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Abstract
In this paper, we propose a reaction-diffusion SIRC model with cross-immunization.
The model includes the implementation of vaccination measures for susceptible, and
treatment and quarantine measures for infected in order to control the spread of the
disease. The optimal control strategies for the spread of disease are mainly
investigated. Our research focuses on four main aspects. Firstly, we prove the
existence and uniqueness of the global positive strong solution to the control system
by employing the theories of semigroups of operators. Secondly, we demonstrate the
existence of optimal control through the utilization of functional analysis techniques.
Thirdly, we establish the first-order necessary optimality conditions that the optimal
control must satisfy, employing the methods of convex perturbation. Lastly, we
provide numerical examples and simulations to verify the feasibility of optimal
control.
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1 Introduction
As we all know, infectious diseases have always been the great enemy threatening human
health and social economy. To effectively prevent and control the spread of infectious dis-
eases, human beings urgently need to do in-depth research on infectious disease patterns,
development trends, and prevention and control strategies. However, mathematical mod-
els of infectious diseases play a crucial role in the study of infectious diseases, which helps
to understand the process and pattern of the evolution of infectious diseases in time and
space, to predict the peaks and trends of disease development, and to assess the effec-
tiveness of preventive and control measures [1, 2]. In recent years, mathematical mod-
els of infectious disease dynamics have gained popularity as a common tool for studying
infectious diseases. In the last 20 years, based on the traditional SIR model proposed by
Kermack and Mckendrick [3], many epidemiological models for forecasting disease trans-
mission through populations has been presented.
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The class of cross-immunized individuals (C), which is an intermediate state between
the fully susceptible state (S) and the fully protected state (R), was introduced in the pop-
ulation by Casagrandi et al. [4]. As a result, they proposed and investigated the following
SIRC epidemic model of four-dimensional ordinary differential equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(t)
∂t

=A – μS(t) – βS(t)I(t) + γ C(t),

∂I(t)
∂t

=βS(t)I(t) + σβC(t)I(t) – (μ + α)I(t),

∂R(t)
∂t

=(1 – σ )βC(t)I(t) + αI(t) – (μ + δ)R(t),

∂C(t)
∂t

=δR(t) – βC(t)I(t) – (μ + γ )C(t).

(1.1)

This model (1.1) takes into account temporary partial immunity and may well describe,
for example, influenza A. Many scholars have undertaken an extensive study on this
model, however, the majority of these works are based on ordinary differential equations
[5–8].

In many years of research on infectious diseases, researchers have found that space has
a certain impact on the spread of diseases. For example, the spread rate of the COVID
in Asia differs from that in North America. Therefore, in the process of mathematical
modeling needs to be taken into account the spatial heterogeneity and diffusion behav-
iors, studying the optimal control of reaction-diffusion epidemic models has more im-
portant biological and mathematical significance. However, to the best of our knowl-
edge, there is no literature that studies the optimal control problem of reaction-diffusion
SIRC model. In order to bridge this gap and make a contribution to the optimal control
problems, in this paper, we extend the model (1.1) to the reaction-diffusion SIRC epi-
demic model with cross-immunization and spatial heterogeneity and are mainly inter-
ested in investigating the optimal control problem for this model. The model is given as
follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(t, x)

∂t
=d1�S(t, x) + A(x) – β1(x)S(t, x)I(t, x) + γ (x)C(t, x)

– μ(x)S(t, x), t > 0, x ∈ 	,

∂I(t, x)

∂t
=d2�I(t, x) + β1(x)S(t, x)I(t, x) + σ (x)β2(x)C(t, x)I(t, x)

– (μ(x) + α(x))I(t, x), t > 0, x ∈ 	,

∂R(t, x)

∂t
=d3�R(t, x) + (1 – σ (x))β2(x)C(t, x)I(t, x) + α(x)I(t, x)

– (μ(x) + δ(x))R(t, x), t > 0, x ∈ 	,

∂C(t, x)

∂t
=d4�C(t, x) + δ(x)R(t, x) – β2(x)C(t, x)I(t, x)

– (μ(x) + γ (x))C(t, x), t > 0, x ∈ 	,

(1.2)

where 	 is a bounded domain in R
n with smooth boundary ∂	. S(t, x), I(t, x), R(t, x) and

C(t, x) stand for the densities of susceptible, infected, recovered, and cross-immune in-
dividuals at time t and spatial location x, respectively. di (1 ≤ i ≤ 4) are the diffusion
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rate coefficient of susceptible, infected, recovered, and cross-immune individuals, respec-
tively; A(x) denotes the rate of immigrant and newborn of the population in the loca-
tion x; μ(x) denotes the mortality rates of S, I , R and C in the location x, respectively;
β1(x) and β2(x) are the infection rates from susceptible to infected and cross-immunizer
to infected in the location x, respectively; α(x) is the removal rate from infected to re-
covered in the location x; δ(x) is the conversion rate from recovered to cross-immunizer
in the location x; γ (x) is the lose rate of immunity for cross-immunizer in the location
x; σ (x) is the recruitment rate of cross-immune into the infective in the location x, and
0 ≤ σ ≤ 1.

The development of maximal principle and dynamic programming theory in the 1950s
marked a turning point in the field of optimal control theory research. Since then, as con-
trol theories have developed rapidly, some researchers have started to think about us-
ing these theories to control infectious diseases. It is noteworthy that there has been an
increasing interest lately in the optimal control of epidemic models. Partial differential
equation optimal control theory was systematically developed by Lions[9]. Wang et al. in-
vestigated a semilinear elliptic equation for optimal control issues (see[10, 11]). In their
study of the best the optimal treatment strategies to cure tuberculosis, Jun et al. [12] used
optimal control theories to a class of two species tuberculosis model represented by or-
dinary differential equations. Arino et al. [13] studied an influenza model incorporating
antiviral therapy and vaccination, then the numerical computation outcomes of the deter-
ministic model and the random model of influenza were contrasted. Iacoviello and Stasio
[14] presented the controls for influenza to both the susceptible and infected classes, sug-
gested an appropriate cost index, and evaluated the existence outcome. They talked about
the numerical implementation of the optimal controls and gave the analytical formulas for
them. Using optimal control theories and methods, Xiang and Liu [15] examined the pa-
rameter estimation problem of a class of reaction-diffusion SIS infectious disease model.
Li et al. [16] provided a delayed SIRC model of influenza A and used mathematical anal-
ysis and optimal control theory to examine the SIRC epidemic model. Zhou et al. [17]
studied the optimal control problem for a reaction-diffusion SIR model and incorporated
two control strategies into this epidemic system. In order to prevent the death of infected
individuals in a specific area, Laaroussi et al. [18] developed an optimal regional con-
trol and a spatiotemporal epidemic transmission model of the Ebola disease. First-order
necessary conditions for the optimal control were established by Dai and Liu [19] after
studying an optimal control problem of a generic reaction-diffusion eco-epidemiological
the model with disease in the prey. They then used comparable techniques to obtain
the first-order necessary condition for optimal control in a general reaction-diffusion
tumor-immune system using chemotherapy (see [20]). In order to reduce the weighted
tumor burden, side effects, and treatment costs, Dai and Liu [21] addressed an optimal
control issue for a generic reaction-diffusion tumor-immune interaction system under
immunotherapy and chemotherapy. To investigate the implications of vaccination rates,
protection rates, and contact counts across age groups on the management of influenza
transmission, Chen et al. [22] developed a mixed cross-infection influenza model by age
group.

In order to establish the optimal control problems of the reaction-diffusion SIRC epi-
demic model (1.2). We study two control strategies in the context of a disease epidemic:
the first control strategy is to vaccinate susceptible individuals, which we represent by the
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control variable v1, which is proportional to the density of existing susceptible individu-
als, and the second control strategy is to treat or quarantine infected individuals, which
we denote by the control variable v2, which is proportional to the density of existing in-
fected individuals. Hence, in the first equation of model (1.2) we should subtract a term
v1S, in the second equation of model (1.2) we should subtract a term v2I , and in the third
equation of model (1.2) we should add a term v1S + v2I . Considering that the rates of vac-
cination, treatment and quarantine vary from region to region and from time to time, i.e.,
v1 = v1(t, x), v2 = v2(t, x) (v1 and v2 not only depend on t ∈ [0, T], but also on x ∈ 	). Thus,
a controlled system corresponding to the reaction-diffusion SIRC model (1.2) is given as
follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(t, x)

∂t
=d1�S(t, x) + A(x) – β1(x)S(t, x)I(t, x) + γ (x)C(t, x)

– μ(x)S(t, x) – v1(t, x)S(t, x),

∂I(t, x)

∂t
=d2�I(t, x) + β1(x)S(t, x)I(t, x) + σ (x)β2(x)C(t, x)I(t, x)

– (μ(x) + α(x))I(t, x) – v2(t, x)I(t, x),

∂R(t, x)

∂t
=d3�R(t, x) + (1 – σ (x))β2(x)C(t, x)I(t, x) + α(x)I(t, x)

– (μ(x) + δ(x))R(t, x) + v1(t, x)S(t, x) + v2(t, x)I(t, x),

∂C(t, x)

∂t
=d4�C(t, x) + δ(x)R(t, x) – β2(x)C(t, x)I(t, x)

– (μ(x) + γ (x))C(t, x),

(1.3)

where (t, x) ∈ 	T = (0, T) × 	. We assume that the solution of system (1.3) satisfies the
following Neumann boundary condition and initial conditions

∂S(t, x)

∂n
=

∂I(t, x)

∂n
=

∂R(t, x)

∂n
=

∂C(t, x)

∂n
= 0, (t, x) ∈ 
T = (0, T) × ∂	 (1.4)

and

S(0, x) = ψ1(x), I(0, x) = ψ2(x), R(0, x) = ψ3(x), C(0, x) = ψ4(x), x ∈ 	, (1.5)

where n is the outward with normal vector on ∂	 and ψ(x) = (ψ1(x),ψ2(x),ψ3(x),ψ4(x)) ∈
X

+ is the initial function, where the space X
+ will be defined below. The boundary condi-

tion (1.4) implies that system (1.3) is self-contained and there are no emigrations across
∂	.

The admissible control set U is defined by

U = {v = (v1, v2) ∈ (L2(	T ))2, 0 ≤ vi(t, x) ≤ 1, i = 1, 2, a.e. in 	T }, (1.6)

where the space L2(	T ) is defined below. As a natural goal, we attempt to minimize the
total number of susceptible and infected individuals and reduce the total cost of vaccines
and treatment in the time interval [0, T], while minimizing the number of susceptible and



Zhou et al. Advances in Continuous and Discrete Models         (2024) 2024:53 Page 5 of 37

infected individuals and the cost of vaccines and treatment at terminal time T . To do this,
we set the following objectives functional

J(S, I, v) =
∫ T

0

∫

	

L(S, I, v)(t, x)dxdt +
∫

	

ϕ(S, I, v)(T , x)dx, (1.7)

where

L(S, I, v)(t, x) = λ1(t, x)S(t, x) + λ2(t, x)I(t, x) + κ1(t, x)v1(t, x) + κ2(t, x)v2(t, x),

ϕ(S, I, v)(T , x) = ω1(x)S(T , x) + ω2(x)I(T , x) + ρ1(x)v1(T , x) + ρ2(x)v2(T , x).
(1.8)

In (1.7), the first integral expresses the total number of susceptible and infected individ-
uals and the total cost of vaccines and treatment on the time interval [0, T], and the sec-
ond integral indicates the number of susceptible and infected individuals and the cost of
vaccines and treatment at terminal time T . In (1.8), the nonnegative functions λi(t, x) ∈
L∞(	T ) (i = 1, 2) and ωi(x) ∈ L∞(	) (i = 1, 2) represent the weights of S and I , respectively,
and the nonnegative functions κi(t, x) ∈ L∞(	T ) (i = 1, 2) and ρi(x) ∈ L∞(	) (i = 1, 2) are
the measure of the cost of interventions associated with the control for vaccination and
treatment in (t, x) ∈ 	T , where the spaces L∞(	T ) and L∞(	) are defined below.

Let (S, I, R, C) is the solution to system (1.3)–(1.5). Then the optimal control problem
is to minimize the objective functional J(S, I, v). That is, to find the control function v =
(v1, v2) ∈ U such that

J(S, I, v) = inf
v=(v1,v2)∈U

J(S, I, v), (1.9)

where (S, I, R, C) is the solution to system (1.3)–(1.5) with v = v.
The main purpose of this paper is to investigate the necessary conditions satisfied by an

optimal control system (1.3)–(1.5). This research proposes a model that takes into account
two control strategies: vaccination and treatment/quarantine, which is more in line with
the actual scenario of infectious disease prevention and control, and takes into account the
spatial heterogeneity and diffusion behavior. While this work has implications for the pre-
vention and control of infectious diseases, our primary focus is on the mathematical anal-
ysis of the optimal control problem. We do not give details of the actual implementation
of prevention and control of specific diseases, but we give here a theoretical foundation
and numerical simulations that one can develop. The main contributions and innovations
are summarized as follows:

(1) The existing research on optimal control of infectious diseases, such as influenza A,
HIV, tuberculosis, and so on, mainly focused on the epidemic models described by ordi-
nary differential equations, while the control system considered in this paper is a reaction-
diffusion equation.

