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Abstract
A general stochastic compartment model for cholera with higher-order perturbation
is proposed, which incorporates direct and indirect transmission by contaminated
water. Nonlinear incidence, multiple stages of infection, multiple states of pathogen,
and second-order white-noises perturbation are introduced into the model, which
includes and extends the existing cholera model. The existence and ergodicity of the
stationary distribution for the cholera system are obtained by constructing a suitable
Lyapunov function, which determines a sharp critical value Rs0 corresponding to the
basic productive number R0 of the ordinary differential equation. The results show
that, if Rs0 > 1, the system has a unique and ergodic stationary distribution, which
implies the persistence of the diseases. Our general results are applied to a cholera
system with a Holling type-II functional response.

Keywords: Stochastic cholera model; Nonlinear incidence; Stationary distribution
and ergodictiy; Higher-order perturbation

1 Introduction
Cholera is an acute diarrheal infection, which is caused by the ingestion of food or water
contaminated with Vibrio cholerae. For public health, cholera remains a global threat, re-
flecting injustice and social underdevelopment. Researchers estimate that cholera causes
approximately 1.3 to 4 million cases and 21,000 to 143,000 deaths worldwide each year [1].
Cholera is spread in various ways, including water transmission, food transmission, life
contact transmission, vector insect transmission, see [2–4]. A multipronged approach is
the key to preventing cholera and reducing deaths [5–9].

Establishing mathematical modeling of infectious diseases can better help understand
the pathology of transmission and analyze the factors that affect disease transmission. In
this process, it can promote the improvement of public health and find the best control
strategy. Many experts have proposed epidemiological models of the transmission mech-
anism of cholera, and the influence between people and the environment is fully consid-
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Figure 1 The transfer diagram for model (1.1)

ered, such as [10–15]. In particular, considering the nonlinear morbidity, multistage in-
fection and multiple states of pathogen factors, Shuai et al. [10] divided the total number
of people into n + m + 2 compartments: susceptible population S, n infected compart-
ments I1, I2, . . . , In as n latent stages, m contaminated water W1, W2, . . . , Wm according to
the pathogen concentration, and the removed individuals R. In the stages Ii, i = 1, 2, . . . , n,
the infectivity of individuals is assumed to be zero. Pathogens shed from infectious indi-
viduals in each infection stage enter W1, then progress to W2 and so on, see Fig. 1 for
the flow diagram of this model. The incidence function is assumed to be of the form
∑n

j=1 fj(S, Ij)Ij +
∑m

k=1 gk(S, Wk)Wk , where fj and gk represent direct transmission and in-
direct transmission, respectively. Based on the above assumptions, Shuai et al. [10] estab-
lished a general model with two transmission routes:

Ṡ(t) = A –
n∑

j=1

fj(S, Ij)Ij –
m∑

k=1

gk(S, Wk)Wk – μS,

İ1(t) =
n∑

j=1

fj(S, Ij)Ij +
m∑

k=1

gk(S, Wk)Wk – (μ + γ1 + α1)I1,

İi(t) = γi–1Ii–1 – (μ + γi + αi)Ii, i = 2, 3, . . . , n,

Ẇ1(t) =
n∑

j=1

ξjIj – δ1W1,

Ẇk(t) = δk–1Wk–1 – δkWk , k = 2, 3, . . . , m

(1.1)

and

Ṙ(t) = γnIn – dR. (1.2)

Table 1 lists the definitions of the above parameters.
Since R has no effect on the dynamic behavior of other individuals, Eq. (1.2) can be elim-

inated. Next, we do not consider R(t) throughout the article. From [10, 16], system (1.1)
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Table 1 The meanings of the parameters

Symbol Description

A the constant recruitment
fj Ij , j = 1, . . . ,n direct transmission
gkWk , k = 1, . . . ,m indirect transmission
μ the natural mortality rate
γi , i = 1, . . . ,n – 1 the transition rates of infectious individuals from stage Ii to Ii+1
γn the recovery rate of In
αi , i = 1, . . . ,n the mortality rates because of the disease in the ith infection stage
δk , k = 1, . . . ,m – 1 the transition rates of pathogen fromWk toWk+1

δm the removal rate ofWm

ξi , i = 1, . . . ,n person–water pathogen shedding rates

has a unique disease-free equilibrium P0 = (S0, 0, . . . , 0), which is globally asymptotically
stable in the feasible region � when R0 ≤ 1, where S0 = A

μ
,

� =
{

(S, I1, . . . , In, W1, . . . , Wm) ∈R
n+m+1
+ |

S + I1 + · · · + In ≤ A
μ

, Wk ≤ H
δk

, k = 1, 2, . . . , m
}

,

in which H = A
μ

n∑

j=1
ξj. Also, if R0 > 1, P0 = (S0, 0, . . . , 0) is unstable, and there exists an en-

demic equilibrium P∗ = (S∗, I∗
1 , . . . , W ∗

m), which is globally asymptotically stable in �, where

R0 :=
f1(S0, 0)

μ1
+

γ1f2(S0, 0)

μ1μ2
+ · · · +

γ1γ2 · · ·γn–1fn(S0, 0)

μ1μ2 · · ·μn

+

( m∑

i=1

gi(S0, 0)

δi

)(
ξ1

μ1
+

γ1ξ2

μ1μ2
+ · · · +

γ1γ2 · · ·γn–1ξn

μ1μ2 · · ·μn

) (1.3)

and S∗, I∗
1 , . . . , I∗

n , W ∗
1 , . . . , W ∗

m > 0 satisfy the following equalities:

A =
n∑

j=1

fj(S∗, I∗
j )I∗

j +
m∑

k=1

gk(S∗, W ∗
k )W ∗

k + μS∗,

μ1I∗
1 =

n∑

j=1

fj(S∗, I∗
j )I∗

j +
m∑

k=1

gk(S∗, W ∗
k )W ∗

k ,

μiI∗
i = γi–1I∗

i–1, i = 2, 3, . . . , n,

δ1W ∗
1 =

n∑

j=1

ξjI∗
j ,

δkW ∗
k = δk–1W ∗

k–1, k = 2, 3, . . . , m,

where μi = μ + γi + αi, i = 1, 2, . . . , n.
Moreover, since the epidemic system will be inevitably affected by environmental

white noises in the process of transmission, some authors introduced the white noises
into the population systems to reveal richer and more complex dynamics, (for exam-
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ple, see [17–23]). However, we note that these stochastic models are disturbed by linear
white noises. As is well known, only a little work is shown for the second-order white-
noises perturbation, (see [24] and [25]), which is more in line with the actual spread and
development of infectious diseases. In particular, Song et al. [21] investigated a special
case of system (1.1) (fj(S, Ij) = βjS, gk(S, Wk) = λkS) disturbed by linear white noises and
the critical value Rs

0 is obtained. In addition, some authors studied the existence of a
stationary distribution for epidemic models with the Ornstein–Uhlenbeck process, see
[26, 27].

