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Abstract
In this paper, we investigate an approximative maximum likelihood estimator (MLE)
for the drift coefficient of a stochastic partial differential equation in the case where
the corresponding Fourier coefficients uk(t), k = 1, . . . ,N over a finite interval of time
[0, T ] are observed on a uniform time grid: 0 = t0 < t1 < · · · < tM = T , with
� := ti – ti–1 = T/M, i̇ = 1, . . . ,M. We provide an explicit Berry–Esseen bound in
Kolmogorov distance for this approximative MLE when N,M, T → ∞, assuming that
T3N7/M2 → 0 and N2/T → 0.
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1 Introduction
In recent years, the study of the rate of convergence in the central limit theorem for drift
parameter estimation of the solution to certain stochastic partial differential equations
(SPDEs) has received growing attention. We refer to the paper [2] and the references
therein for an extensive description of the literature on parameter estimation for SPDEs.

In this paper, we consider the stochastic partial differential equation

du(t, x) = θ�u(t, x)dt + dWQ(t, x), 0 < x < 1, 0 ≤ t ≤ T , (1.1)

u(0, x) = f (x), f ∈ L2 ([0, 1]) ,

u(t, 0) = u(t, 1) = 0, 0 ≤ t ≤ T ,

where � = ∂2

∂x2 , and θ > 0 is an unknown parameter, whereas Q is the covariance operator
for the Wiener process WQ(t, x) so that

WQ(t, x) = Q1/2W (t, x),
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with W (t, x) being a cylindrical Brownian motion in L2 ([0, 1]). It is a standard fact (see,
e.g., [12]) that, given Q is nuclear,

dWQ(t, z) =
∞∑

i=1

q1/2
k ek(x) dWk(t),

where W1, W2, . . . are independent standard Brownian motions, and {ek , k = 1, 2, . . .} is a
complete orthonormal system in L2 ([0, 1]), which consists of eigenvectors of Q. We denote
qk as the eigenvalue corresponding to ek . For simplicity, we consider a special covariance
operator Q = (1 – �)–1 and a complete orthonormal system ek := sin kπx, k = 1, 2, . . . with
λk = (πk)2, k = 1, 2, . . . . In this case, the corresponding eigenvalues {ek , k = 1, 2, . . .} are
qk := (1 + λk)

–1, i = 1, 2 . . . , that is,

Qek = qkek = (1 + λk)
–1 ek , k = 1, 2 . . . .

We define a solution u(t, x) to the problem (1.1) as a formal sum (see [12])

u(t, x) =
∞∑

i=1

uk(t)ek(x), k = 1, 2 . . . ,

where the Fourier coefficients uk(t), k = 1, 2 . . . follow the dynamics of Ornstein–
Uhlenbeck processes as follows:

duk(t) = –λkθuk(t)dt +
1√

λk + 1
dWk(t), (1.2)

with initial condition

uk(0) = αk .

Here, αk , k = 1, 2 . . . are determined by

f (x) =
∞∑

k=0

αkek(x), αk =
∫ 1

0
f (x)ek(x)dx, k = 1, 2 . . . .

It can be shown (see [12]) that u(t, x) belongs to L2 ([0, T] × �; L2 ([0, 1])
)

together with its
derivative in x. It vanishes at 0 and 1 in space, and its norm in L2 ([0, 1]) is continuous in t.
In addition, u(t, x) is the only solution to (1.1) with the above properties. In what follows,
to simplify the notation, we set u(0, x) = f (x) = 0 and, consequently, uk(0) = 0 for all i ≥ 1.

We denote by 	N the finite dimensional subspace of L2(�) generated by {e1, . . . , eN },
so the likelihood ratio of the projection of the solution u(t, x) onto the subspace 	N (see
[7, 9])

uN (t, x) =
N∑

i=1

uk(t)ek(x)
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can be expressed as follows:

dPN
θ

dPN
θ0

(
uN)

= exp

{
–

N∑

k=1

λk (λk + 1)

[
(θ – θ0)

∫ T

0
uk(t)duk(t) +

1
2
(
θ2 – θ2

0
)
λk

∫ T

0
u2

k(t)dt
]}

,

where Pθ denotes the probability measure on the space of continuous paths C([0, T]) gen-
erated by the uN . Maximizing the log-likelihood ratio with respect to the parameter θ

yields the following maximum likelihood estimator (MLE) θ̂N ,T for θ based on continuous
observations of uN :

θ̂N ,T := –
∑N

k=1 λk(1 + λk)
∫ T

0 uk(s)duk(s)
∑N

i=1 λ2
k(1 + λk)

∫ T
0 u2

k(s)ds
, N ≥ 1, T > 0. (1.3)

Recall that the estimator θ̂N ,T is strongly consistent and asymptotically normal in three
asymptotic regimes: for the two cases N → ∞ and T fixed, and T → ∞ and N fixed, see,
for instance, [2] and the references therein, and for the case when both N , T → ∞, see
[3]. On the other hand, in [8], a Berry–Esseen bound in Kolmogorov distance for θ̂N ,T

has been studied in the case where N → ∞ while T is fixed. However, paper [4] provided
Berry–Esseen bounds in the Wasserstein distance for θ̂N ,T when N → ∞ and/or T → ∞.

Here, our aim is to estimate the drift parameter θ based on discrete high-frequency data
in time of the Fourier coefficients uk(t), k = 1, . . . , N of the solution of the SPDE (1.1) by
considering the discrete version θ̃N ,M,T of the estimator θ̂N ,T :

θ̃N ,M,T := –
∑N

k=1 λk(1 + λk)
∑M

i=1 uk (ti–1) [uk (ti) – uk (ti–1)]

�
∑N

k=1 λ2
k(1 + λk)

∑M
i=1 u2

k (ti–1)
, (1.4)

where the Fourier modes uk(t), k ≥ 1 are observed on a uniform time grid:

0 = t0 < t1 < · · · < tM = T , with � := ti – ti–1 =
T
M

, i = 1, . . . , M.

Recently, the work [3] studied the asymptotic properties of the approximative MLE θ̃N ,M,T

as follows:
• The estimator θ̃N ,M,T is weakly consistent, see [3, Theorem 2], namely

θ̃N ,M,T → θ , in probability,

as N , M, T → ∞, and assuming that T2N3/M2 → 0.
• The estimator θ̃N ,M,T is asymptotically normal, see [3, Theorem 3]. More precisely,

dKol

(√
π2TN3

6θ

(
θ – θ̃N ,M,T

)
,N (0, 1)

)
→ 0,

as N , M, T → ∞, and such that T3N6/M2 → 0.
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However, the study of the asymptotic distribution of an estimator is generally not very
useful for practical purposes unless the rate of convergence is known. To the best of our
knowledge, no Berry–Esseen type result is known for the distribution of the approxima-
tive MLE θ̃N ,M,T . In the present paper, we focus on the framework proposed by [3] and
refine their result by deriving estimates for the associated rates of convergence. More pre-
cisely, we provide a rate of Kolmogorov distance in the central limit theorem of θ̃N ,M,T , see
Theorem 4.6.