(2) The global existence and uniqueness of positive solutions to the control system
(1.3)–(1.5) is established by using truncation function techniques, the results of Theo-
rem 2.1 (see Sect. 2 below) and C0-semigroup theory.

(3) We establish the existence of the optimal pair of control systems (1.3)–(1.5) by using
the compactness and convergence methods, and the minimal sequence techniques.

(4) The first-order necessary condition for the optimal control system (1.3)–(1.5) is es-
tablished by using dual techniques.
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(5) We provide numerical examples and numerical simulations for validating the ratio-
nality of the theoretical results.

This paper is structured as follows. We provide some necessary notions, preliminary
information, and helpful presumptions for the research in Sect. 2. The focus of Sect. 3 is
demonstrating the global existence and uniqueness of positive solutions to control system
(1.3)–(1.5). In Sect. 4, we establish the existence of optimal control. In Sect. 5, we state and
prove the first-order necessary condition for optimal control. In Sect. 6, the numerical
examples and numerical simulations are provided for the existence of optimal control.
Lastly, in Sect. 7, a short conclusion is given and some new problems are proposed that
can be studied in the future.

2 Notations and preliminaries
We initially provide some notations and recall some initial results that will be frequently
used going forward and important to solving our problem before beginning the mathe-
matical study of our optimal control problem.

In this paper, for the convenience of understanding, we first introduce the following
notations and concepts. Let D ⊂ Rm be a bounded domain with smooth boundary ∂D,
and D is the closure of D. For any bounded function k(x) defined on D we denote k∗ =
supx∈D k(x) and k∗ = infx∈D k(x). Denote by C(D) the Banach space of all continuous func-
tions φ : D → R with the supremum norm ‖φ‖C(D) = supx∈D |φ(x)|. Let C+(D) = {φ ∈ C(D) :
φ(x) ≥ 0, φ(x) 
≡ 0, x ∈ D} be the positive cone of C(D). For any constant p ≥ 1, denote by
Lp(D) the Banach space of all Lebesgue measurable functions φ : D → R with the norm
‖φ‖Lp(D) = (

∫

D |φ(x)|pdx)
1
p < ∞. Particularly, when p = ∞ we have the space L∞(D) of all

Lebesgue measurable functions φ : D →Rwith the norm ‖φ‖L∞(D) = esssupx∈D|φ(x)| < ∞.
For the convenience, we denote X = (C(D))4, X+ = (C+(D))4 and Y = (L2(D))4. For any
φ = (φ1,φ2,φ3,φ4) ∈ Y we have the norm ‖φ‖Y = (

∫

D
∑4

i=1 |φi(x)|2dx)
1
2 < ∞. For any

two points φi = (φi1,φi2,φi3,φi4) ∈ Y (i = 1, 2), we define the scalar product by 〈φ1,φ2〉 =
∑4

i=1
∫

D φ1i(x)φ2i(x)dx. Particularly, we have 〈φ1,φ1〉 =
∑4

i=1
∫

D φ1i(x)2dx = ‖φ1‖2
Y

. Thus, Y
is also a Hilbert space.

We further denote H1(D) = W 1,2(D) and H2(D) = W 2,2(D), where W 1,2(D) and W 2,2(D)

are the Sobolev spaces defined on D. The detail on the Sobolev space can be referred to
[23]. Let B is a Banach space with the norm ‖ · ‖B. For any constant p ≥ 1 we define by
Lp(0, T ;B) the Banach space of all absolutely Lebesgue integrable functions φ : [0, T] → B

with the norm ‖φ‖Lp(0,T ;B) = (
∫ T

0 ‖φ(t)‖p
B

dt)
1
p < ∞. Particularly, for p = 2, ∞ andB = L2(D),

H1(D), H2(D), we have the Banach spaces as follows.
The space L2(0, T ; L2(D)) with the norm ‖φ‖L2(0,T ;L2(D)) = (

∫ T
0 ‖φ(t)‖2

L2(D)
dt) 1

2 < ∞;

The space L2(0, T ; H2(D)) with the norm ‖φ‖L2(0,T ;H2(D)) = (
∫ T

0 ‖φ(t)‖2
H2(D)

dt) 1
2 < ∞;

The space L∞(0, T ; H1(D)) with the norm ‖φ‖L∞(0,T ;H1(D)) = esssupt∈[0,T]‖φ(t)‖H1(D) < ∞.
Lastly, we define by W 1,2(0, T ;B) the space of all absolutely continuous functions φ :

[0, T] → B satisfying the property that the derivative dφ

dt ∈ L2(0, T ;B). Particularly, we
have the space W 1,2(0, T ; L2(D)) of all absolutely continuous functions φ : [0, T] → L2(D)

satisfying the derivative dφ

dt ∈ L2(0, T ; L2(D)). Furthermore, defined by C(0, T ; L2(D)) the
Banach space of all continuous functions φ : [0, T] → L2(D) with the supremum norm
‖φ‖C(0,T ;L2(D)) = supt∈[0,T] ‖φ(t)‖L2(D).
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We define the linear operator L : D(L) ⊆Y→Y as follows

L =

⎛

⎜
⎜
⎜
⎝

d1� 0 0 0
0 d2� 0 0
0 0 d3� 0
0 0 0 d4�

⎞

⎟
⎟
⎟
⎠

,

where Y = (L2(	))4 and D(L) is the domain of definition of L, which is expressed as

D(L) =
{

(S, I, R, C) ∈Y :
∂S
∂n

=
∂I
∂n

=
∂R
∂n

=
∂C
∂n

= 0 on ∂	
}

.

Further, we define by P = (S, I, R, C) and F(t, P) = (F1(t, P), F2(t, P), F3(t, P), F4(t, P)) with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(t, P) =A(x) – β1(x)S(t, x)I(t, x) + γ (x)C(t, x) – μ(x)S(t, x) – v1(t, x)S(t, x),

F2(t, P) =β1(x)S(t, x)I(t, x) + σ (x)β2(x)C(t, x)I(t, x) – (μ(x) + α(x))I(t, x)

– v2(t, x)I(t, x),

F3(t, P) =(1 – σ (x))β2(x)C(t, x)I(t, x) + α(x)I(t, x) – (μ(x) + δ(x))R(t, x)

+ v1(t, x)S(t, x) + v2(t, x)I(t, x),

F4(t, P) =δ(x)R(t, x) – β2(x)C(t, x)I(t, x) – (μ(x) + γ (x))C(t, x).

Then, system (1.3)–(1.5) can be expressed as the Cauchy problem

⎧
⎪⎨

⎪⎩

∂P
∂t

= LP + F(t, P), t ∈ [0, T],

P(0, x) = ψ(x),
(2.1)

where ψ(x) = (ψ1(x),ψ2(x),ψ3(x),ψ4(x)) ∈ X
+. In order to establish the existence and

uniqueness of the strong solution to the system (2.1), we introduce the following well-
known results (Chap. 11 in [24] and Proposition 1.2 in [25], see also [26]) as a lemma.

Lemma 2.1 (See [24–26]) Let X be a real Banach space and the operator L : D(L) ⊆X →
X be an infinitesimal generator of a C0-semigroup of contractions {̃S(t), t ≥ 0} on X . More-
over, assume that � : [0, T] ×X →X is a function, which is measurable in t and Lipschitz
in P ∈X , uniformly for t ∈ [0, T]. Then, the Cauchy problem

⎧
⎪⎨

⎪⎩

∂P
∂t

= LP + �(t, P), t ∈ [0, T],

P(0, x) = P0(x) ∈X

admits a unique mild solution P ∈ C([0, T];X ), which can be expressed by

P(t) = S̃(t)P0 +
∫ t

0
S̃(t – s)�(s, P(s))ds, t ∈ [0, T].

Furthermore, if X is a Hilbert space and L is self-adjoint and dissipative on X , then the
mild solution is also a strong solution satisfying P ∈ W 1,2(0, T ;X ) ∩ L2(0, T ; D(L)).
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Throughout this paper, if not specifically stated, we always assume that the parameters
μ(x), β1(x), β2(x), α(x), δ(x), σ (x) and γ (x) are positive continuous functions for x ∈ 	.

3 Well-posedness of solutions
In this section, we focus on the well-posedness of solutions for system (1.3)–(1.5). We
first obtain that operator di� – ρi(·) (i = 1, 2, 3, 4) subjects to Neumann boundary con-
dition (1.4) generates a C0-semigroup Ti(t) : C(	) → C(	), where ρ1(x) = μ(x), ρ2(x) =
μ(x) + α(x), ρ3(x) = μ(x) + δ(x) and ρ4(x) = μ(x) + γ (x), respectively. Then, we have the
expression

(Ti(t)ψ)(x) =
∫

	

�i(t, x, y)ψ(y)dy, t > 0, ψ ∈ C(	), i = 1, 2, 3, 4, (3.1)

where �i(t, x, y) is the Green function of operator di� – ρi(·) subjects to the Neumann
boundary condition. Furthermore, we can obtain that Ti(t) (i = 1, 2, 3, 4) are strongly pos-
itive and compact for every t > 0, and there exist constants Ni > 0 (i = 1, 2, 3, 4) such that
‖Ti(t)‖ ≤ Niewit for t ≥ 0, where wi < 0 is the principal eigenvalue of operator di� – ρi(·)
subjects to the Neumann boundary condition.

Define F = (F1, F2, F3, F4) as follows

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F1(ψ)(x) = A(x) – β1(x)ψ1(x)ψ2(x) + γ (x)ψ4(x) – v1(t, x)ψ1(x),

F2(ψ)(x) = β1(x)ψ1(x)ψ2(x) + σ (x)β2(x)ψ4(x)ψ2(x) – v2(t, x)ψ2(x),

F3(ψ)(x) = (1 – σ (x))β2(x)ψ4(x)ψ2(x) + α(x)ψ2(x) + v1(t, x)ψ1(x) + v2(t, x)ψ2(x),

F4(ψ)(x) = δ(x)ψ3(x) – β2(x)ψ4(x)ψ2(x),

(3.2)

where x ∈ 	 and ψ = (ψ1,ψ2,ψ3,ψ4) ∈X
+, where X

+ = (C+(	))4. Let P(t, ·,ψ) = (S(t, ·,ψ),
I(t, ·,ψ), R(t, ·,ψ), C(t, ·,ψ)) be the solution of system (1.3) with initial value ψ = (ψ1,ψ2,
ψ3,ψ4) ∈X

+ at start time t = 0. Then, system (1.3)–(1.5) can be rewritten as the following
integral equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t, ·,ψ) = T1(t)ψ1 +
∫ t

0
T1(t – s)F1(P(s, ·,ψ))ds,

I(t, ·,ψ) = T2(t)ψ2 +
∫ t

0
T2(t – s)F2(P(s, ·,ψ))ds,

R(t, ·,ψ) = T3(t)ψ3 +
∫ t

0
T3(t – s)F3(P(s, ·,ψ))ds,

C(t, ·,ψ) = T4(t)ψ4 +
∫ t

0
T4(t – s)F4(P(s, ·,ψ))ds.

(3.3)

With the use of basic calculation, we can prove that the following subtangential condi-
tions hold

lim
h→0+

dist(ψ + hF(ψ),X+) = 0, ψ ∈X
+.

From Corollary 4 in [27], we can directly obtain
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Lemma 3.1 For any initial value ψ = (ψ1,ψ2,ψ3,ψ4) ∈X
+, system (1.3)–(1.5) has a unique

nonnegative mild solution P(t, ·,ψ) = (S(t, ·,ψ), I(t, ·,ψ), R(t, ·,ψ), C(t, ·,ψ)) ∈ X
+ on the ex-

istence interval [0, τψ ) with τψ ≤ ∞. Furthermore, this solution also is a classical solu-
tion.

Next, the following results are established regarding the existence and ultimate bound-
edness of the global solution for system (1.3)–(1.5).

Theorem 3.1 For any initial value ψ = (ψ1,ψ2,ψ3,ψ4) ∈ X
+, model (1.3)–(1.5) has a

unique nonnegative solution P(t, ·,ψ) = (S(t, ·,ψ), I(t, ·,ψ), R(t, ·,ψ), C(t, ·,ψ)) defined on
[0,∞) × 	 and is ultimately bounded.

Proof According to Lemma 3.1, system (1.3) has a unique classical solution P(t, x) =
(S(t, x), I(t, x), R(t, x), C(t, x)) with the initial value ψ = (ψ1,ψ2,ψ3,ψ4) ∈ X

+ defined for
t ∈ [0, τψ ) and x ∈ 	, where τψ ≤ +∞. Then, we prove that the global existence of the so-
lution, i.e., τψ = +∞. On the contrary, suppose that τψ < ∞, then we have ‖P(t, x)‖X → ∞
as t → τψ from Theorem 2 in [27]. Hence, it suffices to prove that the solution is bounded
in [0, τψ ) × 	. To this end, we define

W (t) =
∫

	

(S(t, x) + I(t, x) + R(t, x) + C(t, x))dx.