In this article, we extend the work of Song et al. [21] and Shuai et al. [10, 16] and consider
the general case of fj(S, Ij) and gk(S, Wk) for system (1.1). In addition, we adopt a different
approach to introduce random perturbations into it by replacing the parameters –μ, –μi

and –σi with

– μ → –μ + (σ11 + σ12S)Ḃ1(t), –μi → –μi + (σi+1,1 + σi+1,2Ii)Ḃi+1(t), i = 1, 2, . . . , n,

– σi → –σi + (σn+k+1,1 + σn+k+1,2Wk)Ḃn+k+1(t), k = 1, 2, . . . m,

where B = (B1(t), B2(t), . . . , Bn+m+1(t))(t ≥ 0) is a real-valued Brownian motion, σ 2
ij (i =

1, 2, . . . , n + m + 1; j = 1, 2) denote the intensities of the white noises. Here, we introduce the
second-order white-noise disturbance since the random perturbation may be dependent
on the state variables S, Ii, Wk , which better reflects the reality in biology. In view of the
above, we consider the following system:

dS(t) = (A –
n∑

j=1

fj(S, Ij)Ij –
m∑

k=1

gk(S, Wk)Wk – μS)dt + (σ11 + σ12S)SdB1(t),

dI1(t) = (
n∑

j=1

fj(S, Ij)Ij +
m∑

k=1

gk(S, Wk)Wk – μ1I1)dt + (σ21 + σ22I1)I1dB2(t),

dIi(t) = (γi–1Ii–1 – μiIi)dt + (σi+1,1 + σi+1,2Ii)IidBi+1(t), 2 ≤ i ≤ n,

dW1(t) = (
n∑

j=1

ξjIj – δ1W1)dt + (σn+2,1 + σn+2,2W1)W1dBn+2(t),

dWk(t) = (δk–1Wk–1 – δkWk)dt + (σn+k+1,1 + σn+k+1,2Wk)WkdBn+k+1(t), 2 ≤ k ≤ m.

(1.4)

For biological reality and technical reasons, fj, j = 1, 2, . . . , n and gk , k = 1, 2, . . . , m satisfy
the following assumptions throughout the article:

(H1) there exists a K > 0 such that
∂fj(S, x)

∂x
≥ –Kfj(S, x),

∂gk(S, x)

∂x
≥ –Kgk(S, x);

(H2) there exists a M > 0 such that fj(S, x) ≤ MS, gk(S, x) ≤ MS;

(H3) there exists pj ∈R, j = 1, 2, . . . , n; qk ∈ R, k = 1, 2, . . . , m such that

S3 d2

dS2

(
1

fj(S, 0)

)

≤ pj, S3 d2

dS2

(
1

gk(S, 0)

)

≤ qk .
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In addition, our results can be applied to a vast range of common functional response
terms. For example:

(1) Bilinear incidence rate: fj(Ij)SIj = βjSIj, j = 1, 2, . . . , n; gk(Wk)SWk = λkSWk , k =
1, 2, . . . , m, which was studied by Song et al. [21] with σi,2 = 0, i = 1, 2, . . . , n + m + 1;

(2) Holling type-II saturation incidence rate:

fj(S, Ij)Ij =
βjSIj

1 + aIj
, j = 1, 2, . . . , n; gk(S, Wk)Wk =

λkSWk

1 + aWk
, k = 1, 2, . . . , m;

fj(S, Ij)Ij =
βjSIj

1 + aS
, j = 1, 2, . . . , n; gk(S, Wk)Wk =

λkSWk

1 + aS
, k = 1, 2, . . . , m;

(3) Holling type-IV incidence rate:

fj(S, Ij)Ij =
βjSIj

1 + aS2 , j = 1, 2, . . . , n; gk(S, Wk)Wk =
λkSWk

1 + aS2 , k = 1, 2, . . . , m;

fj(S, Ij)Ij =
βjSIj

1 + aI2
j

, j = 1, 2, . . . , n; gk(S, Wk)Wk =
λkSWk

1 + aW 2
k

, k = 1, 2, . . . , m,

where βj, λk are positive constants, and a represents the half-saturation constant. It is easy
to check that fj, gk in (1)–(3) satisfy the conditions (H1)–(H3).

Based on the theory of Khasminskii [28], we mainly investigate the existence and ergod-
icity of the stationary distribution for the high-dimensional system (1.4) by constructing
a suitable Lyapunov function, which determines the exact critical value Rs

0 correspond-
ing to the ordinary differential system (1.1). Our major innovation is to construct a suit-
able Lyapunov function for the high-dimensional complex system with a general func-
tional response and high-order perturbation, which provides a new technique and a clear
view.

The rest of this article is organized as follows. The existence and ergodicity of the sta-
tionary distribution for a stochastic system (1.4) are proved in Sect. 2; then, in Sect. 3, our
results are applied to a stochastic cholera model with Holling type-II functional response
terms, and we make a comparison with the existing results and numerical simulations are
given to illustrate our results. We make a conclusion with further discussion in Sect. 4.

In this paper, let Bi(t), i = 1, 2, . . . , n + m + 1 be defined on the complete probability space.
Define

R
n+m+1
+ = {(x1, x2, . . . , xn+m+1) : xi > 0, 1 ≤ i ≤ m + n + 1}

and let C2(Rn+m+1
+ ; R+) be the set of all nonnegative functions V (x) on R

n+m+1
+ , which are

continuously twice differentiable in x.

2 Existence and ergodicity of a stationary distribution of system (1.4)
The main research content of this section is the existence and ergodicity of the stationary
distribution of system (1.4) based on the theory of Khasminskii [28], which implies the
diseases will be prevalent. In the beginning, the existence and uniqueness of the global
positive solution of system (1.4) will be given, which provides the basis for the following
research.
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Theorem 2.1 Assume the conditions (H1)–(H3) hold. For any given initial value
(S(0), I1(0), . . . , In(0), W1(0), . . . , Wm(0)) ∈ R

n+m+1
+ , there is a unique global positive solu-

tion (S(t), I1(t), . . . , In(t), W1(t), . . . , Wm(t)) of system (1.4) for all t ≥ 0, which remains on
R

n+m+1
+ with probability one.

Proof The theorem is easily proved according to the classical Khasminskii–Lyapunov
functional method [28], and the standard method is similar to the proof of Theorem 2.1
of [21]. Hence, we omit it here. �

Some lemmas are given before presenting the main content of this section.

Lemma 2.1 For any x ≥ 0, the following two inequalities are established:
(a) x3 ≥ (x – 1

2
) (

x2 + 1
)
; (b) x4 ≥ ( 3

4 x2 – 1
4
) (

x2 + 1
)
.

