =
1, and the magnitudes of all other eigenvalues are less than one. The critical eigenspace
Tc is one-dimensional and spanned by an eigenvector q ∈ R

3 such that Jq = γ1q. Let p ∈
R

3 denote the adjoint eigenvector such that JT p = γ1p. p and q satisfy 〈p, q〉 = 1. The 2-
dimensional linear eigenspace Tsu corresponds to the other two eigenvalues.

Lemma 2 ([16]) The vector y ∈ Tsu if and only if 〈p, y〉 = 0.

For any vector x ∈R
3, it can be decomposed as follows:

x = uq + y, (3.3)

where uq ∈ Tc and y ∈ Tsu. Moreover,

⎧⎨
⎩

u = 〈p, x〉,
y = x – 〈p, x〉q,

(3.4)

where u ∈ R and y ∈R
3. Upon designating the parameter μ as a new dependent variable,

the map (3.2) can be represented as

⎛
⎜⎝

u
y
μ

⎞
⎟⎠ �→

⎛
⎜⎝

γ1u + 〈p, F(uq + y,μ)〉
Jy + F(uq + y,μ) – 〈p, F(uq + y,μ)〉q

μ

⎞
⎟⎠ . (3.5)
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Next, we give some functions:

Dμ,j =
∂Fj(0,μ)

∂μ
|μ=0, Dμμ,j =

∂2Fj(0,μ)

∂μ2 |μ=0, Dxμ,j(x) =
n∑

k=1

∂2Fj(ξ ,μ)

∂μ∂ξk
|ξ=0,μ=0 · xk ,

Bi(x, y) =
n∑

j,k=1

∂2Fi(ξ , 0)

∂ξj∂ξk
|ξ=0 · xjyk , Ci(x, y, z) =

n∑
j,k,l=1

∂3Fi(ξ , 0)

∂ξj∂ξk∂ξl
|ξ=0 · xjykzl.

It becomes feasible to re-express system (3.5) as

⎛
⎜⎝

u
y
μ

⎞
⎟⎠ �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u + r1μ +
1
2

r2u2 + r3μu +
1
2

r4μ
2 +

1
6

r5u3 + 〈p, B(q, y)〉u

+ 〈p, Dxμ(y)〉μ +
1
2
〈p, B(y, y)〉 + · · ·

Jy + r6μ +
1
2

r7u2 + r8μu + r9μ
2 + (B(q, y) – 〈p, B(q, y)〉q)u

+ (Dxμ(y) – 〈p, Dxμ(y)〉)μ +
1
2

(B(y, y) – 〈p, B(y, y)〉q) + · · ·
μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.6)

where r1 = 〈p, Dμ〉, r2 = 〈p, B(q, q)〉, r3 = 〈p, Dxμ(q)〉, r4 = 〈p, Dμμ〉, r5 = 〈p, C(q, q, q)〉,
r6 = Dμ – 〈p, Dμ〉q, r7 = B(q, q) – 〈p, B(q, q)〉q, r8 = Dxμ(q) – 〈p, Dxμ(q)〉q, and r9 = Dμμ –
〈p, Dμμ〉q. Assume that the center manifold has the following form:

y = W (u,μ) = A1u + A2μ + O(2), (3.7)

where A1, A2 ∈ Tsu ⊂ R
3. Substituting (3.7) into (3.6) and comparing the coefficients, we

can obtain A1 = 0 and A2 = –(J – I)INV r6.

Remark 1 The matrix J has an eigenvalue γ1 = 1, so the notation ‘INV’ cannot be the
inverse of a matrix. r6 ∈ Tsu since 〈p, r6〉 = 0. The restriction of the linear transformation
corresponding to (J – I) to its invariant subspace Tsu is invertible, so equation (J – I)A2 =
–r6 has a unique solution A2 ∈ Tsu.

Substituting (3.7) into the first equation of (3.6), we obtain

(
u
μ

)
�→

(
u + s1μ + 1

2 s2u2 + s3μu + 1
2 s4μ

2 + · · ·
μ

)
, (3.8)

where the coefficients are s1 = r1, s2 = r2, s3 = r3 + 〈p, B(q, A2)〉, and s4 = r4 + 2〈p, Dxμ(A2)〉 +
〈p, B(A2, A2)〉. Finally, system (3.8) can be reduced to a one-dimensional map ϕ(u,μ) at
(0, 0) with ϕu(0, 0) = 1. It takes the following form:

ϕ(u,μ) = u + ϕμ(0, 0)μ +
1
2
ϕuu(0, 0)u2 + ϕuμ(0, 0)uμ +

1
2
ϕμμ(0, 0)μ2 + · · · .