Calculating the derivative of W (t), and using the Divergence theorem [28] and the homo-
geneous Neumann boundary conditions, we can obtain

dW (t)
dt

=
∫

	

(
A(x) – μ(x)S – μ(x)I – μ(x)R – μ(x)C

)
dx

≤
∫

	

(
A∗ – μ∗(S + I + R + C)

)
dx

≤ A∗|	| – μ∗W (t),

where |	| is the measure of 	. The comparison principle implies

W (t) ≤ W (0)e–μ∗t +
A∗|	|

μ∗
(1 – e–μ∗t) (3.4)

for all t ∈ [0, τψ ). This shows that W (t) is bounded on [0, τψ ). Consequently, there is a
constant H0 > 0 such that

∫

	

S(t, x)dx ≤ H0,
∫

	

I(t, x)dx ≤ H0,
∫

	

R(t, x)dx ≤ H0,
∫

	

C(t, x)dx ≤ H0, (3.5)

for all t ∈ [0, τψ ).
It is clear from [29] that

�i(t, x, y) =
∑

n≥1

eπ i
ntϕi

n(x)ϕi
n(y), t > 0, x, y ∈ 	,

where π i
n (n = 1, 2, . . . , i = 1, 2, 3, 4) are the eigenvalue of d1� – μ(x), d2� – (μ(x) + α(x)),

d3� – (μ(x) + δ(x)), d4� – (μ(x) + γ (x)) subjects to the Neumann boundary condition
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corresponding to the eigenfunction ϕi
n(x), and satisfies π i

1 > π i
2 > π i

3 > · · · > π i
n > · · · , re-

spectively. Since {ϕi
n(x)} is uniformly bounded on 	, there exists a constant k1 > 0 such

that

�i(t, x, y) ≤ k1
∑

n≥1

eπ i
nt , t > 0, x, y ∈ 	.

Furthermore, let τ i
n (n = 1, 2, . . .) be the eigenvalues of d1� – μ∗, d2� – (μ∗ + α∗), d3� –

(μ∗ + δ∗), d4�– (μ∗ +γ∗) subjects to the Neumann boundary condition satisfying τ i
1 > τ i

2 >
τ i

3 > · · · > τ i
n > · · · . We have τ 1

1 = –μ∗, τ 2
1 = –(μ∗ + α∗), τ 3

1 = –(μ∗ + δ∗), τ 4
1 = –(μ∗ + γ∗), and

by Theorem 2.4.7 in [30], π i
j ≤ τ i

j for all j ∈ N+. Due to the fact that τ i
j decreases like –i2,

then there is a constant k2 > 0 such that

�i(t, x, y) ≤ k1
∑

n≥1

eτ i
nt ≤ k2eτ i

1t , t > 0, x, y ∈ 	.

From (3.1)–(3.3) and (3.5), for any t ∈ [0, τψ ) and x ∈ 	, we have that

S(t, x) =T1(t)ψ1(x) +
∫ t

0
T1(t – s)[A(x) – β1(x)S(s, x)I(s, x) + γ (x)C(s, x)

– v1(s, x)S(s, x)]ds

=T1(t)ψ1(x) +
∫ t

0

∫

	

�1(t – s, x, y)[A(y) – β1(y)S(s, y)I(s, y)

+ γ (y)C(s, y) – v1(s, y)S(s, y)]dyds

≤N1ew1t‖ψ1‖X + k2

∫ t

0
e–μ∗(t–s)

∫

	

(A∗ + γ ∗C(s, y))dyds

=N1ew1t‖ψ1‖X + k2(A∗ + γ ∗H0)
1 – e–μ∗t

μ∗

≤N1‖ψ1‖X +
k2(A∗ + γ ∗H0)

μ∗
:= H1.

(3.6)

and

C(t, x) =T4(t)ψ4(x) +
∫ t

0
T4(t – s)[δ(x)R(s, x) – β2(x)C(s, x)I(s, x)]ds

=T4(t)ψ4(x) +
∫ t

0

∫

	

�4(t – s, x, y)[δ(y)R(s, y) – β2(y)C(s, y)I(s, y)]dyds

≤N4ew4t‖ψ4‖X + k2

∫ t

0
e–(μ∗+γ∗)(t–s)δ∗

∫

	

R(s, y)dyds

=N4ew4t‖ψ4‖X + k2δ
∗H0

1 – e–(μ∗+γ∗)t

μ∗ + γ∗

≤N4‖ψ4‖X +
k2δ

∗H0

μ∗ + γ∗
:= H2.

(3.7)
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From (3.1)–(3.3) and (3.5)–(3.7), for any t ∈ [0, τψ ) and x ∈ 	, we obtain

I(t, x) =T2(t)ψ2(x) +
∫ t

0
T2(t – s)[β1(x)S(s, x)I(s, x) + σ (x)β2(x)C(s, x)I(s, x)

– v2(s, x)I(s, x)]ds

=T2(t)ψ2(x) +
∫ t

0

∫

	

�2(t – s, x, y)[β1(y)S(s, y)I(s, y)

+ σ (y)β2(y)C(s, y)I(s, y) – v2(s, y)I(s, y)]dyds (3.8)

≤N2ew2t‖ψ2‖X + k2

∫ t

0
e–(μ∗+α∗)(t–s)(β∗

1 H1 + σ ∗β∗
2 H2)

∫

	

I(s, y)dyds

=N2ew2t‖ψ2‖X + k2(β∗
1 H1 + σ ∗β∗

2 H2)H0
1 – e–(μ∗+α∗)t

μ∗ + α∗

≤N2‖ψ2‖X +
k2(β∗

1 H1 + σ ∗β∗
2 H2)H0

μ∗ + α∗
:= H3.

From (3.1)–(3.3) and (3.5)–(3.8), for any t ∈ [0, τψ ) and x ∈ 	, we have

R(t, x) =T3(t)ψ3(x) +
∫ t

0
T3(t – s)[(1 – σ (x))β2(x)C(s, x)I(s, x) + α(x)I(s, x)

+ v1(s, x)S(s, x) + v2(s, x)I(s, x)]ds

=T3(t)ψ3(x)

+
∫ t

0

∫

	

�3(t – s, x, y)[(1 – σ (y))β2(y)C(s, y)I(s, y) + α(y)I(s, y)

+ v1(s, y)S(s, y) + v2(s, y)I(s, y)]dyds

≤N3ew3t‖ψ3‖X + k2

∫ t

0
e–(μ∗+δ∗)(t–s)(β∗

2 H2H3 + α∗H3 + H1 + H3)ds

=N3ew3t‖ψ3‖X + k2(β∗
2 H2H3 + α∗H3 + H1 + H3)

1 – e–(μ∗+δ∗)t

μ∗ + δ∗

≤N3‖ψ3‖X +
k2(β∗

2 H2H3 + α∗H3 + H1 + H3)

μ∗ + δ∗
:= H4.

(3.9)

The above discussions show that the solution (S(t, x), I(t, x), R(t, x), C(t, x)) of system
(1.3)-(1.5) is bounded for t ∈ [0, τψ ) and x ∈ 	. This leads to a contradiction. Therefore,
we have τψ = ∞. That is, solution (S(t, x), I(t, x), R(t, x), C(t, x)) is defined for all t ≥ 0 and
x ∈ 	.

Now, we prove that the solution also is ultimately bounded. In fact, from (3.4) we can
obtain lim supt→∞ W (t) ≤ A∗|	|

μ∗ . Hence, without loss of generality, we can choose H0 =
A∗|	|

μ∗ and a T0 > 0 such that (3.5) holds for all t ≥ T0. Then, similar to (3.6) we can obtain

S(t, x) =T1(t)S(T0, x) +
∫ t

T0

T1(t – s)[A(x) – β1(x)S(s, x)I(s, x) + γ (x)C(s, x)

– v1(s, x)S(s, x)]ds

≤N1ew1(t–T0)‖S(T0, x)‖X +
k2(A∗ + γ ∗H0)

μ∗
.
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Therefore, we further have lim supt→∞ S(t, x) ≤ k2(A∗+γ ∗H0)
μ∗ := H∗

1 uniformly for x ∈ 	.
Using the same method, similar to (3.7)–(3.9), we can obtain

lim sup
t→∞

C(t, x) ≤ k2δ
∗H0

μ∗ + γ∗
:= H∗

2 ,

lim sup
t→∞

I(t, x) ≤ k2(β∗
1 H∗

1 + σ ∗β∗
2 H∗

2 )H0

μ∗ + α∗
:= H∗

3 ,

lim sup
t→∞

R(t, x) ≤ k2(β∗
2 H∗

2 H∗
3 + α∗H∗

3 + H∗
1 + H∗

3 )

μ∗ + δ∗
:= H∗

4

uniformly for x ∈ 	. This implies that the solution (S(t, x), I(t, x), R(t, x), C(t, x)) is ulti-
mately bounded. This completes the proof. �

Theorem 3.2 For given v = (v1, v2) ∈ U , U is defined as in (1.6), control system (1.3)–(1.5)
admits a unique positive strong solution P = (S, I, R, C) satisfying

S ∈ W 1,2(0, T ; L2(	)) ∩ L2(0, T ; H2(	)) ∩ L∞(0, T ; H1(	)) ∩ L∞(	T ), (3.10)

I ∈ W 1,2(0, T ; L2(	)) ∩ L2(0, T ; H2(	)) ∩ L∞(0, T ; H1(	)) ∩ L∞(	T ), (3.11)

R ∈ W 1,2(0, T ; L2(	)) ∩ L2(0, T ; H2(	)) ∩ L∞(0, T ; H1(	)) ∩ L∞(	T ), (3.12)

C ∈ W 1,2(0, T ; L2(	)) ∩ L2(0, T ; H2(	)) ∩ L∞(0, T ; H1(	)) ∩ L∞(	T ). (3.13)

Furthermore, there exists a positive constant C1, independent of v ∈ U and P, such that

‖∂S
∂t

‖L2(	T ) + ‖S‖L2(0,T ;H2(	)) + ‖S‖L∞(0,T ;H1(	)) + ‖S‖L∞(	T ) ≤ C1, (3.14)

‖∂I
∂t

‖L2(	T ) + ‖I‖L2(0,T ;H2(	)) + ‖I‖L∞(0,T ;H1(	)) + ‖I‖L∞(	T ) ≤ C1, (3.15)

‖∂R
∂t

‖L2(	T ) + ‖R‖L2(0,T ;H2(	)) + ‖R‖L∞(0,T ;H1(	)) + ‖R‖L∞(	T ) ≤ C1, (3.16)

‖∂C
∂t

‖L2(	T ) + ‖C‖L2(0,T ;H2(	)) + ‖C‖L∞(0,T ;H1(	)) + ‖C‖L∞(	T ) ≤ C1. (3.17)

Proof To prove this theorem we will use the method introduced in [31]. From The-
orem 3.1, we know that system (1.3)–(1.5) has a unique nonnegative classical solu-
tion P(t, x) = (S(t, x), I(t, x), R(t, x), C(t, x)) defined on [0,∞) × 	 which is also ultimately
bounded. Therefore, there is a constant M0 > 0 such that 0 ≤ S(t, x) ≤ M0, 0 ≤ I(t, x) ≤ M0,
0 ≤ R(t, x) ≤ M0 and 0 ≤ C(t, x) ≤ M0 for all (t, x) ∈ [0,∞)×	. It is clear that we only need
to prove that the solution P(t, x) = (S(t, x), I(t, x), R(t, x), C(t, x)) is a positive strong solution
and satisfies (3.10)–(3.13) and (3.14)–(3.17).