Proof (i) Noting

2x3 – (2x – 1)
(
x2 + 1

)
= 2x3 – 2x3 – 2x + x2 + 1 = (x – 1)2 ≥ 0,

(a) is verified.
(ii) Also,

4x4 –
(
3x2 – 1

) (
x2 + 1

)
= 4x4 – 3x4 – 3x2 + x2 + 1 =

(
x2 – 1

)2 ≥ 0,

thus (b) is confirmed. �

Next, we give our main result.
Define

Rs
0 :=

⎛

⎝
f1(S0, 0)(1 – d1

A
μ

h̃1)

μ1 + 2 3
√

A2σ 2
22 + σ 2

21
2

+
n∑

i=2

fi(S0, 0)(1 – di
A
μ

h̃1)

μ1 + 2 3
√

A2σ 2
22 + σ 2

21
2

i∏

j=2

γj–1

μj +
σ 2

j+1,1
2

⎞

⎠

+

⎛

⎝
g1(S0, 0)(1 – n1

A
μ

h̃1)

δ1 + σ 2
n+2,1

2

+
m∑

k=2

gk(S0, 0)(1 – nk
A
μ

h̃1)

δ1 + σ 2
n+2,1

2

k∏

j=2

δj–1

δj +
σ 2

n+j+1,1
2

⎞

⎠ ·

⎛

⎝ ξ1

μ1 + 2 3
√

A2σ 2
22 + σ 2

21
2

+
n∑

i=2

ξi

μ1 + 2 3
√

A2σ 2
22 + σ 2

21
2

i∏

j=2

γj–1

μj +
σ 2

j+1,1
2

⎞

⎠ , (2.1)

where h̃1 = 2 3
√

A2σ 2
12 + 2

√
Aσ11σ12 + σ 2

11
2 , and

di > max

{

0,
fi(S0, 0)pi

2μS2
0

}

, i = 1, 2, . . . , n, nk > max

{

0,
gk(S0, 0)qk

2μS2
0

}

, k = 1, 2, . . . , m.

(2.2)

Theorem 2.2 Assume the conditions (H1)–(H3) hold and Rs
0 > 1, where Rs

0 is defined by
(2.1), then the system (1.4) has a unique stationary distribution π(·), which is ergodic.
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Proof We can verify Theorem 2.2 by validating conditions (A1) and (A2) in Lemma
A.1 in the Appendix. Based on Lemma A.1, we need to find a nonnegative function
V ∈ C2(Rn+m+1

+ ; R+) and a compact set U ⊂R
n+m+1
+ such that

LV (S, I1, . . . , In, W1, . . . , Wm) ≤ –1 on (S, I1, . . . , In, W1, . . . , Wm) ∈ R
m+n+1
+ /U .

The construction of V (S, I1, . . . , In, W1, . . . , Wm) is very complex, so we proceed in three
main steps: (i) construct a stochastic Lyapunov function; (ii) construct a compact set; (iii)
give the existence and ergodicity of the solution of system (1.4). Some transformations are
shown as follows:

Ĩ1 =
I1

Ic
1

, . . . , Ĩn =
In

Ic
n

, W̃1 =
W1

W c
1

, . . . , W̃m =
W1

W c
m

, (2.3)

where Ic
1, Ic

2, . . . , W c
m satisfy the following equalities:

Ic
1 = 1, Ic

i =
γi–1Ic

i–1

μi + σ 2
i+1,1
2 + σ 2

i+1,2p2

6

:=
γi–1Ic

i–1
hi+1

, i = 2, 3, . . . , n,

W c
1 =

n∑

i=1
ξiIc

i

δ1 + σ 2
n+2,1

2 + σ 2
n+2,2p2

6

:=

n∑

i=1
ξiIc

i

hn+2
,

W c
k =

δk–1W c
k–1

δk +
σ 2

n+k+1,1
2 +

σ 2
n+k+1,2p2

6

:=
δk–1W c

k–1
hn+k+1

, k = 2, 3, . . . m,

(2.4)

where 0 < p < 1.
Step 1. (Constructing a stochastic Lyapunov function)
Define a function V̂1 ∈ C2(Rn+m+1

+ , R) by

V̂1 =T2 +
n∑

j=2

Cj(–Ic
j ln Ij + uj+1) + Cn+1(–W c

1 ln W1 + un+2)

+
m∑

k=2

Cn+k(–W c
k ln Wk + un+k+1), (2.5)

in which,

T2 = – lnI1 + u2 +
1
Ic

1

⎛

⎝
n∑

j=1

fj(S0, 0)Ic
j ej +

m∑

k=1

gk(S0, 0)W c
k mk

⎞

⎠ (S + I1)

+
1
Ic

1

⎛

⎝
n∑

j=1

fj(S0, 0)Ic
j dj +

m∑

k=1

gk(S0, 0)W c
k nk

⎞

⎠
(

S – S0 – S0 ln
S
S0

+ S0u1

)

,

u1 =
2∑

i=1

υi(S + ωi)p

p
, u2 = ρ0S +

υ3(I1 + ω3)p

p
, (2.6)
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uj+1 =Ic
j
υ4(Ij + p)p

p
, j = 2, 3, . . . , n, un+2 = W c

1
υ4(W1 + p)p

p
,

un+k+1 =W c
k
υ4(Wk + p)p

p
, k = 2, 3, . . . , m,

where ej, dj, Cj, j = 1, 2, . . . , n; mk , nk , Cn+k , k = 1, 2, . . . , m, and υi,ωi, i = 1, 2, ρ0,υ3,ω3

will be determined later.
According to the Itô formula, we obtain that

Lu2 =ρ0

⎛

⎝A –
n∑

j=1

fj(S, Ij)Ij –
m∑

k=1

gk(S, Wk)Wk – μS

⎞

⎠

+ υ3(I1 + ω3)p–1

⎛

⎝
n∑

j=1

fj(S, Ij)Ij +
m∑

k=1

gk(S, Wk)Wk – μ1I1

⎞

⎠

–
(1 – p)υ3

2
(I1 + ω3)

p–2 (σ21I1 + σ22I2
1
)2

≤ρ0A –
(
ρ0 – υ3ω

p–1
3

)
⎛

⎝
n∑

j=1

fj(S, Ij)Ij +
m∑

k=1

gk(S, Wk)Wk

⎞

⎠ –
(1 – p)υ3ω

p–2
3 σ 2

22I4
1

2
(

1 + ( I1
ω3

)2–p
) .

By Lemma 2.1(b),

ω
p–2
3 I4

1

1 +
(

I1
ω3

)2–p =
ω

p+2
3

(
I1
ω3

)4

1 +
(

I1
ω3

)2–p ≥
ω

p+2
3

(
I1
ω3

)4

2
(

1 +
(

I1
ω3

)2
) ≥ 3ω

p
3I2

1
8

–
ω

p+2
3
8

.

Then,

Lu2 ≤ρ0A –
(
ρ0 – υ3ω

p–1
3

)
⎛

⎝
n∑

j=1

fj(S, Ij)Ij +
m∑

k=1

gk(S, Wk)Wk

⎞

⎠

+
(1 – p)υ3ω

p+2
3 σ 2

22
16

–
3(1 – p)υ3ω

p
3σ

2
22I2

1
16

.