The remainder of the paper is organized as follows. In Sect. 2, we present the basic
tools of Malliavin calculus needed throughout the paper. Section 3 provides notation and
auxiliary results. Section 4 presents our main result, which gives an explicit upper bound
for the Kolmogorov distance in the central limit theorem of the approximative MLE θ̃N ,M,T .

2 Preliminaries
Here, we recall elements from the analysis on Wiener space and Malliavin calculus for
Gaussian processes that will be needed throughout the paper. The interested reader
can find more details in [10] and [11]. Let H := L2([0, T]) and let {W (ϕ),ϕ ∈H} be a
Wiener process, that is a centered Gaussian family of random variables on a probabil-
ity space (�,F ,P) such that E(W (ϕ)W (ψ)) = 〈ϕ,ψ〉H. In this case, Wt = W (1[0,t]) and
W (ϕ) :=

∫ T
0 ϕ (s)dWs for every ϕ ∈H.

The Wiener chaos Hp of order p is defined as the closure in L2 (�) of the linear span of
the random variables Hp(W (ϕ)), where ϕ ∈H, ‖ϕ‖H = 1 and Hp is the Hermite polynomial
of degree p.

• Multiple Wiener–Itô integral. The multiple Wiener stochastic integral Ip with respect
to W of order p is defined as an isometry between the Hilbert space H�p = L2

sym ([0, T]p)

(symmetric tensor product) equipped with the norm
√

p!‖ · ‖H⊗p and the Wiener chaos
of order p, denoted by Hp, under L2 (�)’s norm, that is, the multiple Wiener stochastic
integral of order p:

Ip :
(
H�p,

√
p!‖ · ‖H⊗p

)
−→ (

Hp, L2 (�)
)

is a linear isometry defined by Ip(f ⊗p) = Hp(W (f )).
Fix T ≥ 1 and an integer N ≥ 1. Recall that, if H = L2 ([0, T],RN) and W = (W1, W2, . . . ,

WN ) with W1, W2, . . . , WN are independent standard Brownian motions, for every h =(
h1, . . . , hN) ∈H, the multiple integral I1(h) is defined by

I1(h) := IW
1 (h) =

N∑

i=1

IWi
1 (hi) =

N∑

i=1

∫ T

0
hi

sdWi(s), (2.1)

and

‖h‖2
H =

N∑

i=1

∫ T

0
(hi

s)
2ds.

• Kolmogorov and Wasserstein distances. Given two real-valued random variables X, Y ,
the Kolmogorov distance between the law of X and the law of Y is given by

dKol (X, Y ) := sup
z∈R

|P (X ≤ z) – P (Y ≤ z)| ,
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and the Wasserstein distance between the law of X and the law of Y is given by

dW (X, Y ) := sup
f ∈Lip(1)

|E[f (X)] – E[f (Y )]|,

where Lip(1) is the set of all Lipschitz functions with Lipschitz constant ≤ 1.
It is well known that if F is any real-valued random variable and N (0, 1) is standard

Gaussian, then

dKol(F ,N (0, 1)) ≤ 2
√

dW(F ,N (0, 1)).

(See, for example, [1, Theorem 3.3] or [10, Remark C.2.2]).
• Third and fourth cumulants. The third and fourth cumulants are, respectively, defined

by

κ3(X) = E
[
X3] – 3E

[
X2]

E[X] + 2E[X]3,

κ4(X) = E
[
X4] – 4E[X]E

[
X3] – 3E

[
X2]2 + 12E[X]2

E
[
X2] – 6E[X]4.

In particular, when E[X] = 0, we have that

κ3(X) = E
[
X3] and κ4(X) = E

[
X4] – 3E

[
X2]2 .

Throughout the paper, N (0, 1) denotes a standard normal random variable, while
N (μ,σ 2) denotes a normal variable with mean μ and variance σ 2. Cθ also denotes a
generic positive constant (possibly depending on θ but not on any other parameters),
which may change from line to line.

3 Notation and auxiliary results
Here, we introduce the notation and essential facts used throughout the paper.

First, let us recall a quantitative central limit theorem (CLT) for random ratios using
the Kolmogorov distance. Recently, using techniques that rely on a combination of the
Malliavin calculus and Stein method (see, e.g., [10]), authors of paper [6] provided upper
bounds in the Kolmogorov distance for the CLT of a ratio of functionals of Gaussian fields.
Here, we state a slight extension of [6, Theorem 3.1], which can be proved using the same
arguments as in [6]; thus, its proof is omitted. We now state the required assumptions.

Assumption (A1) Suppose that q is a fixed positive integer. Let φN ,M,T , N , M ≥ 1, T > 0
be positive constants and {GN ,M,T , N , M ≥ 1, T > 0} be a stochastic process that satisfies,
as N , M, T → ∞,

φN ,M,T → ∞,
∣∣∣∣

1
ρ
√

φN ,M,T
EGN ,M,T – 1

∣∣∣∣→ 0,

E
[
(GN ,M,T – EGN ,M,T )2]−→ σ 2

(3.1)

for some positive constants ρ > 0, σ > 0, and

GN ,M,T – EGN ,M,T = VN ,M,T +
1√

φN ,M,T
RN ,M,T , N , M ≥ 1, T > 0, (3.2)
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where VN ,M,T , RN ,M,T ∈Hq, N , M ≥ 1, T > 0, and as N , M, T → ∞,

‖RN ,M,T‖L2(�)√
φN ,M,T

→ 0.

Assumption (A2) Let {(AN ,M,T , aN ,M,T ), N , M ≥ 1, T > 0} be a stochastic process that sat-
isfies, for all N , M ≥ 1, T > 0, AN ,M,T ∈ Hq, and aN ,M,T is a real constant such that, as
N , M, T → ∞,

‖AN ,M,T‖L2(�) + |aN ,M,T |√
φN ,M,T

→ 0.

Theorem 3.1 (A slight extension of [6, Theorem 3.1]) Let {GN ,M,T , N , M ≥ 1, T > 0} and
{(AN ,M,T , aN ,M,T ), N , M ≥ 1, T > 0} be stochastic processes satisfying (A1) and (A2), respec-
tively. Then, there exists a constant C > 0 (independent of N , M, and T ) such that, for all
N , M ≥ 1, T > 0,

dKol

⎛

⎝
1
σ

(GN ,M,T – EGN ,M,T ) + 1√
φN ,M,T

(
AN ,M,T + aN ,M,T

)

1
ρ
√

φN ,M,T
GN ,M,T

,N (0, 1)

⎞

⎠

≤ max

(∣∣∣∣κ3

(
VN ,M,T

σ

)∣∣∣∣ ,κ4

(
VN ,M,T

σ

))
+ Cφ

1
4

N ,M,T

∣∣∣∣
1

ρ
√

φN ,M,T
EGN ,M,T – 1

∣∣∣∣

+C
∣∣E[(GN ,M,T – EGN ,M,T )2] – σ 2∣∣

+
C√

φN ,M,T

(‖RN ,M,T‖L2(�) + ‖AN ,M,T‖L2(�) + |aN ,M,T |) ,

where the constants ρ and σ are defined by (3.1), and {VN ,M,T , N , M ≥ 1, T > 0} and
{RN ,M,T , N , M ≥ 1, T > 0} are the processes given by (3.2).