For the positive constant M0, we define the truncation form of a function G(t, x) defined
for (t, x) ∈ 	T as follows

GM0 (t, x) =

⎧
⎪⎨

⎪⎩

M0, if (t, x) ∈ {(t, x) ∈ 	T : G(t, x) > M0},
G(t, x), if (t, x) ∈ {(t, x) ∈ 	T : |G(t, x)| ≤ M0},
–M0, if (t, x) ∈ {(t, x) ∈ 	T : G(t, x) < –M0}.
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Consider the following truncated Cauchy problem

⎧
⎪⎨

⎪⎩

∂P
∂t

= LP + FM0 (t, P), t ∈ [0, T],

P(0, x) = ψ(x),
(3.18)

where P = (S, I, R, C), ψ(x) = (ψ1(x),ψ2(x),ψ3(x),ψ4(x)), and FM0 (t, P) is the truncation
form of F(t, P) and it is defined as

FM0 (t, P) := (FM0
1 (t, P), FM0

2 (t, P), FM0
3 (t, P), FM0

4 (t, P)) (3.19)

with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FM0
1 (t, P) =A(x) – β1(x)SM0(t, x)IM0 (t, x) + γ (x)CM0 (t, x)

– μ(x)SM0 (t, x) – v1(t, x)SM0 (t, x),

FM0
2 (t, P) =β1(x)SM0(t, x)IM0 (t, x) + σ (x)β2(x)CM0 (t, x)IM0 (t, x)

– (μ(x) + α(x))IM0(t, x) – v2(t, x)IM0 (t, x),

FM0
3 (t, P) =(1 – σ (x))β2(x)CM0 (t, x)IM0 (t, x) + α(x)IM0 (t, x)

– (μ(x) + δ(x))RM0(t, x) + v1(t, x)SM0(t, x) + v2(t, x)IM0 (t, x),

FM0
4 (t, P) =δ(x)RM0 (t, x) – β2(x)CM0 (t, x)IM0 (t, x) – (μ(x) + γ (x))CM0 (t, x),

(3.20)

Obviously, P(t, x) = (S(t, x), I(t, x), R(t, x), C(t, x)) is also the solution of truncated Cauchy
problem (3.18). It is easy to see that the function FM0 (t, P) defined in (3.19) is global Lips-
chitz continuous for P uniformly with respect to t ∈ [0, T]. Therefore, using Lemma 2.1 to
system (1.3)–(1.5), we can obtain that the solution P = (S, I, R, C) ∈ (W 1,2(0, T ; L2(	)))4 ∩
(L2(0, T ; H2(	)))4 and is also a strong solution.

We further show that the solution P = (S, I, R, C) ∈ (L∞(	T ))4. It is clear that

S(t, x) = T̃1(t)ψ1(x) +
∫ t

0
T̃1(t – s)FM0

1 (s, P)ds,

I(t, x) = T̃2(t)ψ2(x) +
∫ t

0
T̃2(t – s)FM0

2 (s, P)ds,

R(t, x) = T̃3(t)ψ3(x) +
∫ t

0
T̃3(t – s)FM0

3 (s, P)ds,

C(t, x) = T̃4(t)ψ4(x) +
∫ t

0
T̃4(t – s)FM0

4 (s, P)ds,

(3.21)

where {T̃i(t), t ≥ 0} (i = 1, 2, 3, 4) is the C0-semigroup of contractions generated by the
operator Li : D(Li) ⊆ L2(	) → L2(	) defined as follows

LiU = di�U , D(Li) = {U : U ∈ H2(	),
∂U
∂n

= 0 on ∂	}.
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From the expressions of FM0
i (i = 1, 2, 3, 4) defined in (3.20) and the control function v =

(v1, v2) ∈ U , we can choose a constant HM0 , which is independent of v such that

HM0 ≥ max{‖FM0
i (t, P)‖L∞(	T ), ‖ψi(x)‖L∞(	), i = 1, 2, 3, 4}. (3.22)

We introduce the following auxiliary Cauchy problem

⎧
⎪⎨

⎪⎩

∂S(t, x)

∂t
= d1�S(t, x) + FM0

1 (t, P(t, x)) – HM0 , (t, x) ∈ 	T ,

S(0, x) = ψ1(x) – ‖ψ1(x)‖L∞(	), x ∈ 	,
(3.23)

where P(t, x) = (S(t, x), I(t, x), R(t, x), C(t, x)). By virtue of Theorem 2.1 and (3.21), the prob-
lem (3.23) has a unique strong solution that can be expressed as

S(t, x) = T̃1(t)(ψ1(x) – ‖ψ1(x)‖L∞(	)) +
∫ t

0
T̃1(t – s)(FM0

1 (s, P) – HM0 )ds. (3.24)

Let Y1(t, x) = S(t, x) + ‖ψ1(x)‖L∞(	), then problem (3.23) can be rewritten as follows

⎧
⎪⎨

⎪⎩

∂Y1(t, x)

∂t
= d1�Y1(t, x) + FM0

1 (t, P(t, x)) – HM0 , in 	T ,

Y1(0, x) = ψ1(x), in 	.
(3.25)

By virtue of Lemma 2.1, the problem (3.25) has a unique strong solution that can be ex-
pressed as

Y1(t, x) = T̃1(t)ψ1(x) +
∫ t

0
T̃1(t – s)(FM0

1 (s, P) – HM0 )ds.

Namely,

S(t, x) + ‖ψ1(x)‖L∞(	) = T̃1(t)ψ1(x) +
∫ t

0
T̃1(t – s)(FM0

1 (s, P) – HM0 )ds. (3.26)

Moreover, it follows from the solution of (3.24) and (3.26) is equivalent to

S(t, x) = S(t, x) – ‖ψ1(x)‖L∞(	) –
∫ t

0
T̃1(t – s)HM0 ds, (t, x) ∈ 	T . (3.27)

We further consider another initial value problem

⎧
⎪⎨

⎪⎩

∂Z1(t, x)

∂t
= d1�Z1(t, x), (t, x) ∈ 	T ,

Z1(0, x) = 0, x ∈ 	.
(3.28)

It is obvious that Z1(t, x) = 0 is the unique solution to problem (3.28). Meanwhile, by the
definition of HM0 in (3.22), we can see ψ1(x) – ‖ψ1(x)‖L∞(	) ≤ 0 and FM0

1 (t, P) – HM0 ≤ 0.



Zhou et al. Advances in Continuous and Discrete Models         (2024) 2024:53 Page 15 of 37

Then the comparison principle of parabolic equation yields that S(t, x) ≤ Z1(t, x) = 0 for
all (t, x) ∈ 	T , Further, from (3.27), we have

S(t, x) ≤ ‖ψ1(x)‖L∞(	) +
∫ t

0
T̃1(t – s)HM0 ds, (t, x) ∈ 	T .

This implies that S ∈ L∞(	T ), and there is a constant C11 > 0, independent of v ∈ U and
P, such that ‖S‖L∞(	T ) ≤ C11. We can employ similar methods to prove that I ∈ L∞(	T ),
R ∈ L∞(	T ) and C ∈ L∞(	T ), and there are the constants C1i > 0 (i = 2, 3, 4), independent
of v ∈ U and P, such that ‖I‖L∞(	T ) ≤ C12, ‖R‖L∞(	T ) ≤ C13 and ‖C‖L∞(	T ) ≤ C14.

Now, we further show that the solution P = (S, I, R, C) ∈ (L∞(0, T ; H1(	)))4. From the
first equation of system (3.18), we can get

∫ t

0

∫

	

(
∂S(s, x)

∂s
)2dxds – 2d1

∫ t

0

∫

	

∂S(s, x)

∂s
�S(s, x)dxds

+ d2
1

∫ t

0

∫

	

(�S(s, x))2dxds =
∫ t

0

∫

	

(FM0
1 (s, P(s, x)))2dxds.

(3.29)

Notice that it is given by Green’s formula that

–2d1

∫ t

0

∫

	

∂S(s, x)

∂s
�S(s, x)dxds = d1

∫

	

|∇S(t, x)|2dx – d1

∫

	

|∇ψ1(x)|2dx. (3.30)

Substituting (3.30) into (3.29), we can obtain

∫ t

0

∫

	

(
∂S(s, x)

∂s
)2dxds + d1

∫

	

|∇S(t, x)|2dx + d2
1

∫ t

0

∫

	

(�S(s, x))2dxds

=
∫ t

0

∫

	

(FM0
1 (s, P(s, x)))2dxds + d1

∫

	

|∇ψ1(x)|2dx.
(3.31)

Noting that ψ1(x) ∈ H2(	), S ∈ L∞(	T ) ∩ L2(0, T ; H2(	)) and (3.31), we can conclude
S ∈ L∞(0, T ; H1(	)), and there is a constant C21 > 0, independent of v ∈ U and P, such
that

‖∂S
∂t

‖L2(	T ) + ‖S‖L∞(0,T ;H1(	)) ≤ C21.

Similarly, by using the same methods, we also can prove I ∈ L∞(0, T ; H1(	)), R ∈
L∞(0, T ; H1(	)) and C ∈ L∞(0, T ; H1(	)). Meanwhile, there are constants C2i > 0 (i =
2, 3, 4), independent of v ∈ U and P, such that

‖∂I
∂t

‖L2(	T ) + ‖I‖L∞(0,T ;H1(	)) ≤ C21,

‖∂R
∂t

‖L2(	T ) + ‖R‖L∞(0,T ;H1(	)) ≤ C21

and

‖∂C
∂t

‖L2(	T ) + ‖C‖L∞(0,T ;H1(	)) ≤ C21.
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Furthermore, based on (3.31), we also can obtain that there is a constant C31 > 0,
independent of v ∈ U and P, such that ‖S‖L2(0,T ;H2(	)) ≤ C31. Similarly, by using the
same method, we further can obtain that there are constants C3i > 0 (i = 2, 3, 4), in-
dependent of v ∈ U and P, such that ‖I‖L2(0,T ;H2(	)) ≤ C32, ‖R‖L2(0,T ;H2(	)) ≤ C33 and
‖C‖L2(0,T ;H2(	)) ≤ C34. Lastly, summarize the above discussions we finally obtain that the
inequalities (3.14)–(3.17) hold.

We further prove the positivity of the solution P = (S, I, R, C). That is, S(t, x) > 0, I(t, x) >
0, R(t, x) > 0 and C(t, x) > 0. We first prove that S(t, x) is positive. To do this, we first de-
fine

S(t, x) = (S(t, x))+ – (S(t, x))–, (3.32)

with (S(t, x))+ = max{S(t, x), 0}, (S(t, x))– = – min{S(t, x), 0}. Multiplying the first equation
of (3.18) by (S(t, x))–, we obtain that

∂S(t, x)

∂t
(S(t, x))– =d1�S(t, x)(S(t, x))– – β1(x)SM0 (t, x)IM0 (t, x)(S(t, x))–

+ γ (x)CM0 (t, x)(S(t, x))– + A(x)(S(t, x))–

– μ(x)SM0 (t, x)(S(t, x))– – v1(t, x)SM0 (t, x)(S(t, x))–.

(3.33)

By calculating, we can obtain that

SM0 (t, x)(S(t, x))– =

⎧
⎪⎨

⎪⎩

M0(S(t, x))–, if S(t, x) > M0,
S(t, x)(S(t, x))–, if |S(t, x)| ≤ M0,
–M0(S(t, x))–, if S(t, x) < –M0

⎫
⎪⎬

⎪⎭
≤ –((S(t, x))–)2.

In addition, we easily obtain that ∂S(t,x)
∂t = ∂(S(t,x))+

∂t – ∂(S(t,x))–

∂t , �S(t, x) = �(S(t, x))+ –
�(S(t, x))–, ∂(S(t,x))+

∂t (S(t, x))– ≡ 0 and �(S(t, x))+(S(t, x))– ≡ 0. Thus, from (3.33), we fur-
ther obtain

–
1
2

∂

∂t
((S(t, x))–)2 ≥ – d1(S(t, x))–�(S(t, x))–

+ ((S(t, x))–)2(μ(x) + β1(x)IM0 (t, x) + v1(t, x)).
(3.34)

Integrating both sides of (3.34) over 	, one can obtain

∫

	

∂

∂t
((S(t, x))–)2dx ≤2d1

∫

	

(S(t, x))–�(S(t, x))–dx

– 2
∫

	

((S(t, x))–)2(β1(x)IM0 (t, x) + μ(x) + v1(t, x))dx.
(3.35)

Applying the Green formula, one obtains

∫

	

(S(t, x))–�(S(t, x))–dx = –
∫

	

|∇(S(t, x))–|2dx. (3.36)
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Therefore, we substitute (3.36) into (3.35) to get

d
dt

∫

	

((S(t, x))–)2dx ≤ – 2d1

∫

	

|∇(S(t, x))–|2dx

– 2
∫

	

((S(t, x))–)2(β1(x)IM0 (t, x) + μ(x) + v1(t, x))dx.
(3.37)

According to the boundedness of I(t, x), we can obtain that

β1(x)IM0 (t, x) + μ(x) + v1(t, x) ∈ L∞(	T ). (3.38)

Combining (3.37) and (3.38), one acquires

d
dt

∫

	

((S(t, x))–)2dx

≤ –2‖β1(x)IM0 (t, x) + μ(x) + v1(t, x)‖L∞(	T )

∫

	

((S(t, x))–)2dx.
(3.39)

Set η = ‖β1(x)IM0 (t, x) + μ(x) + v1(t, x)‖L∞(	T ), then integrating (3.39) from 0 to t for any
t ∈ [0, T], we gain

∫

	

((S(t, x))–)2dx ≤ –2η

∫ t

0

∫

	

((S(t, x))–)2ds ≤ 0. (3.40)

From (3.40), we further obtain that (S(t, x))– ≡ 0 in 	T , which implies by (3.32) that
S(t, x) ≥ 0 in 	T . And then, it follows from ψ1(x) > 0 that S(t, x) > 0 for all (t, x) ∈ 	T .
Similarly, we also can show that I(t, x) > 0, R(t, x) > 0 and C(t, x) > 0 in 	T . This completes
the proof. �

4 The existence of optimal solution
This section is devoted to the existence of the optimal pair for the optimal control problem
(1.3)–(1.5). We have the following result.