Choose ρ0 = υ3ω
p–1
3 , υ3 = 8

3(1–p)ω
p
3

, ω3 = 2 3
√

A
(1–p)σ 2

22
, then

Lu2 ≤ 2 3

√
A2σ 2

22
(1 – p)2 –

σ 2
22I2

1
2

. (2.7)

Also,

L(–lnI1) ≤ –
1
I1

⎛

⎝
n∑

j=1

fj(S, Ij)Ij +
m∑

k=1

gk(S, Wk)Wk

⎞

⎠ + μ1 +
1
2

(σ21 + σ22I1)2.

(2.8)
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Combining (2.3) and lnx ≤ x – 1 for x > 0,

–
1
I1

n∑

j=1

fj(S, Ij)Ij = –
1
Ic

1

⎛

⎝
n∑

j=1

fj(S0, 0)Ic
j

fj(S, Ij)

fj(S, 0)

fj(S, 0)

fj(S0, 0)

Ĩj

Ĩ1

⎞

⎠

= –
1
Ic

1

⎡

⎣
n∑

j=1

fj(S0, 0)Ic
j +

n∑

j=1

fj(S0, 0)Ic
j

(
fj(S, Ij)

fj(S, 0)

fj(S, 0)

fj(S0, 0)

Ĩj

Ĩ1
– 1

)⎤

⎦

≤ –
1
Ic

1

n∑

j=1

fj(S0, 0)Ic
j –

1
Ic

1

n∑

j=1

fj(S0, 0)Ic
j

(

ln
fj(S, Ij)

fj(S, 0)
+ ln

fj(S, 0)

fj(S0, 0)
+ ln

Ĩj

Ĩ1

)

.

According to the differential mean-value theorem, and (H1), there exists ξ ∈ (0, Ij) such
that

ln
fj(S, Ij)

fj(S, 0)
=

∂
∂Ij

fj(S, ξ )

fj(S, ξ )
Ij ≥ –KIj.

Thus,

–
1
I1

n∑

j=1

fj(S, Ij)Ij ≤ –
1
Ic

1

n∑

j=1

fj(S0, 0)Ic
j

+
1
Ic

1

n∑

j=1

fj(S0, 0)Ic
j

(

KIj +
fj(S0, 0)

fj(S, 0)
– 1 – ln

Ĩj

Ĩ1

)

. (2.9)

Similarly,

–
1
I1

m∑

k=1

gk(S, Wk)Wk ≤ –
1
Ic

1

m∑

k=1

gk(S0, 0)W c
k

+
1
Ic

1

m∑

k=1

gk(S0, 0)W c
k

(

KWk +
gk(S0, 0)

gk(S, 0)
– 1 – ln

W̃k

Ĩ1

)

. (2.10)

By (2.7)–(2.10),

L(– ln I1 + u2) ≤ –
1
Ic

1

⎛

⎝
n∑

j=1

fj(S0, 0)Ic
j +

m∑

k=1

gk(S0, 0)W c
k

⎞

⎠ + h2 + σ21σ22I1

+
1
Ic

1

n∑

j=1

fj(S0, 0)Ic
j KIj +

1
Ic

1

n∑

j=1

fj(S0, 0)Ic
j

(
fj(S0, 0)

fj(S, 0)
– 1
)

+
1
Ic

1

m∑

k=1

gk(S0, 0)W c
k KWk +

1
Ic

1

m∑

k=1

gk(S0, 0)W c
k

(
gk(S0, 0)

gk(S, 0)
– 1
)

–
1
Ic

1

n∑

j=1

fj(S0, 0)Ic
j ln

Ĩj

Ĩ1
–

1
Ic

1

m∑

k=1

gk(S0, 0)W c
k ln

W̃k

Ĩ1
, (2.11)
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where

h2 = μ1 + 2 3

√
A2σ 2

22
(1 – p)2 +

σ 2
21
2

. (2.12)

Also,

L(S + I1) = A – μS – μ1I1 = μ(S0 – S) – μ1I1, (2.13)

where S0 = A
μ

.
Combining Lemma 2.1(a) and (b), we have

Lu1 =
2∑

i=1

υi (S + ωi)
p–1

⎡

⎣A –
n∑

j=1

fj(S, Ij)Ij –
m∑

k=1

gk(S, Wk)Wk – μS

⎤

⎦

–
2∑

i=1

(1 – p)υi

2 (S + ωi)
2–p
(
σ11S + σ12S2)2

≤
2∑

i=1

Aυi

ω
1–p
i

–
2∑

i=1

(1 – p)υiω
p–2
i

2
(

1 + S
ωi

)2–p
(
σ11S + σ12S2)2

≤
2∑

i=1

Aυi

ω
1–p
i

–
(1 – p)υ1ω

p–2
1 σ 2

12S4

2
(

1 + S
ω1

)2 –
(1 – p)υ2ω

p–2
2 σ11σ12S3

(
1 + S

ω2

)2

≤
2∑

i=1

Aυi

ω
1–p
i

–
(1 – p)υ1ω

p+2
1 σ 2

12

(
S
ω1

)4

4
[

1 +
(

S
ω1

)2
] –

(1 – p)υ2ω
p+1
2 σ11σ12

(
S
ω2

)3

2
[

1 +
(

S
ω2

)2
]

≤
2∑

i=1

Aυi

ω
1–p
i

–
1

16
(1 – p)υ1ω

p+2
1 σ 2

12

[

3
(

S
ω1

)2

– 1

]

–
1
2

(1 – p)υ2ω
p+1
2 σ11σ12

(
S
ω2

–
1
2

)

=

[
Aυ1

ω
1–p
1

+
(1 – p)υ1ω

p+2
1 σ 2

12
16

]

+

[
Aυ2

ω
1–p
2

+
(1 – p)υ2ω

p+1
2 σ11σ12

4

]

–
3

16
(1 – p)υ1ω

p
1σ

2
12S2 –

1
2

(1 – p)υ2ω
p
2σ11σ12S.

Let υ1ω
p
1 = 8

3(1–p) , υ2ω
p
2 = 2

1–p , then

Lu1 ≤
[

8A
3(1 – p)ω1

+
ω2

1σ
2
12

6

]

+
[

2A
(1 – p)ω2

+
ω2σ11σ12

2

]

–
σ 2

12
2

S2 – σ11σ12S.