Note that the approximative MLE of θ defined by (1.4) can be expressed as follows:

θ̃N ,M,T = –
∑N

k=1 λk(1 + λk)
∑M

i=1 uk (ti–1) [uk (ti) – uk (ti–1)]

�
∑N

k=1 λ2
k(1 + λk)

∑M
i=1 u2

k (ti–1)

= –
∑N

k=1 λk
∑M

i=1 vk (ti–1) [vk (ti) – vk (ti–1)]

�
∑N

k=1 λ2
k
∑M

i=1 v2
k (ti–1)

, (3.3)

where uk(t) is the solution of the linear equation (1.2), which can be expressed explicitly
as follows:

uk(t) =
1√

1 + λk
vk(t), with vk(t) :=

∫ t

0
e–θλk (t–s)dWk(s), k = 1, . . . , N .

For each k = 1, . . . , N , if we denote the Gaussian stationary process e–θλk t ∫ t
–∞ eθλk sdWk(s)

by Zk(t), then vk(t) can be expressed as

vk(t) = Zk(t) – e–θλk tZk(0), t ≥ 0. (3.4)
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Define

SN ,M,T :=
N∑

k=1

λ2
kSM(vk), with SM(vk) := �

M∑

i=1

v2
k(ti–1),

and

FM(vk) :=
√

T
M

M∑

i=1

(
v2

k(ti–1) – Ev2
k(ti–1)

)
. (3.5)

Observe that

SM(vk) – ESM(vk) =
√

TFM(vk).

Let us also introduce

�N ,M,T :=
N∑

k=1

λk

M∑

i=1

e–θλk ti vk (ti–1) [ζk (ti) – ζk (ti–1)]

=
N∑

k=1

λk

M∑

i=1

e–θλk (ti+ti–1)ζk (ti–1) [ζk (ti) – ζk (ti–1)]

=:
N∑

k=1

λk�λk ,M, (3.6)

where

�λk ,M =
M∑

i=1

e–θλk (ti+ti–1)ζk (ti–1) [ζk (ti) – ζk (ti–1)] , ζk(t) =
∫ t

0
eθλk sdWk(s). (3.7)

Thus, using (3.3) and the fact that

M∑

i=1

vk (ti–1) [vk (ti) – vk (ti–1)] =
M∑

i=1

vk (ti–1) vk (ti) –
M∑

i=1

v2
k (ti–1)

=
M∑

i=1

e–θλk (ti+ti–1)ζk (ti–1) (ζk (ti) – ζk (ti–1))

+
M∑

i=1

e–θλk (ti+ti–1)ζ 2
k (ti–1) –

M∑

i=1

v2
k (ti–1)

= �N ,M,T +
(
e–λkθ� – 1

) M∑

i=1

v2
k (ti–1) ,

we get

–θ̃N ,M,T =
∑N

k=1 λk
(
e–λkθ� – 1

)∑M
i=1 v2

k (ti–1) + �N ,M,T

�
∑N

k=1 λ2
k
∑M

i=1 v2
k (ti–1)

.
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This enables us to write

θ – θ̃N ,M,T =
∑N

k=1 λk
(
e–λkθ� – 1 + λkθ�

)∑M
i=1 v2

k (ti–1)

SN ,M,T
+

�N ,M,T

SN ,M,T
.

Moreover, setting

fN ,M,T (v) :=
1

M
N∑

k=1
λk

N∑

k=1

λ2
k

M∑

i=1

v2
k (ti–1) , (3.8)

GN ,M,T =

√√√√T
N∑

k=1

λk fN ,M,T (v) , ρ =
1

2θ
, σ 2 =

1
2θ3 , (3.9)

AN ,M,T =
√

2θ

[ N∑

k=1

λ2
k

(
e–λkθ� – 1

λk�
+ θ

)
(SM(vk) – ESM(vk))

+�N ,M,T – θ

N∑

k=1

λ2
k (SM(vk) – ESM(vk))

]
, (3.10)

and

aN ,M,T =
√

2θ

[ N∑

k=1

λ2
k

(
e–λkθ� – 1

λk�
+ θ

)
ESM(vk)

]
, (3.11)

we can write

√√√√ T
2θ

N∑

k=1

λk
(
θ – θ̃N ,M,T

)

=

√
2θ

T
N∑

k=1
λk

[∑N
k=1 λk

(
e–λkθ� – 1 + λkθ�

)∑M
i=1 v2

k (ti–1) + �N ,M,T

]

2θ

M
N∑

k=1
λk

∑N
k=1 λ2

k
∑M

i=1 v2
k (ti–1)

=

√
2θ

T
N∑

k=1
λk

[∑N
k=1 λk

(
e–λkθ� – 1 + λkθ�

)∑M
i=1 v2

k (ti–1) + �N ,M,T

]

1

ρ

√
T

N∑

k=1
λk

(√

T
N∑

k=1
λk fN ,M,T (v)

)

=:

1
σ

(GN ,M,T – EGN ,M,T ) + 1√
T

N∑

k=1
λk

(
AN ,M,T + aN ,M,T

)

1

ρ

√
T

N∑

k=1
λk

GN ,M,T
, (3.12)
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where the last equation follows from the fact that

√
2θ

[ N∑

k=1

λk
(
e–λkθ� – 1 + λkθ�

) M∑

i=1

v2
k (ti–1) + �N ,M,T

]

–
1
σ

√√√√T
N∑

k=1

λk
(
GN ,M,T – EGN ,M,T

)

=
√

2θ

[ N∑

k=1

λk
(
e–λkθ� – 1

) M∑

i=1

v2
k (ti–1) + �N ,M,T + θ�

N∑

k=1

λ2
k

M∑

i=1

Ev2
k (ti–1)

]

=
√

2θ

[ N∑

k=1

λ2
k

(
e–λkθ� – 1

λk�
+ θ

)
(SM(vk) – ESM(vk))

+
N∑

k=1

λ2
k

(
e–λkθ� – 1

λk�
+ θ

)
ESM(vk)

+�N ,M,T – θ

N∑

k=1

λ2
k (SM(vk) – ESM(vk))

]
.