Based on the fold bifurcation theory [16], we can establish the following fold bifurcation
theorem.
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Figure 1 (a)–(c) Fold bifurcation diagrams of system (1.3). The corresponding parameters are a = 0.06,
b ∈ [0.06, 0.0733],m = 0.5, n = 0.4, λ = 1.5, and the initial condition (H0,P0,Q0) = (422.53, 45.67, 95.18)

Theorem 3 System (1.3) undergoes a fold bifurcation at the positive equilibrium point
(H∗, P∗, Q∗) when the bifurcation parameter b changes in the small range of b0 =

λ
(1–n)(λ–1)H∗Q∗–n if and only if the following conditions hold:

1. Eigenvalue assignment: Proposition 2;
2. Nondegenerance condition: s1 �= 0;
3. Transversality condition: s2 �= 0.

Furthermore, two equilibrium points bifurcate for b < b0, coalesce at b = b0, and disappear
for b > b0.

3.3 Numerical simulation
If a = 0.06, b ∈ [0.06, 0.0733], m = 0.5, n = 0.4, and λ = 1.5, then system (1.3) will undergo
a fold bifurcation. Figure 1 gives the bifurcation diagrams for the host, parasitoid, and
hyperparasitoid. From this figure, we observe that a stable equilibrium (red solid lines)
and an unstable equilibrium (blue dashed lines) coalesce at b0 ≈ 0.0732023; for b > b0,
there is no positive equilibrium. It indicates that the system undergoes a fold bifurcation
when b = b0. Figures 2, 3, and 4 present some phase portraits for various values of b and
the corresponding vector fields for both stable and unstable equilibria:

1. Fig. 2(a) shows the phase portrait when b = 0.06. The blue solid dot represents a
positive unstable equilibrium (1592.85, 45.67, 485.28), which converges to the red
stable equilibrium point (196.2, 45.67, 19.73) along the blue dashed trajectory. The
vector fields for both stable and unstable positive equilibria are depicted in Figs. 2(b)
and (c), respectively.

2. For b = 0.067, the phase portrait is illustrated in Fig. 3(a), where the stable and
unstable equilibria are (238.32, 45.67, 33.77) and (963.7, 45.67, 275.56), respectively.
Figures 3(b) and (c) show their vector fields.
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Figure 2 (a) Phase portrait of system (1.3) when b = 0.06 and the initial condition
(H0,P0,Q0) = (1592.85, 45.67, 485.28). (b) and (c) show the corresponding vector fields for the two equilibria

Figure 3 (a) Phase portrait of system (1.3) when b = 0.067 and the initial condition
(H0,P0,Q0) = (963.7, 45.67, 275.56). (b) and (c) show the corresponding vector fields for the two equilibria
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Figure 4 (a) Phase portrait of system (1.3) when b = 0.072 and the initial condition
(H0,P0,Q0) = (585.38, 45.67, 149.46). (b) and (c) show the corresponding vector fields for the two equilibria

3. As b increases to 0.072, the phase portrait is shown in Fig. 4(a). Figures 4(b) and (c)
display the vector fields for the stable equilibrium (319.8, 45.67, 60.93) and the
unstable equilibrium (585.38, 45.67, 149.46), respectively.

As b increases, the stable and unstable equilibrium points gradually approach each
other and coalesce until they ultimately disappear. Next, we take the bifurcation parame-
ter b0 = 0.0732023 and the bifurcation point (H∗, P∗, Q∗) = (422.52728872, 45.66720941,
95.17522016) to compute the coefficients of the fold bifurcation. The eigenvalues are
γ1 = 0.99999996 ≈ 1, γ2 = 0.36485424 + 0.68925973i, and γ3 = 0.36485424 – 0.68925973i.
According to the results of the analysis in Sect. 3.2, we can take the normalized vectors
q = (–0.94868329, –0.000000019024275, –0.31622778) and p = (–0.81083532, 1.5209207,
–0.72977179). We then compute the following coefficients:

s1 = –1581.3754 �= 0, s2 = –0.00021144108 �= 0.

4 Conclusion
This study models a three-species host–parasitoid–hyperparasitoid system based on spe-
cific biological assumptions. The parametric conditions for ensuring the stability of the
positive equilibrium points are derived. Furthermore, we compare the stabilities of two-
species and three-species systems, illustrating that hyperparasitoids can either stabilize
interactions, destabilize the system, or increase the host population level. The projection
method for center manifold computation effectively reduces the three-dimensional map
to a one-dimensional map, enabling us to establish the conditions under which the system
experiences a fold bifurcation. A numerical simulation example demonstrates the fold bi-
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furcation, characterized by the destruction of equilibria, where one stable equilibrium and
one unstable equilibrium coalesce and subsequently disappear as b passes through b0.
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