Let

ω1 = 2 3

√
A

(1 – p)σ 2
12

, ω2 = 2

√
A

(1 – p)σ11σ12
.
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Then,

Lu1 ≤ 2 3

√
A2σ 2

12
(1 – p)2 + 2

√
Aσ11σ12

1 – p
–

σ 2
12S2

2
– σ11σ12S. (2.14)

One has

L
(

S – S0 – S0 ln
S
S0

)

=
(

1 –
S0

S

)
⎛

⎝μ(S0 – S) –
n∑

j=1

fj(S, Ij)Ij –
m∑

k=1

gk(S, Wk)Wk

⎞

⎠ +
S0

2
(σ11 + σ12S)2

≤ –
μ(S – S0)2

S
+ S0

n∑

j=1

fj(S, Ij)

S
Ij + S0

m∑

k=1

gk(S, Wk)

S
Wk +

S0

2
(σ11 + σ12S)2

≤ –
μ(S – S0)2

S
+ S0M

⎛

⎝
n∑

j=1

Ij +
m∑

k=1

Wk

⎞

⎠ +
S0

2
(σ11 + σ12S)2,

by the assumption (H2).
Then,

L
(

S – S0 – S0 ln
S
S0

+ S0u1

)

≤ –
μ(S – S0)2

S
+ S0M

⎛

⎝
n∑

j=1

Ij +
m∑

k=1

Wk

⎞

⎠ + S0h1, (2.15)

where h1 = 2 3

√
A2σ 2

12
(1–p)2 + 2

√
Aσ11σ12

1–p + σ 2
11
2 . By (2.11), (2.13), (2.15), and (2.6), we have

LT2 ≤ –
1
Ic

1

⎛

⎝
n∑

j=1

fj(S0, 0)Ic
j +

m∑

k=1

gk(S0, 0)W c
k

⎞

⎠ + h2 +
n∑

j=1

fj(S0, 0)Ic
j djS0h1

+
m∑

k=1

gk(S0, 0)W c
k nkS0h1 + σ21σ22I1 +

n∑

j=1

fj(S0, 0)Ic
j KIj –

n∑

j=1

fj(S0, 0)Ic
j ln

Ĩj

Ĩ1

+
m∑

k=1

gk(S0, 0)W c
k KWk –

m∑

k=1

gk(S0, 0)W c
k ln

W̃k

Ĩ1

+
n∑

j=1

fj(S0, 0)Ic
j

(
fj(S0, 0)

fj(S, 0)
– 1 + ejμ(S0 – S) – dj

μ(S – S0)2

S

)

+
m∑

k=1

gk(S0, 0)W c
k

(
gk(S0, 0)

gk(S, 0)
– 1 + mkμ(S0 – S) – nk

μ(S – S0)2

S

)

–
n∑

j=1

fj(S0, 0)Ic
j ejμ1I1 –

m∑

k=1

gk(S0, 0)W c
k mkμ1I1

+

⎛

⎝
n∑

j=1

fj(S0, 0)Ic
j dj +

m∑

k=1

gk(S0, 0)W c
k nk

⎞

⎠S0M

⎛

⎝
n∑

j=1

Ij +
m∑

k=1

Wk

⎞

⎠ . (2.16)
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Let

Mj(S) =
fj(S0, 0)

fj(S, 0)
– 1 + ejμ(S0 – S) – dj

μ(S – S0)2

S
, j = 1, 2, . . . , n,

hence, we can easily obtain that

Mj(S0) = 0, j = 1, 2, . . . , n.

Also,

M′
j(S) = fj(S0, 0)

d
dS

(
1

fj(S, 0)

)

– ejμ – djμ

(

1 –
S2

0
S2

)

, j = 1, 2, . . . , n.

Let

M′
j(S)|S=S0 = 0, j = 1, 2, . . . , n,

then

ej =
fj(S0, 0) d

dS

(
1

fj(S,0)

)
|S=S0

μ
, j = 1, 2, . . . , n.

Furthermore,

M′′
j (S) =fj(S0, 0)

d2

dS2

(
1

fj(S, 0)

)

–
2djμS2

0

S3

=
1
S3

[

fj(S0, 0)S3 d2

dS2

(
1

fj(S, 0)

)

– 2djμS2
0

]

≤ 1
S3

(
fj(S0, 0)pj – 2djμS2

0
)

,

where the last inequality is based on the assumption (H3).
By (2.2), we have M′′

j (S) < 0 and M′
j(S0) = 0, which derives

Mj(S) ≤ Mj(S0) = 0, j = 1, 2, . . . , n. (2.17)

Similarly, let

mk =
gk(S0, 0) d

dS

(
1

gk (S,0)

)
|S=S0

μ
, nk > max

{

0,
gk(S0, 0)qk

2μ(S0)2

}

, k = 1, 2, . . . , m, (2.18)

where qk is defined in the assumption (H3). Therefore,

Nk(S) =
gk(S0, 0)

gk(S, 0)
– 1 + mkμ(S0 – S) – nk

μ(S – S0)2

S

≤ Nk(S0) = 0, k = 1, 2, . . . , m. (2.19)
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Hence, combining (2.16), (2.17), and (2.19), we have

LT2 ≤ – (Rs
0(p) – 1)h2 + σ21σ22I1 +

n∑

j=1

fj(S0, 0)Ic
j |ej|μ1I1 +

m∑

k=1

gk(S0, 0)W c
k |mk|μ1I1

+
n∑

j=1

fj(S0, 0)Ic
j KIj +

m∑

k=1

gk(S0, 0)W c
k KWk –

m∑

k=1

gk(S0, 0)W c
k
(
ln W̃k – ln Ĩ1

)

+

⎛

⎝
n∑

j=1

fj(S0, 0)Ic
j dj +

m∑

k=1

gk(S0, 0)W c
k nk

⎞

⎠S0M

⎛

⎝
n∑

j=1

Ij +
m∑

k=1

Wk

⎞

⎠

–
n∑

j=1

fj(S0, 0)Ic
j
(
ln Ĩj – ln Ĩ1

)
, (2.20)

where

Rs
0(p)

:=
1
h2

⎛

⎝f1(S0, 0)(1 – d1
A
μ

h̄1) +
n∑

i=2

fi(S0, 0)(1 – di
A
μ

h̄1)
i∏

j=2

γj–1

μj +
σ 2

j+1,1
2 +

σ 2
j+1,2p2

6

⎞

⎠

+

⎛

⎝
g1(S0, 0)(1 – n1

A
μ

h̄1)

δ1 + σ 2
n+2,1

2 + σ 2
n+2,2p2

6

+
m∑

k=2

gk(S0, 0)(1 – nk
A
μ

h̄1)

δ1 + σ 2
n+2,1

2 + σ 2
n+2,2p2

6

k∏

j=2

δj–1

δj +
σ 2

n+j+1,1
2 +

σ 2
n+j+1,2p2

6

⎞

⎠

· 1
h2

⎛

⎝ξ1 +
n∑

i=2

ξi

i∏

j=2

γj–1

μj +
σ 2

j+1,1
2 +

σ 2
j+1,2p2

6

⎞

⎠ , (2.21)

where

h̄1 = 2 3

√
A2σ 2

12
(1 – p)2 + 2

√
Aσ11σ12

1 – p
+

σ 2
11
2

, h2 = μ1 + 2 3

√
A2σ 2

22
(1 – p)2 +

σ 2
21
2

. (2.22)