Moreover,

GN ,M,T – EGN ,M,T = VN ,M,T +
1

√

T
N∑

k=1
λk

RN ,M,T , N , M ≥ 1, T > 0,

where

VN ,M,T =
1

√
N∑

k=1
λk

N∑

k=1

λ2
kFM(Zk), with FM(Zk) :=

√
T

M

M∑

i=1

(
Z2

k (ti–1) – EZ2
k (ti–1)

)
,

(3.13)

and

RN ,M,T =

√√√√T
N∑

k=1

λk
(
GN ,M,T – EGN ,M,T – VN ,M,T

)

= T
N∑

k=1

λk
[(

fN ,M,T (v) – fN ,M,T (Z)
)

–
(
EfN ,M,T (v) – EfN ,M,T (Z)

)]
. (3.14)

4 Main results
To derive Berry–Esseen bounds in the Kolmogorov distance for the estimator θ̃N ,M,T , we
will use the following lemmas.
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Lemma 4.1 Let FM(vk) be the process defined by (3.5). Then, there exists Cθ > 0 that de-
pends only on θ such that, for every k, M ≥ 1,

∣∣∣∣E
(
F2

M(vk)
)

–
1

2θ3λ3
k

∣∣∣∣≤ Cθ

[
�2

λk
+

1
λ2

kM�

]
. (4.1)

Proof Since vk(ti–1) is Gaussian, it follows from the Wick formula that

E
(
v2

k(ti–1)v2
k(tj–1)

)
= E

(
v2

k(ti–1)
)
E
(
v2

k(tj–1)
)

+ 2
(
E
(
vk(ti–1)vk(tj–1)

))2 .

Hence, we can write

E
(
F2

M(vk)
)

=
2�

M

M∑

i,j=1

(
E
(
vk(ti–1)vk(tj–1)

))2

=
2�

M

M∑

i,j=1

(
e–θλk (ti–1+tj–1)

∫ ti–1∧tj–1

0
e2θλk sds

)2

=
2�

M(2θλk)2

M∑

i,j=1

(
e–θλk |tj–1–ti–1| – e–θλk (ti–1+tj–1)

)2

=
2�

M(2θλk)2

M∑

i,j=1

(
e–2θλk |tj–1–ti–1| – 2e–2θλk (tj–1∨ti–1) + e–2θλk (ti–1+tj–1)

)

=: B1,k,M + B2,k,M + B3,k,M. (4.2)

Furthermore,

∣∣∣∣B1,k,M –
1

2θ3λ3
k

∣∣∣∣ =

∣∣∣∣∣∣
2�

M(2θλk)2

M∑

i,j=1

e–2θλk |tj–1–ti–1| –
1

2θ3λ3
k

∣∣∣∣∣∣

=

∣∣∣∣∣∣
�

2θ2λ2
k

+
�

Mθ2λ2
k

M∑

i<j=1

e–2θλk (j–i)� –
1

2θ3λ3
k

∣∣∣∣∣∣

=

∣∣∣∣∣
�

2θ2λ2
k

+
�

Mθ2λ2
k

M–1∑

l=1

(M – l)e–2θλk l� –
1

2θ3λ3
k

∣∣∣∣∣

=

∣∣∣∣∣
–�

2θ2λ2
k

+
�

θ2λ2
k

M–1∑

l=0

e–2θλk l� –
�

Mθ2λ2
k

M–1∑

l=1

le–2θλk l� –
1

2θ3λ3
k

∣∣∣∣∣

≤
∣∣∣∣∣

–�

2θ2λ2
k

+
�

θ2λ2
k

(
1 – e–2θλkM�

)
(
1 – e–2θλk�

) –
1

2θ3λ3
k

∣∣∣∣∣ +

∣∣∣∣∣
�

Mθ2λ2
k

M–1∑

l=1

le–2θλk l�

∣∣∣∣∣

=: a1,k,M + b1,k,M. (4.3)

On the other hand,

a1,k,M ≤
∣∣∣∣∣

–�

2θ2λ2
k

+
�

θ2λ2
k

1(
1 – e–2θλk�

) –
1

2θ3λ3
k

∣∣∣∣∣ +
�

θ2λ2
k

e–2θλkM�

(
1 – e–2θλk�

)
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=

∣∣∣∣∣
θλk�e–2θλk� + θλk – 1 + e–2θλk�

2θ3λ3
k
(
1 – e–2θλk�

)
∣∣∣∣∣ +

�

θ2λ2
k

e–2θλk M�

(
1 – e–2θλk�

)

=
�2

2θλk

∣∣∣∣∣
θλk�e–2θλk� + θλk� – 1 + e–2θλk�

(θλk�)2
(
1 – e–2θλk�

)
∣∣∣∣∣ +

e–2θλk M�

θ3λ3
k

θλk�(
1 – e–2θλk�

)

= C
[

�2

2θλk
+

e–2θλkM�

θ3λ3
k

(1 + θλk�)

]
, (4.4)

where we used that

sup
x>0

xe–2x + x – 1 + e–2x

x2
(
1 – e–2x

) < C,

and

sup
x>0

x
(1 + x)(1 – e–2x)

< C, (4.5)

for some constant C > 0, since the functions xe–2x+x–1+e–2x

x2(1–e–2x) and x
(1+x)(1–e–2x)

are continuous
on (0,∞), and

lim
x→∞

xe–2x + x – 1 + e–2x

x2
(
1 – e–2x

) = 0,

lim
x→0

xe–2x + x – 1 + e–2x

x2
(
1 – e–2x

) = lim
x→0

xe–2x + x – 1 + e–2x

x3
x

1 – e–2x = (2)(1/2) = 1,

and

lim
x→0

x
(1 + x)(1 – e–2x)

= 1/2, lim
x→∞

x
(1 + x)(1 – e–2x)

= 1.

Further, since λk > 1,

b1,k,M =
�

Mθ2λ2
k

M–1∑

l=1

le–2θλk l�

≤ �

Mθ2λ2
k

M–1∑

l=1

le–2θ l�

=
1

Mθ2λ2
k�

M–1∑

l=1

(l�)e–2θ l��

≤ Cθ

Mλ2
k�

, (4.6)

where we used

lim
M→∞

M–1∑

l=1

(l�)e–2θ l�� =
∫ ∞

0
xe–2θxdx =

1
2θ2 .
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Combining (4.3), (4.4) and (4.6), we obtain

∣∣∣∣B1,k,M –
1

2θ3λ3
k

∣∣∣∣≤ Cθ

[
�2

2θλk
+

e–2θλkM�

θ3λ3
k

(1 + θλk�) +
1

Mλ2
k�

]
, (4.7)

Let us now estimate |B2,k,M|:

|B2,k,M| =
�

M(θλk)2

M∑

i,j=1

e–2θλk (tj–1∨ti–1)

≤ 2�

M(θλk)2

M∑

i≤j=1

e–2θλk (tj–1)

=
2�

M(θλk)2

M∑

i=1

M∑

j=i

e–2θλk (j–1)�

=
2�

M(θλk)2

M∑

i=1

e–2θλk (i–1)�
M∑

j=i

e–2θλk (j–i)�

≤ 2�

M(θλk)2

M∑

i=1

e–2θλk (i–1)� 1
1 – e–2θλk�

≤ Cθ

�

Mλ2
k
(
1 – e–2θλk�

)2

≤ Cθ

[
1

M�λ4
k

+
�

Mλ2
k

]
, (4.8)

where the last inequality comes from (4.5).
Similarly,

B3,k,M =
2�

M(2θλk)2

M∑

i,j=1

e–2θλk (ti–1+tj–1)