Theorem 4.1 The control system (1.3)–(1.5) admits an optimal solution (S, I, R, C, v) with
v = (v1, v2) ∈ U such that

J(S, I, v) = inf
v=(v1,v2)∈U

J(S, I, v).

Proof From Theorem 3.2, for any v = (v1, v2) ∈ U the control system (1.3)–(1.5) has
a unique positive strong solution P = (S, I, R, C). Hence, we know that J(S, I, v1, v2) is
bounded below on U . Thus, there exists a constant � = inf(v1,v2)∈U J(S, I, v1, v2) and a mini-
mizing sequence {Sn, In, vn

1, vn
2 : n ≥ 1} such that

lim
n→∞ J(Sn, In, vn

1, vn
2) = inf

(v1,v2)∈U
J(S, I, v1, v2) = �, (4.1)
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where (Sn, In, Rn, Cn) satisfies the following system with (vn
1, vn

2) for each n = 1, 2, . . . ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sn(t, x)

∂t
=d1�Sn(t, x) + A(x) – β1(x)Sn(t, x)In(t, x) + γ (x)Cn(t, x)

– μ(x)Sn(t, x) – vn
1(t, x)Sn(t, x),

∂In(t, x)

∂t
=d2�In(t, x) + β1(x)Sn(t, x)In(t, x) + σ (x)β2(x)Cn(t, x)In(t, x)

– (μ(x) + α(x))In(t, x) – vn
2(t, x)In(t, x),

∂Rn(t, x)

∂t
=d3�Rn(t, x) + (1 – σ (x))β2(x)Cn(t, x)In(t, x) + α(x)In(t, x)

– (μ(x) + δ(x))Rn(t, x) + vn
1(t, x)Sn(t, x) + vn

2(t, x)In(t, x),

∂Cn(t, x)

∂t
=d4�Cn(t, x) + δ(x)Rn(t, x) – β2(x)Cn(t, x)In(t, x) – (μ(x) + γ (x))Cn(t, x),

∂Sn(t, x)

∂n
=

∂In(t, x)

∂n
=

∂Rn(t, x)

∂n
=

∂Cn(t, x)

∂n
= 0, (t, x) ∈ 
T = (0, T) × ∂	,

Sn(0, x) =ψ1(x), In(0, x) = ψ2(x), Rn(0, x) = ψ3(x), Cn(0, x) = ψ4(x), x ∈ 	.

(4.2)

Furthermore, in (4.1), without loss of generality, we can assume that for n = 1, 2, . . . ,

� ≤ J(Sn, In, vn
1, vn

2) ≤ � +
1
n

, (4.3)

Firstly, since {vn
1} and {vn

2} are uniformly bounded in L2(	T ), there exist functions v1 and
v2 and subsequence of {vn

1} and {vn
2}, still denoted by themselves, such that

vn
1 → v1, vn

2 → v2 weakly in L2(	T ), as n → ∞. (4.4)

Since U is a closed and convex set in L2(	T ), it also is weakly closed. Hence, (4.4) implies
that v = (v1, v2) ∈ U .

From Theorem 3.2, we further obtain that for each n = 1, 2, . . . ,

Sn ∈ W 1,2(0, T ; L2(	)) ∩ L2(0, T ; H2(	)) ∩ L∞(0, T ; H1(	)) ∩ L∞(	T ), (4.5)

In ∈ W 1,2(0, T ; L2(	)) ∩ L2(0, T ; H2(	)) ∩ L∞(0, T ; H1(	)) ∩ L∞(	T ), (4.6)

Rn ∈ W 1,2(0, T ; L2(	)) ∩ L2(0, T ; H2(	)) ∩ L∞(0, T ; H1(	)) ∩ L∞(	T ), (4.7)

Cn ∈ W 1,2(0, T ; L2(	)) ∩ L2(0, T ; H2(	)) ∩ L∞(0, T ; H1(	)) ∩ L∞(	T ). (4.8)

Moreover, there exists a constant C > 0, independent of any n, such that

‖∂Sn

∂t
‖L2(	T ) + ‖Sn‖L2(0,T ;H2(	)) + ‖Sn‖L∞(0,T ;H1(	)) + ‖Sn‖L∞(	T ) ≤ C, (4.9)

‖∂In

∂t
‖L2(	T ) + ‖In‖L2(0,T ;H2(	)) + ‖In‖L∞(0,T ;H1(	)) + ‖In‖L∞(	T ) ≤ C, (4.10)

‖∂Rn

∂t
‖L2(	T ) + ‖Rn‖L2(0,T ;H2(	)) + ‖Rn‖L∞(0,T ;H1(	)) + ‖Rn‖L∞(	T ) ≤ C, (4.11)
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‖∂Cn

∂t
‖L2(	T ) + ‖Cn‖L2(0,T ;H2(	)) + ‖Cn‖L∞(0,T ;H1(	)) + ‖Cn‖L∞(	T ) ≤ C. (4.12)

It can be seen from (4.5)–(4.8) that Sn, In, Rn, Cn ∈ W 1,2(0, T ; L2(	)), which implies
that Sn, In, Rn, Cn ∈ C(0, T ; L2(	)). Since H1(	) is compactly embedded into L2(	) (see
[32]), by (4.9)–(4.12) we can deduce that the sequence {(Sn, In, Rn, Cn)} is relatively com-
pact in (L2(	))4. Furthermore, from (4.9)–(4.12), we can deduce that {(Sn, In, Rn, Cn)} is
also uniformly bounded in (L2(	))4, and the sequence {( ∂Sn

∂t , ∂In

∂t , ∂Rn

∂t , ∂Cn

∂t )} is bounded in
(L2(	T ))4. This implies that {(Sn, In, Rn, Cn)} is equicontinuous in (C(0, T ; L2(	)))4. Thus,
the Ascoliz–Arzela theorem implies that the sequence {(Sn, In, Rn, Cn)} is also compact in
(C(0, T ; L2(	)))4. Hence, there exists a (S, I, R, C) ∈ (C(0, T ; L2(	)))4 and a subsequence of
{(Sn, In, Rn, Cn)}, still denoted by itself, such that

⎧
⎪⎪⎨

⎪⎪⎩

lim
n→∞ sup

t∈[0,T]
‖Sn(t) – S(t)‖L2(	) = 0, lim

n→∞ sup
t∈[0,T]

‖In(t) – I(t)‖L2(	) = 0,

lim
n→∞ sup

t∈[0,T]
‖Rn(t) – R(t)‖L2(	) = 0, lim

n→∞ sup
t∈[0,T]

‖Cn(t) – C(t)‖L2(	) = 0.

That is,

(Sn, In, Rn, Cn) → (S, I, R, C) in (L2(	))4 uniformly for t ∈ [0, T]. (4.13)

Next, we further prove that (S, I, R, C, v1, v2) is an optimal pair of the control system
(1.3)–(1.5). From the first equation of (4.2), we have

d1�Sn(t, x) =
∂Sn(t, x)

∂t
– (A(x) – β1(x)Sn(t, x)In(t, x)

+ γ (x)Cn(t, x) – μ(x)Sn(t, x) – vn
1(t, x)Sn(t, x)).

(4.14)

According to (4.9)–(4.12), from (4.14) we easily obtain that the sequence {�Sn} is bounded
in L2(	T ). Similarly, we can get that the sequences {�In}, {�Rn} and {�Cn} also are
bounded in L2(	T ). Namely, {(�Sn,�In,�Rn,�Cn)} is bounded in (L2(	T ))4. Hence,
there exists a subsequence of {(�Sn,�In,�Rn,�Cn)}, still denoted by itself, which is
weakly convergent. This implies that (�S,�I,�R,�C) exists on 	T and {(�Sn,�In,�Rn,
�Cn)} weakly converges to (�S,�I,�R,�C) in (L2(	T ))4 as n → ∞. This is,

lim
n→∞(�Sn,�In,�Rn,�Cn) = (�S,�I,�R,�C) weakly in (L2(0, T ; L2(	)))4. (4.15)

Furthermore, from ∂Sn

∂n = ∂In

∂n = ∂Rn

∂n = ∂Cn

∂n ≡ 0 for all (t, x) ∈ 
T and n = 1, 2, . . . , we also
have ∂S

∂n = ∂I
∂n = ∂R

∂n = ∂C
∂n ≡ 0 on 
T .

In addition, from the estimates (4.9)–(4.12), we also can obtain that ( ∂S
∂t , ∂I

∂t , ∂R
∂t , ∂C

∂t ) exists
on 	T and when n → ∞

(
∂Sn

∂t
,
∂In

∂t
,
∂Rn

∂t
,
∂Cn

∂t
) → (

∂S
∂t

,
∂I
∂t

,
∂R
∂t

,
∂C
∂t

) weakly in (L2(0, T ; L2(	)))4. (4.16)

Now, we show that SnIn → SI , CnIn → CI strongly in L2(	T ) as n → ∞. In fact, we first
write SnIn – SI = Sn(In – I) + I(Sn – S) and CnIn – CI = Cn(In – I) + I(Cn – C). From the
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convergence Sn → S, In → I , Cn → C strongly in L2(	T ) as n → ∞, and the boundedness
of {(Sn, In, Rn, Cn)} in L∞(	T ), we directly have

SnIn → SI, CnIn → CI strongly in L2(	T ) as n → ∞. (4.17)

Next, we prove that vn
1Sn → v1S, vn

2In → v2I weakly in L2(	T ). In fact, we can write
vn

1Sn –v1S = vn
1(Sn –S)+S(vn

1 –v1), vn
2In –v2I = vn

2(In – I)+ I(vn
2 –v2). Using the convergences

Sn → S, In → I strongly in L2(	T ), and (4.4), we obtain that

vn
1Sn → v1S, vn

2In → v2I weakly in L2(	T ) as n → ∞. (4.18)

Therefore, from the above convergence (4.13) and (4.15)–(4.18), by taking n → ∞ in
(4.2), we finally obtain that (S, I, R, C) is a solution of control problem (1.3)–(1.5) corre-
sponding to (v1, v2) ∈ U .

By using the weak sequentially lower semi-continuity of objective functional J(S, I, v1, v2),
from (4.3), we further have

J(S, I, v1, v2) =
∫ T

0

∫

	

(λ1(t, x)S(t, x) + λ2(t, x)I(t, x) + κ1(t, x)v1(t, x)

+ κ2(t, x)v2(t, x))dxdt +
∫

	

(ω1(x)S(T , x) + ω2(x)In
(T , x)

+ ρ1(x)v1(T , x) + ρ2v2(T , x))dx

≤ lim inf
n→∞

(∫ T

0

∫

	

(λ1(t, x)Sn(t, x) + λ2(t, x)In(t, x)

+ κ1(t, x)vn
1(t, x) + κ2(t, x)vn

2(t, x))dxdt +
∫

	

(ω1(x)Sn(T , x)

+ ω2(x)In(T , x) + ρ1(x)vn
1(T , x) + ρ2vn

2(T , x))dx
)

≤ lim
n→∞ J(Sn, In, vn

1, vn
2)

= inf
(v1,v2)∈U

J(S, I, v1, v2).

This shows that J attains its minimum at (S, I, v1, v2). Therefore, (S, I, R, C, v1, v2) is an op-
timal pair of the control system (1.3)–(1.5). This completes the proof. �

5 Necessary optimality condition
In this section, to further establish the first-order necessary condition for optimal control,
we consider the adjoint system of the state system (2.1), which can be expressed as follows

⎧
⎪⎨

⎪⎩

∂Q
∂t

= –L∗Q – F∗
PQ + LP, t ∈ (0, T),

Q(T , x) = –ϕP(T , x),
(5.1)

where L∗ is the adjoint operator associated to L, and F∗
P is the adjoint matrix of the Ja-

cobian matrix FP , that is, F∗
P is the transposition of ∂F

∂P , and LP := ∂L(P,v)
∂P , ϕP := ∂ϕ(P,v)

∂P . Let
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(P, v) = (S, I, R, C, v1, v2) be an optimal pair of control system (2.1) and Q = (S∗, I∗, R∗, C∗)

be the adjoint variable [25]. Then, system (5.1) can be written in detail as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S∗(t, x)

∂t
= – d1�S∗(t, x) + (μ(x) + β1(x)I(t, x) + v1(t, x))S∗(t, x)

– β1(x)I(t, x)I∗(t, x) – v1(t, x)R∗(t, x) + λ1(t, x),

∂I∗(t, x)

∂t
= – d2�I∗(t, x) + β1(x)S(t, x)S∗(t, x) – [β1(x)S(t, x) + σ (x)β2(x)C(t, x)

– (μ(x) + α(x) + v2(t, x))]I∗(t, x) – [(1 – σ (x))β2(x)C(t, x) + α(x)

+ v2(t, x)]R∗(t, x) + β2(x)C(t, x)C∗(t, x) + λ2(t, x),

∂R∗(t, x)

∂t
= – d3�R∗(t, x) + (μ(x) + δ(x))R∗(t, x) – δ(x)C∗(t, x),

∂C∗(t, x)

∂t
= – d4�C∗(t, x) – γ (x)S∗(t, x) – σ (x)β2(x)I(t, x)I∗(t, x) – (1 – σ (x))β2(x)

I(t, x)R∗(t, x) + (β2(x)I(t, x) + μ(x) + γ (x))C∗(t, x),

∂S∗(t, x)

∂n
=

∂I∗(t, x)

∂n
=

∂R∗(t, x)

∂n
=

∂C∗(t, x)

∂n
= 0,

S∗(T , x) = – ω1, I∗(T , x) = –ω2, R∗(T , x) = 0, C∗(T , x) = 0.