By Itô’s formula and Lemma 2.1,

Lui+1 =Ic
i υ4 (Ii + p)p–1 (γi–1Ii–1 – μiIi) – Ic

i
(1 – p)υ4

2
(Ii + p)p–2 (σi+1,1Ii + σi+1,2I2

i
)2

≤Ic
i
υ4γi–1Ii–1

p1–p – Ic
i

(1 – p)υ4pp–2σ 2
i+1,2I4

i

2
(

1 + Ii
p

)2–p

≤Ic
i
υ4γi–1Ii–1

p1–p – Ic
i

(1 – p)υ4pp+2σ 2
i+1,2

(
Ii
p

)4

4
[

1 +
(

Ii
p

)2
]

≤Ic
i
υ4γi–1Ii–1

p1–p + Ic
i

(1 – p)υ4pp+2σ 2
i+1,2

16
– Ic

i
3(1 – p)υ4ppσ 2

i+1,2I2
i

16
.
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Choose υ4 = 8
3(1–p)pp , such that

Lui+1 ≤ Ic
i

8γi–1Ii–1

3p(1 – p)
+ Ic

i
σ 2

i+1,2p2

6
– Ic

i
σ 2

i+1,2I2
i

2
. (2.23)

Let

Ti+1 = –Ic
i ln Ii + ui+1, i = 2, 3, . . . , n. (2.24)

Applying Itô’s formula and by (2.4) and (2.23), one has

LTi+1 ≤ –
Ic

i
Ii

(γi–1Ii–1 – μiIi) +
σ 2

i+1,1

2
Ic

i + σi+1,1σi+1,2Ic
i Ii + Ic

i
8γi–1Ii–1

3p(1 – p)
+ Ic

i
σ 2

i+1,2p2

6

= – γi–1
Ic

i Ii–1

Ii
+

8γi–1Ic
i

3p(1 – p)
Ii–1 +

(

μi +
σ 2

i+1,1

2
+

σ 2
i+1,2p2

6

)

Ic
i + σi+1,1σi+1,2Ic

i Ii

= – γi–1
Ic

i–1̃Ii–1

Ĩi
+ hi+1Ic

i +
8γi–1Ic

i
3p(1 – p)

Ii–1 + σi+1,1σi+1,2Ic
i Ii

=γi–1Ic
i–1

(

1 –
Ĩi–1

Ĩi

)

+
8γi–1Ic

i
3p(1 – p)

Ii–1 + σi+1,1σi+1,2Ic
i Ii

≤ – γi–1Ic
i–1
(
ln Ĩi–1 – ln Ĩi

)
+

8γi–1Ic
i

3p(1 – p)
Ii–1 + σi+1,1σi+1,2Ic

i Ii, (2.25)

according to the inequality x – 1 – lnx ≥ 0 for any x > 0.
Likewise, we derive

Lun+2 ≤ W c
1

8
n∑

j=1
ξjIj

3p(1 – p)
+ W c

1
σ 2

n+2,2p2

6
– W c

1
σ 2

n+2,2W 2
1

2
,

L(–W c
1 ln W1 + un+2) ≤ –

n∑

i=1

ξiIc
i
(
ln Ĩi – ln W̃1

)
+ W c

1

8
n∑

i=1
ξiIi

3p(1 – p)
+ σn+2,1σn+2,2W c

1 W1,

Lun+j+1 ≤ W c
j

8δj–1Wj–1

3p(1 – p)
+ W c

j
σ 2

n+j+1,2p2

6
– W c

j
σ 2

n+j+1,2W 2
j

2
, (2.26)

L(–W c
j ln Wj + un+j+1) ≤ –δj–1W c

j–1
(
ln W̃j–1 – ln W̃j

)
+ W c

j
8δj–1Wj–1

3p(1 – p)

+ σn+j+1,1σn+j+1,2W c
j Wj.

Combining (2.20), (2.25), and (2.26), we obtain

LV̂1(S, I1, . . . , In, W1, . . . , Wm)

≤ – (Rs
0(p) – 1)h2 +

⎛

⎝σ21σ22 +
n∑

j=1

fj(S0, 0)Ic
j |ej|μ1 +

m∑

k=1

gk(S0, 0)W c
k |mk|μ1

+f1(S0, 0)K +
n∑

j=1

fj(S0, 0)Ic
j djS0M +

m∑

k=1

gk(S0, 0)W c
k nkS0M
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+Cn+1W c
1

8ξ1

3p(1 – p)
+ C2

8γ1Ic
2

3p(1 – p)

)

I1

+
n–1∑

j=2

⎛

⎝fj(S0, 0)Ic
j K +

n∑

j=1

fj(S0, 0)Ic
j djS0M +

m∑

k=1

gk(S0, 0)W c
k nkS0M

+Cj+1
8γjIc

j+1

3p(1 – p)
+ Cn+2

8ξjW c
1

3p(1 – p)
+ Cjσj+1,1σj+1,2Ic

j

)

Ij

+

⎛

⎝fn(S0, 0)KIc
n +

n∑

j=1

fj(S0, 0)Ic
j djS0M

+
m∑

k=1

gk(S0, 0)W c
k nkS0M + Cn+1

8ξnW c
1

3p(1 – p)
+ Cnσn+1,1σn+1,2Ic

n

)

In

+
m–1∑

k=1

⎛

⎝gk(S0, 0)W c
k K +

n∑

j=1

fj(S0, 0)Ic
j djS0M +

m∑

k=1

gk(S0, 0)W c
k nkS0M

+Cn+kσn+k+1,1σn+k+1,2W c
k + Cn+k+1

8δkW c
k+1

3p(1 – p)

)

Wk

+

(

gm(S0, 0)W c
mK +

n∑

j=1

fj(S0, 0)Ic
j djS0M +

m∑

k=1

gk(S0, 0)W c
k nkS0M

+ Cn+mσn+m+1,1σn+m+1,2W c
m

)

Wm

+

⎛

⎝
n∑

j=1

fj(S0, 0)Ic
j +

m∑

k=1

gk(S0, 0)W c
k – f1(S0, 0)Ic

1 – C2γ1Ic
1 – Cn+1ξ1

⎞

⎠ ln Ĩ1

+
n–1∑

j=2

(
Cjγj–1Ic

j–1 – fj(S0, 0)Ic
j – Cj+1γjIc

j – Cn+1ξjIc
j

)
ln Ĩj

+
(
Cnγn–1Ic

n–1 – fn(S0, 0)Ic
n – Cn+1ξnIc

n
)

ln Ĩn

+

⎛

⎝Cn+1

n∑

j=1

ξjIc
j – g1(S0, 0)W c

1 – Cn+2δ1W c
1

⎞

⎠ ln W̃1

+
m–1∑

k=2

(
Cn+kδk–1W c

k–1 – Cn+k+1δkW c
k – gk(S0, 0)W c

k
)

ln W̃k

+
(
Cn+mδm–1W c

m–1 – gm(S0, 0)W c
m
)

ln W̃m.