=
2�

M(2θλk)2

( M∑

i=1

e–2θλk (ti–1)

)2

=
2�

M(2θλk)2

(
1

1 – e–2θλk�

)2

≤ Cθ

[
1

M�λ4
k

+
�

Mλ2
k

]
. (4.9)

Combining (4.2), (4.7), (4.8), and (4.9) together with supx≥0 xe–2x ≤ C, we get

∣∣∣∣E
(
F2

M(vk)
)

–
1

2θ3λ3
k

∣∣∣∣

≤ Cθ

[
�2

2θλk
+

e–2θλk M�

θ3λ3
k

(1 + θλk�) +
1

Mλ2
k�

+
1

M�λ4
k

+
�

Mλ2
k

]

≤ Cθ

[
�2

λk
+

1
λ2

kM�
+

1
λ3

kM
+

�

λ2
kM

]



Alsenafi et al. Advances in Continuous and Discrete Models         (2024) 2024:52 Page 13 of 24

≤ Cθ

[
�2

λk
+

1
λ2

kM�

]
.

Therefore, the desired result is obtained. �

Lemma 4.2 Let �N ,M,T be the process defined by (3.6). Then, there exists Cθ > 0 that de-
pends only on θ such that, for every M, N ≥ 1, T > 0,

∣∣∣∣∣∣∣∣∣

E

⎡

⎢⎢⎢⎣

⎛

⎜⎜⎜⎝

√√√√√
2θ

T
N∑

k=1
λk

�N ,M,T

⎞

⎟⎟⎟⎠

2⎤

⎥⎥⎥⎦ – 1

∣∣∣∣∣∣∣∣∣

≤ Cθ∑N
k=1 λk

[
�

N∑

k=1

λ2
k +

N
M�

]
. (4.10)

Proof Since, for every k = 1, . . . , N , i = 1, . . . , M, the random variables ζk (ti–1) and ζk (ti) –
ζk (ti–1) are independent, for every k = 1, . . . , N , we can write

E

[(
1√
T

�λk ,M

)2
]

=
1
T

M∑

i,j=1

e–θλk (ti+ti–1+tj+tj–1)E
[
ζk (ti–1) (ζk (ti) – ζk (ti–1)) ζk (ti–1)

(
ζk
(
tj
)

– ζk
(
tj–1

))]

=
1
T

M∑

i=1

e–2θλk (ti+ti–1)E
[
ζk (ti–1)

2 (ζk (ti) – ζk (ti–1))
2]

=
1
T

M∑

i=1

e–2θλk (ti+ti–1)E
[
ζk (ti–1)

2]E
[
(ζk (ti) – ζk (ti–1))

2]

=
1
T

M∑

i=1

e–2θλk (ti+ti–1)

(
e2θλk ti–1 – 1

2θλk

)(
e2θλk ti – e2θλkti–1

2θλk

)

=
(
1 – e–2θλk�

)

(2θλk)2�

1
M

M∑

i=1

(
1 – e–2θλk ti–1

)

=
(
1 – e–2θλk�

)

(2θλk)2�
–
(
1 – e–2θλk�

)

(2θλk)2�

(
1 – e–2θλkT

M(1 – e–2θλk�)

)
.

Hence

∣∣∣∣∣E
[(

1√
T

�λk ,M

)2
]

–
1

2θλk

∣∣∣∣∣

≤
∣∣∣∣∣

(
1 – e–2θλk�

)

(2θλk)2�
–

1
2θλk

∣∣∣∣∣ +
(
1 – e–2θλk�

)

(2θλk)2�

(
1 – e–2θλk T

M(1 – e–2θλk�)

)

=
∣∣∣∣
1 – e–2θλk� – 2θλk�

(2θλk�)2

∣∣∣∣� +
1 – e–2θλkT

(2θλk)2M�

≤ Cθ

[
� +

1
λ2

kM�

]
, (4.11)
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where we used that

sup
x>0

|1 – e–x – x|
x2 < C,

for some constant C > 0, due to the continuity of
∣∣1–e–x–x

∣∣
x2 on (0,∞), and

lim
x→∞

|1 – e–x – x|
x2 = 0, lim

x→0

|1 – e–x – x|
x2 =

1
2

.

Consequently, it follows from (4.11) that

∣∣∣∣∣∣∣∣∣

E

⎡

⎢⎢⎢⎣

⎛

⎜⎜⎜⎝

√√√√√
2θ

T
N∑

k=1
λk

�N ,M,T

⎞

⎟⎟⎟⎠

2⎤

⎥⎥⎥⎦ – 1

∣∣∣∣∣∣∣∣∣

=
2θ

∑N
k=1 λk

∣∣∣∣∣

N∑

k=1

λ2
k

∣∣∣∣∣E
[(

1√
T

�λk ,M

)2
]

–
1

2θλk

]∣∣∣∣∣

≤ Cθ∑N
k=1 λk

N∑

k=1

λ2
k

[
� +

1
λ2

kM�

]

=
Cθ∑N
k=1 λk

[
�

N∑

k=1

λ2
k +

N
M�

]
,

which implies (4.10). �

Lemma 4.3 Let FM(vk) and �λk ,M be the processes defined by (3.5) and (3.6), respectively.
Then, there exists Cθ > 0 that depends only on θ such that, for every k, M ≥ 1, T > 0,

∣∣∣∣
T

θλk
– 2θλk

√
TE

(
�λk ,MFM(vk)

)∣∣∣∣≤ Cθ

(
M�2

λk
+

�

λk
+

1
λ2

k

)
. (4.12)

Proof Since E�λk ,M = 0 and the ζk (ti–1), k = 1, . . . , N , i = 1, . . . , M are Gaussian,

T
θλk

– 2θλk
√

TE
(
�λk ,MFM(vk)

)

=
T

θλk
– 2θλkE

(
�λk ,MSM(vk)

)

=
T

θλk
– 2θλk�E

⎡

⎣
n∑

i=1

e–θλk (ti+ti–1)ζk (ti–1) (ζk (ti) – ζk (ti–1))

n∑

j=1

e–2θλktj–1ζk
(
tj–1

)2

⎤

⎦

=
T

θλk
– 2θλk�

n∑

i,j=1,i<j

e–θλk (ti+ti–1)e–2θλktj–1E

[
ζk (ti–1) (ζk (ti) – ζk (ti–1)) ζk

(
tj–1

)2
]

.