(5.2)

By introducing a change of variable s = T –t and using the same methods in Theorem 3.2,
we easily establish the following results.

Lemma 5.1 Assume that (S, I, R, C, v1, v2) is an optimal pair of control system (1.3)–(1.5).
Then the adjoint system (5.2) admits a unique strong solution (S∗, I∗, R∗, C∗) such that

S∗ ∈ W 1,2(0, T ; L2(	)) ∩ L2(0, T ; H2(	)) ∩ L∞(0, T ; H1(	)) ∩ L∞(	T ), (5.3)

I∗ ∈ W 1,2(0, T ; L2(	)) ∩ L2(0, T ; H2(	)) ∩ L∞(0, T ; H1(	)) ∩ L∞(	T ), (5.4)

R∗ ∈ W 1,2(0, T ; L2(	)) ∩ L2(0, T ; H2(	)) ∩ L∞(0, T ; H1(	)) ∩ L∞(	T ), (5.5)

C∗ ∈ W 1,2(0, T ; L2(	)) ∩ L2(0, T ; H2(	)) ∩ L∞(0, T ; H1(	)) ∩ L∞(	T ). (5.6)

To establish the first-order necessary condition for optimal control, the key point of our
analysis is proving the differentiability of the control-to-state mapping.

For any vε = (vε
1, vε

2) ∈ U , let (Sε , Iε , Rε , Cε) be the solution of control system (1.3)–(1.5)
with v1(t, x) = vε

1(t, x) and v1(t, x) = vε
2(t, x). We define a mapping as follows

� : U ⊂ (L2(	T ))2 → (L2(	T ))4 (5.7)

by �(vε) = (Sε , Iε , Rε , Cε). The mapping � is obviously well defined due to Theorem 3.2,
we have the following result for the control-to-state mapping �.

Lemma 5.2 The mapping � defined in (5.7) is Gâteaux differentiable at v = (v1, v2). That
is, there exists a bounded linear operator �′(v) : (L2(	T ))2 → (L2(	T ))4 such that for any
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ṽ = (̃v1, ṽ2) ∈ L2(	T ) and positive number ε, satisfying vε = v + ε̃v ∈ U , one has

lim
ε→0

‖�(vε) – �(v)

ε
– �′(v)̃v‖ = 0, ∀ ṽ ∈ L2(	T ), (5.8)

where �(vε) = (Sε , Iε , Rε , Cε), �(v) := (S, I, R, C) are the solutions of control system (1.3)-
(1.5) with (v1, v2) = (vε

1, vε
2) and (v1, v2) = (v1, v2), respectively. Moreover, �′(v)̃v := Z =

(ZS, ZI , ZR, ZC) is the solution of the following linear system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ZS(t, x)

∂t
=d1�ZS(t, x) – (μ(x) + β1(x)I(t, x) + v1(t, x))ZS(t, x)

– β1(x)S(t, x)ZI(t, x) + γ (x)ZC(t, x) – v1(t, x)S(t, x),

∂ZI(t, x)

∂t
=d2�ZI(t, x) + β1(x)I(t, x)ZS(t, x) + [β1(x)S(t, x)

+ σ (x)β2(x)C(t, x) – (μ(x) + α(x) + v2(t, x))]ZI(t, x)

+ σ (x)β2(x)I(t, x)ZC(t, x) – v2(t, x)I(t, x),

∂ZR(t, x)

∂t
=d3�ZR(t, x) + v1(t, x)ZS(t, x) + [(1 – σ (x))β2(x)C(t, x)

+ α(x) + v2(t, x)]ZI(t, x) – (μ(x) + δ(x))ZR(t, x)

+ (1 – σ (x))β2(x)I(t, x)ZC(t, x) + v1(t, x)S(t, x) + v2(t, x)I(t, x),

∂ZC(t, x)

∂t
=d4�ZC(t, x) – β2(x)C(t, x)ZI(t, x) + δ(x)ZR(t, x)

– (β2(x)I(t, x) + μ(x) + γ (x))ZC(t, x),

∂ZS(t, x)

∂n
=

∂ZI(t, x)

∂n
=

∂ZR(t, x)

∂n
=

∂ZC(t, x)

∂n
= 0,

ZS(0, x) =ZI(0, x) = ZR(0, x) = ZC(0, x) = 0,

(5.9)

with (v1(t, x), v2(t, x)) = (̃v1(t, x), ṽ2(t, x)).

Proof Firstly, based on the fundamental theory of linear reaction-diffusion equations
we easily know that system (5.9) with (v1, v2) = (̃v1, ṽ2) has a unique solution Z =
(ZS, ZI , ZR, ZC) defined for (t, x) ∈ 	T . From this, we can define a mapping �′(v) :
(L2(	T ))2 → (L2(	T ))4 as follows

�′(v)̃v = Z = (ZS, ZI , ZR, ZC), ṽ = (̃v1, ṽ2) ∈ (L2(	T ))2.

Furthermore, we easily prove that the mapping �′(v) is a linear operator. That is, if
�′(v)̃v and �′(v)̂v are the solutions of system (5.9) with v = ṽ and v = v̂, respectively, then
�′(v)(α̃v + β v̂) also is the solution of system (5.9) with v = α̃v + β v̂, and �′(v)(α̃v + β v̂) =
α�′(v)̃v + β�′(v)̂v, where α and β are two positive constants.

We set

Zε = (Zε
S, Zε

I , Zε
R, Zε

C) =
�(vε) – �(v)

ε
= (

Sε – S
ε

,
Iε – I

ε
,

Rε – R
ε

,
Cε – C

ε
).
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It is easily verified that (Zε
S, Zε

I , Zε
R, Zε

C) satisfies the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Zε
S(t, x)

∂t
=d1�Zε

S(t, x) – (μ(x) + β1(x)Iε(t, x) + v1(t, x))Zε
S(t, x)

– β1(x)S(t, x)Zε
I (t, x) + γ (x)Zε

C(t, x) – ṽ1(t, x)Sε(t, x),

∂Zε
I (t, x)

∂t
=d2�Zε

I (t, x) + β1(x)Iε(t, x)Zε
S(t, x) + [β1(x)S(t, x) + σ (x)β2(x)C(t, x)

– (μ(x) + α(x) + v2(t, x))]Zε
I (t, x) + σ (x)β2(x)Iε(t, x)Zε

C(t, x)

– ṽ2(t, x)Iε(t, x),

∂Zε
R(t, x)

∂t
=d3�Zε

R(t, x) + vε
1(t, x)Zε

S(t, x) + [(1 – σ (x))β2(x)C(t, x)

+ α(x) + vε
2(t, x)]Zε

I (t, x) – (μ(x) + δ(x))Zε
R(t, x)

+ (1 – σ (x))β2(x)Iε(t, x)Zε
C(t, x) + ṽ1(t, x)S(t, x) + ṽ2(t, x)I(t, x)

∂Zε
C(t, x)

∂t
=d4�Zε

C(t, x) – β2(x)Cε(t, x)Zε
I (t, x) + δ(x)Zε

R(t, x)

– (β2(x)I(t, x) + μ(x) + γ (x))Zε
C(t, x),

∂Zε
S(t, x)

∂n
=

∂Zε
I (t, x)

∂n
=

∂Zε
R(t, x)

∂n
=

∂Zε
C(t, x)

∂n
= 0,

Zε
S(0, x) =Zε

I (0, x) = Zε
R(0, x) = Zε

C(0, x) = 0.

(5.10)

In order to prove that (5.8) holds, it is sufficient to show that the following conclusion
holds

lim
ε→0

‖Zε
S – ZS‖L2(	T ) = 0, lim

ε→0
‖Zε

I – ZI‖L2(	T ) = 0,

lim
ε→0

‖Zε
R – ZR‖L2(	T ) = 0, lim

ε→0
‖Zε

C – ZC‖L2(	T ) = 0.
(5.11)

For this purpose, we first prove that Zε is bounded in L2(	T ) uniformly with respect to
ε. To this end, denoting

Hε(t) =

⎛

⎜
⎜
⎜
⎝

–(β1Iε + μ + v1) –β1S 0 γ

β1Iε β1S + σβ2C – (μ + α + v2) 0 σβ2Iε

vε
1 (1 – σ )β2C + α + vε

2 –μ – δ (1 – σ )β2Iε

0 –β2Cε δ –(β2I + μ + γ )

⎞

⎟
⎟
⎟
⎠

,

(5.12)

and

Lε(t) =

⎛

⎜
⎜
⎜
⎝

–Sε 0
0 –Iε

S I
0 0

⎞

⎟
⎟
⎟
⎠

, ṽ =

(
ṽ1

ṽ2

)

. (5.13)
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Then system (5.10) is rewritten by

⎧
⎪⎨

⎪⎩

∂Zε

∂t
= LZε(t) + Hε(t)Zε(t) + Lε(t)̃v, (t, x) ∈ 	T ,

Zε(0) = 0, x ∈ 	.
(5.14)

It follows from Theorem 3.2 that the Cauchy problem (5.14) possesses a unique strong
solution that can be expressed as

Zε(t) =
∫ t

0
�1(t – s)Hε(s)Zε(s)ds +

∫ t

0
�1(t – s)Lε(s)̃vds, t ∈ [0, T], (5.15)

where {�1(t), t ≥ 0} is the C0-semigroup of contractions generated by the operator L. In
addition, according to Lemma 5.1 and Theorem 3.2, all elements of matrices Hε and Lε

are bounded uniformly with respect to ε. Therefore, from (5.15) there exists a positive
constant K3 such that

‖Zε
S‖L2(	T ) ≤ K3, ‖Zε

I ‖L2(	T ) ≤ K3, ‖Zε
R‖L2(	T ) ≤ K3, ‖Zε

C‖L2(	T ) ≤ K3. (5.16)

This shows that Zε is bounded in L2(	T ) uniformly with respect to ε. Moreover, from
(5.16), we further obtain that

Sε → S, Iε → I, Rε → R, Cε → C in L2(	T ) as ε → 0. (5.17)

We now prove that (5.11) holds. Let

H(t) =

⎛

⎜
⎜
⎜
⎝

–(β1I + μ + v1) –β1S 0 γ

β1I β1S + σβ2C – (μ + α + v2) 0 σβ2I
v1 (1 – σ )β2C + α + v2 –μ – δ (1 – σ )β2I
0 –β2C δ –(β2I + μ + γ )

⎞

⎟
⎟
⎟
⎠

,

(5.18)

and

L(t) =

⎛

⎜
⎜
⎜
⎝

–S 0
0 –I
S I
0 0

⎞

⎟
⎟
⎟
⎠

, ṽ =

(
ṽ1

ṽ2

)

. (5.19)

Then system (5.9) with (v1, v2) = (̃v1, ṽ2) can be abbreviated as

⎧
⎪⎨

⎪⎩

∂Z
∂t

= LZ(t) + H(t)Z(t) + L(t)̃v, (t, x) ∈ 	T ,

Z(0) = 0, x ∈ 	.
(5.20)

The solution of (5.20) can be expressed as

Z(t) =
∫ t

0
�1(t – s)H(s)Z(s)ds +

∫ t

0
�1(t – s)L(s)̃vds, t ∈ [0, T]. (5.21)
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Then the combination of (5.15) and (5.21) arrives at

Zε(t) – Z(t) =
∫ t

0
�1(t – s)(Hε(s) – H(s))Z(s)ds

+
∫ t

0
�1(t – s)Hε(s)(Zε(s) – Z(s))ds

+
∫ t

0
�1(t – s)(Lε(s) – L(s))̃vds.

(5.22)

From the boundedness of the semigroup {�1(t), t ≥ 0}, there is a constant L∗
1 > 0 such

that ‖�1(t)‖ ≤ L∗
1 for all t ≥ 0. From Theorem 3.2, (5.12), (5.13) and (5.17)–(5.19), we

can obtain that there is a constant M0 > 0 such that ‖Hε‖L2(	T ) ≤ M0 for 0 ≤ ε ≤ 1, and
‖Hε – H‖L2(	T ) → 0, ‖Lε – L‖L2(	T ) → 0 and ‖̃v‖L2(	T ) → 0 as ε → 0. From (5.22), we
further obtain

|Zε(t) – Z(t)| ≤L∗
1‖Z‖L2(	T )‖Hε – H‖L2(	T )T + L∗

1M0

∫ t

0
|Zε(s) – Z(s)|ds

+ L∗
1‖Lε – L‖L2(	T )‖̃v‖L2(	T )T .