Choose
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cn+m = gm(S0,0)W c
m

δm–1W c
m–1

, Cn+k =

m∑

i=k
gi(S0,0)W c

i

δk–1W c
k–1

, k = m – 1, m – 2, . . . , 2,

Cn+1 =

m∑

k=1
gk (S0,0)W c

k

n∑

j=1
ξjIc

j

, Cn = fn(S0,0)Ic
n+Cn+1ξnIc

n
γn–1Ic

n–1
,

Cα =

n∑

j=α

fj(S0,0)Ic
j +Cn+1

n∑

j=α

ξjIc
j

γα–1Ic
α–1

, ω = n – 1, n – 2, . . . , 3, 2,

(2.27)



Zuo et al. Advances in Continuous and Discrete Models         (2024) 2024:57 Page 16 of 26

such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

j=1
fj(S0, 0)Ic

j +
m∑

k=1
gk(S0, 0)W c

k – f1(S0, 0)Ic
1 – C2γ1Ic

1 – Cn+1ξ1 = 0,

Cjγj–1Ic
j–1 – fj(S0, 0)Ic

j – Cj+1γjIc
j – Cn+1ξjIc

j = 0,
Cnγn–1Ic

n–1 – fn(S0, 0)Ic
n – Cn+1ξnIc

n = 0,

Cn+1
n∑

j=1
ξjIc

j – g1(S0, 0)W c
1 – Cn+2δ1W c

1 = 0,

Cn+kδk–1W c
k–1 – Cn+k+1δkW c

k – gk(S0, 0)W c
k = 0,

Cn+mδm–1W c
m–1 – gm(S0, 0)W c

m = 0.

Define the Lyapunov function

V1 = V̂1 +
n∑

j=2

ψjIj +
m∑

k=1

χkWk ,

where ψj,χk , j = 2, 3, . . . , n, k = 1, 2, . . . , m are determined later. Therefore,

LV1 = LV̂1 + L

⎛

⎝
n∑

j=2

ψjIj +
m∑

k=1

χkWk

⎞

⎠

≤ –(Rs
0(p) – 1)h2 +

⎛

⎝σ21σ22 +
n∑

j=1

fj(S0, 0)Ic
j |ej|μ1 +

m∑

k=1

gk(S0, 0)W c
k |mk|μ1

+f1(S0, 0)Ic
1K + ψ2γ1 +

n∑

j=1

fj(S0, 0)Ic
j djS0M +

m∑

k=1

gk(S0, 0)W c
k nkS0M

+Cn+1W c
1

8ξ1

3p(1 – p)
+ C2

8γ1Ic
2

3p(1 – p)
+ χ1ξ1

)

I1

+
n–1∑

j=2

(

fj(S0, 0)Ic
j K +

n∑

j=1

fj(S0, 0)Ic
j djS0M +

m∑

k=1

gk(S0, 0)W c
k nkS0M + Cj+1

8γjIc
j+1

3p(1 – p)

+ Cn+2
8ξjW c

1

3p(1 – p)
+ Cjσj+1,1σj+1,2Ic

j + ψj+1γj + χ1ξj – ψjμj

)

Ij

+

(

fn(S0, 0)Ic
nK +

n∑

j=1

fj(S0, 0)Ic
j djS0M +

m∑

k=1

gk(S0, 0)W c
k nkS0M + Cn+1

8ξnW c
1

3p(1 – p)

+ Cnσn+1,1σn+1,2Ic
n + χ1ξn – μnψn

)

In

+
m–1∑

k=1

⎛

⎝gk(S0, 0)W c
k K +

n∑

j=1

fj(S0, 0)Ic
j djS0M +

m∑

k=1

gk(S0, 0)W c
k nkS0M

+Cn+kσn+k+1,1σn+k+1,2W c
k + Cn+k+1

8δkW c
k+1

3p(1 – p)
+ χk+1δk – χkδk

)

Wk

+

(

gm(S0, 0)W c
mK +

n∑

j=1

fj(S0, 0)Ic
j djS0M +

m∑

k=1

gk(S0, 0)W c
k nkS0M
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+ Cn+mσn+m+1,1σn+m+1,2W c
m – χmδm

)

Wm. (2.28)

Take

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χm = 1
δm

(

gm(S0, 0)W c
mK +

n∑

j=1
fj(S0, 0)Ic

j djS0M +
m∑

k=1
gk(S0, 0)W c

k nkS0M

+Cn+mσn+m+1,1σn+m+1,2W c
m

)

,

χk = χk+1 + 1
δk

(

gk(S0, 0)W c
k K +

n∑

j=1
fj(S0, 0)Ic

j djS0M +
m∑

k=1
gk(S0, 0)W c

k nkS0M

+Cn+kσn+k+1,1σn+k+1,2W c
k + Cn+k+1

8δk W c
k+1

3p(1–p)

)

, k = m – 1, m – 2, . . . , 1,

ψn = 1
μn

(

fn(S0, 0)Ic
nK +

n∑

j=1
fj(S0, 0)Ic

j djS0M +
m∑

k=1
gk(S0, 0)W c

k nkS0M + Cn+1
8ξnW c

1
3p(1–p)

+Cnσn+1,1σn+1,2Ic
n + χ1ξn

)

,

ψj = ψj+1
γj
μj

+ χ1ξj
μj

+ 1
μj

(

fj(S0, 0)Ic
j K +

n∑

j=1
fj(S0, 0)Ic

j djS0M +
m∑

k=1
gk(S0, 0)W c

k nkS0M

+Cj+1
8γjIc

j+1
3p(1–p) + Cn+2

8ξjW c
1

3p(1–p) + Cjσj+1,1σj+1,2Ic
j

)

, j = n – 1, n – 2, . . . , 2,

then by (2.28), we have that

LV1 ≤ – (Rs
0(p) – 1)h2 + JI1, (2.29)

where

J =

⎛

⎝σ21σ22 +
n∑

j=1

fj(S0, 0)Ic
j |ej|μ1 +

m∑

k=1

gk(S0, 0)W c
k |mk|μ1 + ψ2γ1

+
n∑

j=1

fj(S0, 0)Ic
j djS0M +

m∑

k=1

gk(S0, 0)W c
k nkS0M + Cn+1W c

1
8ξ1

3p(1 – p)

+C2
8γ1Ic

2
3p(1 – p)

+ f1(S0, 0)K + χ1ξ1

)

. (2.30)

Applying Itô’s formula, (2.14), and the assumption (H2), we have

L(– ln S + u1) = –
A
S

+ +
n∑

j=1

fj(S, Ij)Ij

S
+

m∑

k=1

gk(S, Wk)Wk

S
+ μ + h̄1

≤ –
A
S

+ μ + h̄1 + M

⎛

⎝
n∑

j=1

Ij +
m∑

k=1

Wk

⎞

⎠ , (2.31)

where u1, h̄1 are defined by (2.6) and (2.22), respectively.
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By (2.23)–(2.25), we have that