Next, applying the Wick formula, we obtain

T
θλk

– 2θλk
√

TE
(
�λk ,MFM(vk)

)

=
T

θλk
– 4θλk�

M∑

i,j=1,i<j

e–θλk (ti+ti–1)e–2θλktj–1E
[
ζk (ti–1)

2]
E
[
(ζk (ti) – ζk (ti–1))

2]
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=
T

θλk
– 4θλk�

M∑

j=2

j–1∑

i=1

e–θλk (ti+ti–1)e–2θλk tj–1

[
e2θλkti–1 – 1

2θλk

][
e2θλk ti – e2θλkti–1

2θλk

]

=
T

θλk
–

�

θλk

M∑

j=2

e–2θλk tj–1

j–1∑

i=1

eθλk (ti+ti–1)
[
1 – e–2θλkti–1

] [
1 – e–2θλk�

]

=

⎛

⎝ T
θλk

–
�

θλk

[
1 – e–2θλk�

] M∑

j=2

e–2θλk tj–1

j–1∑

i=1

eθλk (ti+ti–1)

⎞

⎠

+

⎛

⎝ �

θλk

[
1 – e–2θλk�

] M∑

j=2

e–2θλk tj–1

j–1∑

i=1

eθλk�

⎞

⎠

=: d1,k,M + d2,k,M, (4.13)

where

d1,k,M =
T

θλk
–

�

θλk

[
1 – e–2θλk�

] M∑

j=2

e–2θλk�(j–1)
j–1∑

i=1

eθλk�e2θλk�(i–1)

=
T

θλk
–

�

θλk

[
1 – e–2θλk�

]
eθλk�

M∑

j=2

e–2θλk�(j–1) e2θλk�(j–1) – 1
e2θλk� – 1

=
T

θλk
–

�

θλk
e–θλk�

M∑

j=2

(
1 – e–2θλk�(j–1)

)

=
T

θλk
–

�

θλk
e–θλk�

[
M – 1 – e–2θλk�

(
1 – e–2θλk�(M–1)

)

1 – e–2θλk�

]

=
T

θλk

(
1 – e–θλk�

)
+

�

θλk
e–θλk� +

�

θλk
e–3θλk�

(
1 – e–2θλk�(M–1)

)

1 – e–2θλk�
.

Hence, using supx>0
1–e–x

x ≤ C and (4.5),

∣∣d1,k,M
∣∣≤ Cθ

(
M�2 +

�

λk
+

1
λ2

k

)
. (4.14)

Similarly, using supx>0 xe–x ≤ C,

d2,k,M =
�

θλk

[
1 – e–2θλk�

] M∑

j=2

e–2θλktj–1 (j – 1)eθλk�

≤ C
�eθλk�

θλk

[
1 – e–2θλk�

] M∑

j=2

e–θλk (j–1)�

= C
�

θλk

[
1 – e–2θλk�

] M∑

j=2

e–θλk (j–2)�

= C
�

θλk

[
1 – e–2θλk�

] 1 – e–θλk (M–2)�

1 – e–θλk�
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≤ C
�

θλk

[
1 + e–θλk�

]

≤ Cθ

�

λk
. (4.15)

Therefore, by combining (4.13), (4.14), and (4.15), we obtain the estimate (4.12). �

Lemma 4.4 Let AN ,M,T and aN ,M,T be the processes given by (3.10) and (3.11), respectively.
Then, there exists Cθ > 0 that depends only on θ such that, for every M, N ≥ 1, T > 0,

‖AN ,M,T‖L2(�) + |aN ,M,T |
√

T
N∑

k=1
λk

≤ Cθ max

(
N2�, N4�2, N3

√
�

M
,
√

M�3N7,
√

N2�,
N√
M�

)
. (4.16)

If, in addition, N , M, T → ∞ and T3N7/M2 → 0, then, for every M, N ≥ 1, T > 0,

‖AN ,M,T‖L2(�) + |aN ,M,T |
√

T
N∑

k=1
λk

≤ Cθ

√

max

(
N2T

M
,

T3N7

M2 ,
N2

T

)
. (4.17)

Proof Set

AN ,M,T =:
√

2θ
[
A1,N ,M + A2,N ,M

]
,

where

A1,N ,M =
N∑

k=1

λ2
k

(
e–λkθ� – 1

λk�
+ θ

)
(SM(vk) – ESM(vk)) ,

and

A2,N ,M = �N ,M,T – θ

N∑

k=1

λ2
k (SM(vk) – ESM(vk)) .

Since the vk , k = 1, . . . , N , are independent and EFM(vk) = 0, we can write

E
(
A2

1,N ,M
)

= T
N∑

k=1

λ4
k

(
e–λkθ� – 1 + θλk�

λk�

)2

EF2
M(vk).

Combining this with (4.1) and supx>0

∣∣1–e–x–x
∣∣

x2 < C, we get

E
(
A2

1,N ,M
) ≤ T

N∑

k=1

λ4
k(λk�)2

(
1

2θ3λ3
k

+
�2

λk
+

1
λ2

kM�

)

≤ Cθ T�2
N∑

k=1

(
λ3

k + λ5
k�

2 +
λ4

k
M�

)
,
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which yields

1

T
N∑

k=1
λk

E
(
A2

1,N ,M
) ≤ Cθ∑N

k=1 λk
�2

N∑

k=1

(
λ3

k + λ5
k�

2 +
λ4

k
M�

)

≤ Cθ N4
[
�2 + N4�4 +

�N2

M

]
. (4.18)

For A2,N ,M , we have

A2,N ,M = �N ,M,T – θ
√

T
N∑

k=1

λ2
kFM(vk) =

N∑

k=1

λk

(
�λk ,M – θλk

√
TFM(vk)

)
.

Since the ζk , k = 1, . . . , N , are independent and E�λk ,M = EFM(vk) = 0, we can write

E
(
A2

2,N ,M
)

=
N∑

k=1

λ2
k

[
E

(
�2

λk ,M

)
+ θ2λ2

kTE
(
FM(vk)2) – 2θλk

√
TE

(
�λk ,MFM(vk)

)]

≤
N∑

k=1

λ2
k

[∣∣∣∣E
(
�2

λk ,M

)
–

T
2θλk

∣∣∣∣ + θ2λ2
kT

∣∣∣∣E
(
FM(vk)2) –

1
2θ3λ3

k

∣∣∣∣

+
∣∣∣∣

T
θλk

– 2θλk
√

TE
(
�λk ,MFM(vk)

)∣∣∣∣

]
.