(5.23)

Then, applying the Gronwall inequality to (5.23), we can obtain

lim
ε→0

‖Zε
S – ZS‖L2(	T ) = 0, lim

ε→0
‖Zε

I – ZI‖L2(	T ) = 0,

lim
ε→0

‖Zε
R – ZR‖L2(	T ) = 0, lim

ε→0
‖Zε

C – ZC‖L2(	T ) = 0.

That is, (5.11) holds.
Furthermore, applying the L2 estimation methods of parabolic equation (see Theorem 2

in [23]), we can obtain

‖�′(v)̃v‖L2(	T ) ≤ K4‖̃v‖L2(	T ),

where K4 is a positive constant. It then follows that �′(v) is a bounded linear operator.
This completes the proof. �

Theorem 5.1 (First-order necessary optimality condition) Let (S, I, R, C, v1, v2) be an opti-
mal pair of control problem (1.3)–(1.9) such that

J(S, I, v1, v2) = inf
v=(v1,v2)∈U

J(S, I, v),

and (S∗, I∗, R∗, C∗) be the solution of adjoint system (5.2). Then, for any v = (v1, v2) ∈ U , one
has

∫ T

0

∫

	

(S̄S∗ – SR∗ + κ1)(v1 – v1)(t, x)dxdt +
∫ T

0

∫

	

(ĪI∗ – IR∗ + κ2)(v2 – v2)(t, x)dxdt

≥ –
∫

	

ρ1(v1 – v1)(T , x)dx –
∫

	

ρ2(v2 – v2)(T , x)dx.

(5.24)
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Furthermore, if ρ1(x) = ρ2(x) ≡ 0 in 	, then the optimal control v = (v1, v2) can be charac-
terized as

v1(t, x) =

⎧
⎨

⎩

1, if (t, x) ∈ {(t, x) ∈ 	T : (SS∗ – SR∗ + κ1)(t, x) ≤ 0},
0, if (t, x) ∈ {(t, x) ∈ 	T : (SS∗ – SR∗ + κ1)(t, x) > 0},

and

v2(t, x) =

⎧
⎨

⎩

1, if (t, x) ∈ {(t, x) ∈ 	T : (II∗ – IR∗ + κ2)(t, x) ≤ 0},
0, if (t, x) ∈ {(t, x) ∈ 	T : (II∗ – IR∗ + κ2)(t, x) > 0}.

Proof Assume that (S, I, R, C, v1, v2) is an optimal pair and the objective functional
J(S, I, v1, v2) is defined as in (1.7). Then we have

J(S, I, v1, v2) ≤ J(Sε , Iε , vε
1, vε

2), ∀ ε > 0,

where vε = (vε
1, vε

2) and (Sε , Iε , Rε , Cε) are defined in Lemma 5.2. Therefore, we have for any
ṽ = (̃v1, ṽ2) ∈ (L2(	T ))2

0 ≤ J(Sε , Iε , vε
1, vε

2) – J(S, I, v1, v2)

ε

=
1
ε
{
∫ T

0

∫

	

(λ1Sε + λ2Iε + κ1vε
1 + κ2vε

2)dxdt

+
∫

	

(ω1Sε(T , x) + ω2Iε(T , x) + ρ1vε
1(T , x) + ρ2vε

2(T , x))dx

–
∫ T

0

∫

	

(λ1S + λ2I + κ1v1 + κ2v2)dxdt

–
∫

	

(ω1S(T , x) + ω2I(T , x) + ρ1v1(T , x) + ρ2v2(T , x))dx}

=
∫ T

0

∫

	

(λ1Zε
S + λ2Zε

I + κ1̃v1 + κ2̃v2)dxdt

+
∫

	

(ω1Zε
S(T , x) + ω2Zε

I (T , x) + ρ1̃v1(T , x) + ρ2̃v2(T , x))dx.

(5.25)

On the one hand, it follows from Lemma 5.2 that

Zε
S → ZS, Zε

I → ZI in L2(	T ) as ε → 0. (5.26)

Since L2(	T ) ⊂ L1(	T ), from (5.26), we further also have

Zε
S → ZS, Zε

I → ZI in L1(	T ) as ε → 0. (5.27)

On the other hand, since the coefficients in system (5.10) are uniformly bounded, by
applying the same argument in Theorem 3.2 to the linear parabolic system (5.10), there
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exists a constant C > 0, independent of ε, such that

‖∂Zε
S

∂t
‖L2(	T ) + ‖Zε

S‖L2(0,T ;H2(	)) + ‖Zε
S‖L∞(0,T ;H1(	)) + ‖Zε

S‖L∞(	T ) ≤ C,

‖∂Zε
I

∂t
‖L2(	T ) + ‖Zε

I ‖L2(0,T ;H2(	)) + ‖Zε
I ‖L∞(0,T ;H1(	)) + ‖Zε

I ‖L∞(	T ) ≤ C,

‖∂Zε
R

∂t
‖L2(	T ) + ‖Zε

R‖L2(0,T ;H2(	)) + ‖Zε
R‖L∞(0,T ;H1(	)) + ‖Zε

R‖L∞(	T ) ≤ C,

‖∂Zε
C

∂t
‖L2(	T ) + ‖Zε

C‖L2(0,T ;H2(	)) + ‖Zε
C‖L∞(0,T ;H1(	)) + ‖Zε

C‖L∞(	T ) ≤ C.

(5.28)

This implies that the function family {(Zε
S , Zε

I , Zε
R, Zε

C)}ε is equicontinuous in (L2(	T ))4 for
t ∈ [0, T] with respect to the arbitrary positive number ε. Notice that H1(	) is compactly
embedded into L2(	) (See [32]), then from (5.28) there is a constant C2 > 0 such that
‖Zε

S‖L2(	) ≤ C2 and ‖Zε
I ‖L2(	) ≤ C2 for any t ∈ [0, T] and arbitrary positive number ε. Since

ZS, ZI ∈ W 1,2(0, T ; L2(	)) ⊂ C(0, T ; L2(	)), by using the Ascoli–Arzela theorem and the
uniqueness of limits, we obtain that

lim
ε→0

‖Zε
S(T) – ZS(T)‖L2(	) ≤ lim

ε→0
max

t∈[0,T]
‖Zε

S(t) – ZS(t)‖L2(	) = 0,

lim
ε→0

‖Zε
I (T) – ZI(T)‖L2(	) ≤ lim

ε→0
max

t∈[0,T]
‖Zε

I (t) – ZI(t)‖L2(	) = 0,

which means that

Zε
S(T , x) → ZS(T , x), Zε

I (T , x) → ZI(T , x) in L1(	) as ε → 0. (5.29)

Now, combine (5.27) and (5.29), sending ε → 0 in (5.25), it turns out that for any ṽ =
(̃v1, ṽ2) ∈ L2(	T )

∫ T

0

∫

	

(λ1ZS + λ2ZI + κ1̃v1 + κ2̃v2)dxdt

+
∫

	

(ω1ZS(T , x) + ω2ZI(T , x) + ρ1̃v1(T , x) + ρ2̃v2(T , x))dx ≥ 0.
(5.30)

Multiplying the first four equations of the system (5.2) by ZS , ZI , ZR and ZC , respectively,
we obtain

∂S∗

∂t
ZS = – d1�S∗ZS + (μ + β1I + v1)S∗ZS – β1II∗ZS – v1R∗ZS + λ1ZS,

∂I∗

∂t
ZI = – d2�I∗ZI + β1SS∗ZI – [β1S + σβ2C – (μ + α + v2)]I∗ZI

– [(1 – σ )β2C + α + v2]R∗ZI + β2CC∗ZI + λ2ZI ,

∂R∗

∂t
ZR = – d3�R∗ZR + (μ + δ)R∗ZR – δC∗ZR,

∂C∗

∂t
ZC = – d4�C∗ZC – γ S∗ZC – σβ2II∗ZC – (1 – σ )β2IR∗ZC

+ (β2I + μ + γ )C∗ZC .

(5.31)
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And then, multiplying the first four equations of the system (5.9) by S∗, I∗, R∗ and C∗,
respectively, we also obtain

∂ZS

∂t
S∗ =d1�ZSS∗ – (μ + β1I + v1)ZSS∗ – β1SZIS∗ + γ ZCS∗ – ṽ1SS∗,

∂ZI

∂t
I∗ =d2�ZII∗ + β1IZSI∗ + [β1S + σβ2C – (μ + α + v2)]ZII∗

+ σβ2IZCI∗ – ṽ2II∗,

∂ZR

∂t
R∗ =d3�ZRR∗ + v1ZSR∗ + [(1 – σ )β2C + α + v2]ZIR∗ – (μ + δ)ZRR∗

+ (1 – σ )β2IZCR∗ + ṽ1SR∗ + ṽ2IR∗,

∂ZC

∂t
C∗ =d4�ZCC∗ – β2CZIC∗ + δZRC∗ – (β2I + μ + γ )ZCC∗.

(5.32)

Adding (5.31) and (5.32), we further obtain

∂S∗

∂t
ZS +

∂I∗

∂t
ZI +

∂R∗

∂t
ZR +

∂C∗

∂t
ZC +

∂ZS

∂t
S∗ +

∂ZI

∂t
I∗ +

∂ZR

∂t
R∗ +

∂ZC

∂t
C∗

= – d1�S∗ZS – d2�I∗ZI – d3�R∗ZR – d4�C∗ZC

+ d1�ZSS∗ + d2�ZII∗ + d3�ZRR∗ + d4�ZCC∗

+ λ1ZS + λ2ZI – ṽ1SS∗ – ṽ2II∗ + ṽ1SR∗ + ṽ2IR∗.

(5.33)

Integrating both side of (5.33) on 	T , we have

∫ T

0

∫

	

{∂S∗

∂t
ZS +

∂I∗

∂t
ZI +

∂R∗

∂t
ZR +

∂C∗

∂t
ZC +

∂ZS

∂t
S∗ +

∂ZI

∂t
I∗

+
∂ZR

∂t
R∗ +

∂ZC

∂t
C∗

}
dxdt

=
∫ T

0

∫

	

(–d1�S∗ZS – d2�I∗ZI – d3�R∗ZR – d4�C∗ZC)dxdt

+
∫ T

0

∫

	

(d1�ZSS∗ + d2�ZII∗ + d3�ZRR∗ + d4�ZCC∗)dxdt

+
∫ T

0

∫

	

(λ1ZS + λ2ZI – ṽ1SS∗ – ṽ2II∗ + ṽ1SR∗ + ṽ2IR∗)dxdt.

(5.34)

Combining the initial boundary conditions of S∗, I∗, R∗, C∗ in (5.2) and ZS , ZI , ZR, ZC in
(5.9), we obtain

∫ T

0

∫

	

{∂S∗

∂t
ZS +

∂I∗

∂t
ZI +

∂R∗

∂t
ZR +

∂C∗

∂t
ZC +

∂ZS

∂t
S∗ +

∂ZI

∂t
I∗

+
∂ZR

∂t
R∗ +

∂ZC

∂t
C∗

}
dxdt

=
∫

	

∫ T

0

{∂S∗

∂t
ZS +

∂ZS

∂t
S∗

}
dtdx +

∫

	

∫ T

0

{∂I∗

∂t
ZI +

∂ZI

∂t
I∗

}
dtdx

+
∫

	

∫ T

0

{∂R∗

∂t
ZR +

∂ZR

∂t
R∗

}
dtdx +

∫

	

∫ T

0

{∂C∗

∂t
ZC +

∂ZC

∂t
C∗

}
dtdx

(5.35)
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=
∫

	

(ZSS∗∣∣T
0 )dx +

∫

	

(ZII∗∣∣T
0 )dx +

∫

	

(ZRR∗∣∣T
0 )dx +

∫

	

(ZCC∗∣∣T
0 )dx

=
∫

	

(–ω1ZS(T , x) – ω2ZI(T , x))dx

By the Divergence theorem and the homogeneous Neumann boundary conditions, we
have

∫ T

0

∫

	

(–d1�S∗ZS – d2�I∗ZI – d3�R∗ZR – d4�C∗ZC)dxdt

+
∫ T

0

∫

	

(d1�ZSS∗ + d2�ZII∗ + d3�ZRR∗ + d4�ZCC∗)dxdt = 0.
(5.36)

Substituting (5.35) and (5.36) in (5.34), one obtains

∫

	

(ω1ZS(T , x) + ω2ZI(T , x))dx

= –
∫ T

0

∫

	

(λ1ZS + λ2ZI – ṽ1SS∗ – ṽ2II∗ + ṽ1SR∗ + ṽ2IR∗)dxdt.
(5.37)

Substituting (5.37) in (5.30), we get

∫ T

0

∫

	

(SS∗ – SR∗ + κ1 )̃v1(t, x)dxdt +
∫ T

0

∫

	

(II∗ – IR∗ + κ2 )̃v2(t, x)dxdt

≥ –
∫

	

ρ1̃v1(T , x)dx –
∫

	

ρ2̃v2(T , x)dx.
(5.38)

Since ṽ = (̃v1, ṽ2) ∈ L2(	T ) is arbitrary, we can take ṽ1 = v1 – v1, ṽ2 = v2 – v2 in (5.38), for
any v = (v1, v2) ∈ U , then

∫ T

0

∫

	

(SS∗ – SR∗ + κ1)(v1 – v1)(t, x)dxdt

+
∫ T

0

∫

	

(II∗ – IR∗ + κ2)(v2 – v2)(t, x)dxdt

≥ –
∫

	

ρ1(v1 – v1)(T , x)dx –
∫

	

ρ2(v2 – v2)(T , x)dx.