Combining this with (4.1), (4.11), and (4.12) gives

1
T
E
(
A2

2,N ,M
) ≤ Cθ

T

×
N∑

k=1

λ2
k

[
T
(

� +
1

λ2
kT

)
+ θλ2

kT
(

�2

λk
+

1
λ2

kT

)
+
(

T�

λk
+

�

λk
+

1
λ2

k

)]

≤ Cθ

N∑

k=1

[(
λ2

k� +
1
T

)
+ θ

(
λ3

k�
2 +

λ2
k

T

)
+
(

λk� +
λk

M
+

1
T

)]

≤ Cθ

N∑

k=1

[
λ2

k� + λ3
k�

2 +
λ2

k
M�

+
λk

M

]

≤ Cθ

N∑

k=1

[
λ2

k� + λ3
k�

2 +
λ2

k
M�

]
,

which implies

1

T
N∑

k=1
λk

E
(
A2

2,N ,M
) ≤ Cθ∑N

k=1 λk

N∑

k=1

[
λ2

k� + λ3
k�

2 +
λ2

k
M�

]

≤ Cθ N2
[
� + N2�2 +

1
M�

]
. (4.19)
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On the other hand, using Ev2
k(t) ≤ 1

2θλk
, supx>0

∣∣1–e–x–x
∣∣

x2 < C, we get

1√
2θ

∣∣aN ,M,T
∣∣ ≤

N∑

k=1

λ2
k

∣∣∣∣
e–λkθ� – 1

λk�
+ θ

∣∣∣∣ESM(vk)

≤ Cθ T�

N∑

k=1

λ2
k .

This leads to

1
√

T
N∑

k=1
λk

∣∣aN ,M,T
∣∣ ≤ Cθ T�√

T
∑N

k=1 λk

N∑

k=1

λ2
k

≤ Cθ

√
M�3N7. (4.20)

Thus, from (4.18), (4.19), and (4.20), we obtain (4.16).
Now, suppose that N , M, T → ∞ and M�3N7 = T3N7/M2 → 0. This implies that

�N2 → 0, since

(�N2)3 =
M�3N7

MN
→ 0,

so by combining this with (4.16), we can deduce (4.17). �

Lemma 4.5 Let VN ,M,T be the process given by (3.13). Then, there exists Cθ > 0 that depends
only on θ such that, for every M, N ≥ 1, T > 0,

κ3(VN ,M,T ) ≤ Cθ max

(
1

(M�)3/2N7/2 ,
�3/2N5/2

M3/2

)
, (4.21)

κ4(VN ,M,T ) ≤ Cθ max

(
�2N3

M
,

1
M�N3

)
. (4.22)

Moreover, if, in addition, N , M, T → ∞, then, for every M, N ≥ 1, T > 0,

max
(
κ3(VN ,M,T ),κ4(VN ,M,T )

)≤ Cθ max

(
T2N3

M3 ,
1

TN3

)
. (4.23)

Proof Let ρk(r) = E(Zk(r)Z0) denote the covariance of Zk given by (3.4). It is easy to see
that

ρk(t) = E(Zk(t)Z0) =
e–θ |t|

2θλk
, t ∈R.

In particular, ρk(0) = 1
2θλk

. Moreover, notice that ρk(r) = ρk(–r) for all r < 0.
Since E[VN ,M,T ] = 0, we have

κ3(VN ,M,T ) = E
[
V 3

N ,M,T
]

and κ4(VN ,M,T ) = E
[
V 4

N ,M,T
]

– 3
[
EV 2

N ,M,T
]2 .
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Furthermore, using E [FM(Zk)] = 0 and the fact that Zk , k = 1, . . . , N are independent,

E
[
V 3

N ,M,T
]

=
1

( N∑
k=1

λk

)3/2

N∑

k=1

λ6
kE
[
F3

M(Zk)
]

=
1

( N∑
k=1

λk

)3/2

N∑

k=1

λ6
kκ3 (FM(Zk)) .

Further, by similar arguments as in [5], we can deduce

k3(FM(Zk)) ≤ �3/2

M3/2

⎛

⎝
∑

|j|<M

ρk(j�)

⎞

⎠
3

≤ �3/2

M3/2

(
1 – e–θλk M�

θλk(1 – e–θλk�)

)3

.

Combining this with the fact that supx>0
x

(1+x)(1–e–x) ≤ C, we obtain

k3(FM(Zk)) ≤ �3/2

M3/2

(
1 – e–θλk M�

θλk(1 – e–θλk�)

)3

≤ Cθ

�3/2

M3/2

(
1

�λ2
k

+
1
λk

)3

≤ Cθ

�3/2

M3/2

(
1

�3λ6
k

+
1
λ3

k

)
,

which leads to

κ3(VN ,M,T ) ≤ Cθ

�3/2

(
M

N∑
k=1

λk

)3/2

N∑

k=1

(
1

�3 + λ3
k

)

= Cθ

�3/2

(
M

N∑
k=1

λk

)3/2

(
N
�3 +

N∑

k=1

λ3
k

)

≤ Cθ

(
1

(M�)3/2N7/2 +
�3/2N5/2

M3/2

)
,

which implies (4.21). On the other hand, using E [FM(Zk)] = 0 and the fact that Zk , k =
1, . . . , N are independent, we get

E
[
V 4

N ,M,T
]

=
1

( N∑
k=1

λk

)2

N∑

k1,k2,k3,k4=1

λ2
k1λ

2
k2λ

2
k3λ

2
k4E

[
FM(Zk1 )FM(Zk2 )FM(Zk3 )FM(Zk4 )

]

=
1

( N∑
k=1

λk

)2

⎛

⎝
N∑

k=1

λ8
kE
[
F4

M(Zk)
]

+ 3
N∑

j �=k=1

λ4
j λ

4
kE
[
F2

M(Zj)
]
E
[
F2

M(Zk)
]
⎞

⎠
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=
1

( N∑
k=1

λk

)2

⎛

⎝
N∑

k=1

λ8
kE
[
F4

M(Zk)
]

+ 3

[ N∑

k=1

λ4
kE
[
F2

M(Zk)
]
]2

– 3
N∑

k=1

λ8
kE
[
E
[
F2

M(Zk)
]]2
)

.

Moreover,

3
[
EV 2

N ,M,T
]2 =

3
( N∑

k=1
λk

)2

[ N∑

k=1

λ4
kE
[
F2

M(Zk)
]
]2

.

Thus,

κ4(VN ,M,T ) = E
[
V 4

N ,M,T
]

– 3
[
EV 2

N ,M,T
]2

=
1

( N∑
k=1

λk

)2

( N∑

k=1

λ8
kE
[
F4

M(Zk)
]

– 3
N∑

k=1

λ8
kE
[
E
[
F2

M(Zk)
]]2
)

=
1

( N∑
k=1

λk

)2

N∑

k=1

λ8
kκ4(FM(Zk)).

Furthermore, using similar arguments as in [5], we have

k4(FM(Zk)) ≤ C
�2

M

⎛

⎝
∑

|j|<M

|ρk(j�)| 4
3

⎞

⎠
3

≤ C
�2

M

(
1 – e– 4

3 θλk M�

(θλk)
4
3 (1 – e– 4

3 θλk�)

)3

.

Combining this with the fact that supx>0
x

(1+x)(1–e– 4
3 x)

≤ C, we obtain

k4(FM(Zk)) ≤ C
�2

M

(
1 + 1

θλk�

(θλk)
4
3

)3

≤ Cθ

�2

M

(
1
λ4

k
+

1
λ7

k�
3

)
.

Therefore,

κ4(VN ,M,T ) ≤ Cθ

1
( N∑

k=1
λk

)2

N∑

k=1

λ8
k
�2

M

(
1
λ4

k
+

1
λ7

k�
3

)
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= Cθ

�2

M
( N∑

k=1
λk

)2

N∑

k=1

(
λ4

k +
λk

�3

)

≤ Cθ

(
�2N3

M
+

1
M�N3

)
,

which proves (4.22). Now, if we suppose N , T = M� → ∞, then by straightforward calcu-
lations,

1
(M�)3/2N7/2 ≤ Cθ

1
M�N3 ,

�3/2N5/2

M3/2 ≤ Cθ

�2N3

M
.

Thus, (4.23) is obtained. �

Now, we are ready to state the main result of this paper.

Theorem 4.6 Let θ̃N ,M,T be the estimator defined by (3.3). Suppose, as N , M, T → ∞,

T3N7/M2 → 0, and N2/T → 0.

Then, there exists a positive constant Cθ that depends only on θ such that, for all N , M ≥ 1,
T > 0,

dKol

⎛

⎝

√√√√ T
2θ

N∑

k=1

λk
(
θ – θ̃N ,M,T

)
,N (0, 1)

⎞

⎠ ≤ Cθ

√

max

(
N2T

M
,

T3N7

M2 ,
N2

T

)
,

In particular, since
∑N

k=1 λk ∼ π2N3/3 as N → ∞, then, as N , M, T → ∞,

√
TN

3
2
(
θ – θ̃N ,M,T

) law−→N
(

0,
6θ

π2

)
.

Proof According to (3.12), we have

√√√√ T
2θ

N∑

k=1

λk
(
θ – θ̃N ,M,T

)
=

1
σ

(GN ,M,T – EGN ,M,T ) + 1√
T

N∑

k=1
λk

(
AN ,M,T + aN ,M,T

)

1

ρ

√
T

N∑

k=1
λk

GN ,M,T
,

where GN ,M,T , AN ,M,T , and aN ,M,T are given by (3.9), (3.10), and (3.11), respectively. More-
over, ρ = 1

2θ
, σ 2 = 1

2θ3 and

GN ,M,T – EGN ,M,T = VN ,M,T +
1√

ϕN ,M,T
RN ,M,T , N , M ≥ 1, T > 0,

where VN ,M,T and RN ,M,T are given by (3.13) and (3.14), respectively.
Using (3.4) and the fact that Zk is a Gaussian stationary process, we can show that there

exists Cθ that depends only on θ such that

∣∣∣∣E
(
v2

k(t)
)

–
1

2θλk

∣∣∣∣≤ Cθ

e–θλk t

λk
, k ≥ 1, t ≥ 0.
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This implies

∣∣∣∣∣∣∣∣∣∣

1

ρ

√

T
N∑

k=1
λk

EGN ,M,T – 1

∣∣∣∣∣∣∣∣∣∣

≤ Cθ

M
N∑

k=1
λk

N∑

k=1

λ2
k

M∑

i=1

e–θλk ti–1

λk

≤ Cθ

M
N∑

k=1
λk

N∑

k=1

λk

1 – e–θλk�

≤ Cθ

(
1

TN2 +
1
T

)

≤ Cθ

T
, (4.24)

where we used (4.5). On the other hand, according to (4.1)

∣∣E[(GN ,M,T – EGN ,M,T )2] – σ 2∣∣ =

∣∣∣∣∣∣∣∣∣

1
N∑

k=1
λk

N∑

k=1

λ4
k

(
E
(
F2

M(vk)
)

–
1

2θ3λ3
k

)
∣∣∣∣∣∣∣∣∣

≤ Cθ

N∑
k=1

λk

N∑

k=1

λ4
k

[
�2

λk
+

1
λ2

kT

]

≤ Cθ

(
�2N4 +

N2

T

)

= Cθ

(
T2N4

M2 +
N2

T

)
. (4.25)

Furthermore, notice that RN ,M,T ∈H2. By combining (3.4) and the fact that Zk is a Gaussian
stationary process, we can show that there exists Cθ that depends only on θ such that

1
√

T
N∑

k=1
λk

‖RN ,M,T‖L2(�) ≤ Cθ

(
1√

T3N3
+
√

N
M2T

)
. (4.26)

Using T3N7/M2 → 0 and N2/T → 0 as N , M, T → ∞, we see that the upper bounds
in (4.17), (4.24), (4.25), and (4.26) all converge to zero, so {GN ,M,T , N , M ≥ 1, T > 0} and
{(AN ,M,T , aN ,M,T ), N , M ≥ 1, T > 0} satisfy the assumptions (A1) and (A2), respectively.

Therefore, applying Theorem 3.1, we obtain

dKol

⎛

⎝

√√√√ T
2θ

N∑

k=1

λk
(
θ – θ̃N ,M,T

)
,N (0, 1)

⎞

⎠

≤ max

(∣∣∣∣κ3

(
VN ,M,T

σ

)∣∣∣∣ ,κ4

(
VN ,M,T

σ

))
+ C

(
T

N∑

k=1

λk

) 1
4 ∣∣∣∣

1
ρ
√

ϕN ,M,T
EGN ,M,T – 1

∣∣∣∣
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+C
∣∣E[(GN ,M,T – EGN ,M,T )2] – σ 2∣∣

+
C

√

T
N∑

k=1
λk

(‖RN ,M,T‖L2(�) + ‖AN ,M,T‖L2(�) + |aN ,M,T |) .

Combining this result with (4.23), (4.17), (4.24), (4.25), and (4.26), we have

dKol

⎛

⎝

√√√√ T
2θ

N∑

k=1

λk
(
θ – θ̃N ,M,T

)
,N (0, 1)

⎞

⎠

≤ Cθ

[
max

(
T2N3

M3 ,
1

TN3

)
+

N3/4

T3/4 +
T2N4

M2 +
N2

T

+
1√

T3N3
+
√

N
M2T

+

√

max

(
N2T

M
,

T3N7

M2 ,
N2

T

)]
.

Using N , M, T → ∞, T3N7/M2 → 0, N2/T → 0, we deduce

dKol

⎛

⎝

√√√√ T
2θ

N∑

k=1

λk
(
θ – θ̃N ,M,T

)
,N (0, 1)

⎞

⎠ ≤ Cθ

√

max

(
N2T

M
,

T3N7

M2 ,
N2

T

)

due to

max

(
T2N3

M3 ,
1

TN3

)
≤ C max

(
T3N7

M2 ,
N2

T

)
≤ C

√

max

(
T3N7

M2 ,
N2

T

)
,

N3/4

T3/4 =
√

N2

T
1

(TN)1/4 ≤ C
√

N2

T
,

T2N4

M2 +
N2

T
=

T3N7

M2
1

TN3 +
N2

T
≤ C max

(
T3N7

M2 ,
N2

T

)
≤ C

√

max

(
T3N7

M2 ,
N2

T

)
,

1√
T3N3

+
√

N
M2T

≤ C
√

N2

T
.

Thus, the proof is complete. �
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