(5.39)

Therefore, the inequality (5.24) is proved.
Particularly, if ρ1(x) = ρ2(x) ≡ 0 in 	, then from (5.39) we have for any v = (v1, v2) ∈ U

∫ T

0

∫

	

(SS∗ – SR∗ + κ1)(v1 – v1)(t, x)dxdt

+
∫ T

0

∫

	

(II∗ – IR∗ + κ2)(v2 – v2)(t, x)dxdt ≥ 0.
(5.40)

Obviously, the inequality (5.40) holds for any v = (v1, v2) ∈ U is equivalent to

∫ T

0

∫

	

(SS∗ – SR∗ + κ1)(v1 – v1)(t, x)dxdt ≥ 0 (5.41)
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and

∫ T

0

∫

	

(II∗ – IR∗ + κ2)(v2 – v2)(t, x)dxdt ≥ 0 (5.42)

for any v = (v1, v2) ∈ U . We consider the inequality (5.41). Let 	1 = {(t, x) ∈ 	T : (S̄S∗ –
SR∗ + κ1)(t, x) ≤ 0} and 	2 = {(t, x) ∈ 	T : (S̄S∗ – SR∗ + κ1)(t, x) > 0}. Then, we have

∫ T

0

∫

	

(SS∗ – SR∗ + κ1)(v1 – v1)(t, x)dxdt

=
∫

	1

(SS∗ – SR∗ + κ1)(v1 – v1)(t, x)dxdt +
∫

	2

(SS∗ – SR∗ + κ1)(v1 – v1)(t, x)dxdt.

We easily prove that the inequality (5.41) holds for any v = (v1, v2) ∈ U is equivalent to

∫

	1

(SS∗ – SR∗ + κ1)(v1 – v1)(t, x)dxdt ≥ 0

and
∫

	2

(SS∗ – SR∗ + κ1)(v1 – v1)(t, x)dxdt ≥ 0

for any v = (v1, v2) ∈ U , which further is equivalent to v1 – v1 ≤ 0 for all (t, x) ∈ 	1 and
v1 – v1 ≥ 0 for all (t, x) ∈ 	2 for any v = (v1, v2) ∈ U . And then, we can only obtain that
v1 ≡ 1 for all (t, x) ∈ 	1 and v1 ≡ 0 for all (t, x) ∈ 	2. Therefore, we finally can obtain that

v1(t, x) =

⎧
⎨

⎩

1, if (t, x) ∈ {(t, x) ∈ 	T : (S̄S∗ – SR∗ + κ1)(t, x) ≤ 0},
0, if (t, x) ∈ {(t, x) ∈ 	T : (S̄S∗ – SR∗ + κ1)(t, x) > 0}.

Similarly, based on (5.42), we also can obtain that

v2(t, x) =

⎧
⎨

⎩

1, if (t, x) ∈ {(t, x) ∈ 	T : (ĪI∗ – IR∗ + κ2)(t, x) ≤ 0},
0, if (t, x) ∈ {(t, x) ∈ 	T : (ĪI∗ – IR∗ + κ2)(t, x) > 0}.

This completes the proof. �

6 Numerical simulations
This section begins with a numerical example of influenza transmission with the cross-
immune class that demonstrates the applications of the result established in Theorem 5.1
by using MATLAB. The solving the optimality system, which consists of eight PDEs from
the state and adjoint equations, yields the optimal approach. The optimality system is
solved using an iterative technique. The trapezoidal rule was used to calculate the ob-
jective function (1.7).

In order to discuss the influence of control strategies on the number of susceptible pop-
ulations and infected populations. We start to solve the system (1.3)–(1.5) for control v
using the Crank–Nicolson finite difference method. It is well known that this scheme is
numerically stable, with second-order accuracy in space and first-order accuracy in time.
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Table 1 The values of parameters in control system (1.3)

Parameter Value Source

d1 0.002 Assumed
d2 0.0125 Assumed
d3 0.009 Assumed
d4 0.006 Assumed
A 10000

75×52×7 [33]
μ 1

75×52×7 [33]
β1 0.8× 104(1.1 + 0.5 cos(2πx)) [33]
β2 0.5× 104(1.1 + 0.5 cos(2πx)) Assumed
α 0.25 [5]
γ 1

1.5×52×7 [33]
δ 0.625 [34]
σ 0.078 [34]

The adjoint system (5.1) is solved by the Crank–Nicolson scheme backward in time using
the current iteration solution of the system (1.3)–(1.5). Then the control v = (v1, v2) are
updated by using the relation given in Theorem 5.1. The iterative process continues un-
til the difference in the current and previous values for the states, adjoint variables, and
control variables are within an acceptable error range.

Example 1 For simplicity, we take all parameters in the control system (1.3) and the adjoint
system (5.1) to be positive constants, except for the parameters β1 and β2, which are posi-
tive continuous functions, and the spatiotemporal domain 	T = (0, T)×	 = (0, 1)× (0, 1).
All parameters of the model (1.3) are shown in Table 1.

Besides, we take the following initial levels for the control system (1.3)–(1.5) in our nu-
merical simulations: S(0, x) = 0.03 + 0.1|0.1 + 0.32 sin(10x)|, I(0, x) = x(1 – x)e4x, R(0, x) =
0.05(1 + x(1 – x)2(2 – x)3) and C(0, x) = 0.02(1 + x(1 – x)2(2 – x)3) for all x ∈ [0, 1]. We also
take the following weight parameters in the objective function (1.7)–(1.8) in our numerical
simulations: λ1 = 1, λ2 = 1.2, κ1 = 0.1, κ2 = 0.02, ω1 = 0.15, ω2 = 0.02, ρ1 = 0 and ρ2 = 0.

The computational results of the variation profiles of control system, adjoint system and
the optimal control of interactive process are presented in Figs. 1–3, respectively. It is not
difficult to see from Fig. 3 that the optimal control v̄1 and v̄2 are all of the Bang-Bang form.

Example 2 To illustrate our results, we choose the parameters of model (1.3) are positive
continuous function. For simplicity, we take diffusive coefficients in the control system
(1.3) and adjoint system (5.1) to be positive constants. All parameters in model (1.3) are
shown in Table 2.

We consider the spatiotemporal domain 	T = (0, T) × 	 = (0, 1) × (0, 1). Besides, we
have used the following initial levels for the control system (1.3)–(1.5) in our numerical
simulations: S(0, x) = 0.1 + 0.1|0.1 + 0.32sin(10x)|, I(0, x) = x(1 – x)e2x, R(0, x) = 0.05(1 +
x(1 – x)2(2 – x)3), C(0, x) = 0.02(1 + x(1 – x)2(2 – x)3), x ∈ [0, 1]. We have used the following
weight parameter in the objective function (1.7)–(1.8) in our numerical simulations: λ1 =
1, λ2 = 1.5, κ1 = 0.02, κ2 = 0.03, ω1 = 0.2, ω2 = 0.04, ρ1 = 0, ρ2 = 0.

For this example, the computational results of the variation profiles of control system,
adjoint system and the optimal control of interactive process are presented in Figs. 4–6,
respectively. It is not difficult to see from Fig. 6 that the optimal control v̄1 and v̄2 are all
of the Bang-Bang form.
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Figure 1 Time evolution of solutions (S(t, x), I(t, x),R(t, x),C(t, x))

Figure 2 Time evolution of solutions (S∗(t, x), I∗(t, x),R∗(t, x),C∗(t, x))

Example 3 We consider the spatiotemporal domain 	T = (0, T) × 	 = (0, 1) × (0, 1), and
all parameter of model (1.3) are shown in Table 3.

Besides, we have used the following initial levels for the control system (1.3)–(1.5)
in our numerical simulations: S(0, x) = 0.03 + 0.1|0.1 + 0.3sin(10x)|, I(0, x) = x(1 – x)e2x,
R(0, x) = 0.05(1 + x(1 – x)2(2 – x)3), C(0, x) = 0.02(1 + x(1 – x)2(2 – x)3), x ∈ [0, 1]. We have
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Figure 3 The optimal controls on 	 = [0, 1]× [0, 1]

Table 2 The values of parameters in control system (1.3)

Parameter Value Parameter Value

d1 0.003 d2 0.0155
d3 0.009 d4 0.008
A(x) 0.4 + 2sin(2πx) μ(x) 0.02
β1(x) 0.03 + +0.0002sin(2πx) β2(x) 0.02 + 0.0001sin(2πx)
α(x) 0.005 + 0.25sin(2πx) γ (x) 0.35 + 0.005sin(2πx)
δ(x) 0.625 + 0.045sin(2πx) σ (x) 0.07 + 0.02sin(2πx)

Figure 4 Time evolution of solutions (S(t, x), I(t, x),R(t, x),C(t, x))

used the following weight parameter in the objective function (1.7)–(1.8) in our numerical
simulations: λ1 = 1, λ2 = 1.2, κ1 = 0.1, κ2 = 0.02, ω1 = 0.15, ω2 = 0.02, ρ1 = 0, ρ2 = 0.

For this example, the computational results of the variation profiles of control system,
adjoint system, and the optimal control of interactive process are presented in Figs. 7–9,
respectively. It is not difficult to see from Fig. 9 that the optimal control v̄1 and v̄2 are all
of the Bang-Bang form.
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Figure 5 Time evolution of solutions (S∗(t, x), I∗(t, x),R∗(t, x),C∗(t, x))

Figure 6 The optimal controls on 	 = [0, 1]× [0, 1]

Table 3 The values of parameters in control system (1.3)

Parameter Value Source

d1 0.002 + 0.005 sin(2πx) Assumed
d2 0.0125 + 0.005 sin(2πx) Assumed
d3 0.009 + 0.002 sin(2πx) Assumed
d4 0.006 + 0.003 sin(2πx) Assumed
A 10000

70×52×7 + 2 sin(2πx) Assumed
μ 1

70×52×7 + 0.05 sin(2πx) Assumed
β1 0.8× 104(1.1 + 0.5 cos(2πx)) [33]
β2 0.5× 104(1.1 + 0.5 cos(2πx)) Assumed
α 0.25 + 0.25 sin(2πx) Assumed
γ 1

1.5×52×7 + 1.2 sin(2πx) Assumed
δ 0.625 + 0.45 sin(2πx) Assumed
σ 0.078 + 0.1 sin(2πx) Assumed

7 Conclusions
In this paper, we present a theoretical work on the optimal control problem for a class
of reaction-diffusion SIRC epidemic models with the spatial spread of disease and cross-
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Figure 7 Time evolution of solutions (S(t, x), I(t, x),R(t, x),C(t, x))

Figure 8 Time evolution of solutions (S∗(t, x), I∗(t, x),R∗(t, x),C∗(t, x))

immunization in order to study the effects of control strategies on susceptible and infected
individuals. Due to the non-repeatability of infectious disease transmission experiments,
our work has certain research significance. Firstly, based on the semigroup theories of op-
erators and truncation function techniques, we have proved the existence and uniqueness
of global positive strong solution in the control system (1.3)–(1.5). Secondly, the existence
of the optimal control problem has been established using an effective method based on
some properties within the weak topology. Then, the first-order necessary conditions for
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Figure 9 The optimal controls on 	 = [0, 1]× [0, 1]

the optimal control have been obtained. It is worth mentioning that we have found that
the optimal control v1 and v2 are all of the Bang-Bang form.

Different from the existing results, the diffusion behaviors of individuals have been con-
sidered in the model and two control strategies for vaccines and treatment were consid-
ered at the same time. There is no doubt that our work is not perfect, and there are still
some interesting open problem that we need to look into in the future. For example, an
open question is that we consider a bilinear incidence function, which is a simple incidence
function in the model (1.3), therefore, in the future, we will also consider incorporating
the nonlinear incidence rate function, such as saturation incidence βSI

1+αI , Beddington–
DeAngelis incidence βSI

1+ωS+αI , general nonlinear incidence βSf (I) and βf (S, I) and soon
on, they are more realistic and achieve more exact results. In this article, we mainly give
the theoretical results for optimal control of the reaction-diffusion SIRC infectious dis-
ease model, so another open problem is to combine the theoretical results of the optimal
control with the specific disease to give certain suggestions for prevention and control,
which is what we should further study.
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