L

⎛

⎝
n∑

j=2

(

– ln Ij +
1
Ic

j
uj+1

)⎞

⎠

= –
n∑

j=2

γj–1
Ij–1

Ij
+

n∑

j=2

μj +
1
2

n∑

j=2

(
σj+1,1 + σj+1,2Ij

)2 +
n∑

j=2

1
Ic

j
Luj+1

≤ –
n∑

j=2

γj–1
Ij–1

Ij
+

n∑

j=2

8γj–1Ij–1

3p(1 – p)
+

n∑

j=2

σj+1,1σj+1,2Ij +
n∑

j=2

hj+1, (2.32)

where hj+1 = μj +
σ 2

j+1,1
2 +

σ 2
j+1,2p2

6 and uj+1, j = 2, 3, . . . , n are defined by (2.6).
Furthermore, let

v1 = (–lnW1 +
1

W c
1

un+2) +
m∑

k=2

(

– ln Wk +
1

W c
k

un+k+1

)

,

where un+2, un+k+1, k = 2, 3, . . . , m are defined by (2.6). Applying Itô’s formula and (2.26),
one has

Lv1 = –
n∑

j=1

ξjIj

W1
+ δ1 +

1
W c

1
Lun+2 –

m∑

k=2

δk–1Wk–1

Wk
+

m∑

k=2

δk +
m∑

k=2

1
W c

k
Lun+k+1

+
1
2
(
σn+2,1 + σn+2,2W1

)2 +
1
2

m∑

k=2

(
σn+k+1,1 + σn+k+1,2Wk

)2

≤ –
n∑

j=1

ξjIj

W1
+

8
n∑

j=1
ξjIj

3p(1 – p)
–

m∑

k=2

δk–1Wk–1

Wk
+

8
m∑

k=2
δk–1Wk–1

3p(1 – p)

+
m∑

k=1

σn+k+1,1σn+k+1,2Wk +
m∑

k=1

hn+k+1, (2.33)

where hn+k+1 = δk + 1
2σ 2

n+k+1,1 + 1
6σ 2

n+k+1,2p2.
Let

v2 =
(σ11 + σ12S)p

p
+

n∑

j=1

(σj+1,1 + σj+1,2Ij)p

p
+

m∑

k=1

(σn+k+1,1 + σn+k+1,2Wk)p

p
.

Then,

Lv2 =(σ11 + σ12S)p–1σ12

⎛

⎝A –
n∑

j=1

fj(S, Ij)Ij –
m∑

k=1

gk(S, Wk)Wk – μS

⎞

⎠

–
1 – p

2
(σ11 + σ12S)pσ 2

12S2 –
1 – p

2
(σ21 + σ22I1)pσ 2

22I2
1

+ (σ21 + σ22I1)p–1σ22

⎛

⎝
n∑

j=1

fj(S, Ij)Ij +
m∑

k=1

gk(S, Wk)Wk – μ1I1

⎞

⎠
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+
n∑

j=2

(
σj+1,1 + σj+1,2Ij

)p–1
σj+1,2

(
γj–1Ij–1 – μjIj

)

–
1 – p

2

n∑

j=2

(σj+1,1 + σj+1,2Ij)
pσ 2

j+1,2I2
j –

1 – p
2

(σn+2,1 + σn+2,2W1)pσ 2
n+2,2W 2

1

+
(
σn+2,1 + σn+2,2W1

)p–1
σn+2,2

⎛

⎝
n∑

j=1

ξjIj – δ1W1

⎞

⎠

+
m∑

k=2

(
σn+k+1,1 + σn+k+1,2Wk

)p–1
σn+k+1,2 (δk–1Wk–1 – δkWk)

–
1 – p

2

m∑

k=2

(σn+k+1,1 + σn+k+1,2Wk)pσ 2
n+k+1,2W 2

k

≤σ12σ
p–1
11 A –

1 – p
2

⎛

⎝σ
p+2
12 Sp+2 +

n∑

j=1

σ
p+2
j+1,2Ip+2

j +
m∑

k=1

σ
p+2
n+k+1,2W p+2

k

⎞

⎠

+ MSσ22σ
p–1
21

⎛

⎝
n∑

j=1

Ij +
m∑

k=1

Wk

⎞

⎠ +
n∑

j=2

σj+1,2σ
p–1
j+1,1γj–1Ij–1

+ σn+2,2σ
p–1
n+2,1

n∑

j=1

ξjIj +
m∑

k=2

σn+k+1,2σ
p–1
n+k+1,1δk–1Wk–1. (2.34)

Denote

V2 = (– ln S + u1) +
n∑

j=2

(

– ln Ij +
1
Ic

j
uj+1

)

+ v1 + v2.

Combining (2.31)–(2.34),

L(V2) ≤ –
A
S

–
n∑

j=2

γj–1
Ij–1

Ij
–

n∑

j=1

ξjIj

W1
–

m∑

k=2

δk–1
Wk–1

Wk
+ C

–
1 – p

4

⎛

⎝σ
p+2
12 Sp+2 +

n∑

j=1

σ
p+2
j+1,2Ip+2

j +
m∑

k=1

σ
p+2
n+k+1,2W p+2

k

⎞

⎠ , (2.35)

where

C = sup
(S,I1,...,In ,W1,...,Wm)∈Rn+m+1

+

{σ12σ
p–1
11 A + M(Sσ22σ

p–1
21 + 1)

⎛

⎝
n∑

j=1

Ij +
m∑

k=1

Wk

⎞

⎠

–
1 – p

4

⎛

⎝σ
p+2
12 Sp+2 +

n∑

j=1

σ
p+2
j+1,2Ip+2

j +
m∑

k=1

σ
p+2
n+k+1,2W p+2

k

⎞

⎠ +
n∑

j=2

σj+1,2σ
p–1
j+1,1γj–1Ij–1

+ σn+2,2σ
p–1
n+2,1

n∑

j=1

ξjIj +
m∑

k=2

σn+k+1,2σ
p–1
n+k+1,1δk–1Wk–1 + μ + h̄1 +

n+m+1∑

j=2

hj+1
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+
n∑

j=2

8γj–1

3p(1 – p)
Ij–1 +

n∑

j=1

8ξj

3p(1 – p)
Ij +

m∑

k=2

8δk–1

3p(1 – p)
Wk–1

+
n∑

j=2

σj+1,1σj+1,2Ij +
m∑

k=1

σn+k+1,1σn+k+1,2Wk}. (2.36)

Define a function V̄ ∈ C2(Rn+m+1
+ ; R),

V̄ (S, I1, . . . , In, W1, . . . , Wm) := HV1 + V2,

where H must meet a certain condition, hence, we define it later.
Step 2. (Constructing a compact set)
V̄ tends to ∞ when (S, I1, . . . , In, W1, . . . , Wm) approaches the boundary of Rn+m+1

+ be-
cause of the continuity and the monotonicity of the function V̄ . Therefore, it must have
a minimum point (Ŝ, Î1, . . . , Ŵm) in the interior of Rn+m+1

+ . Thus, define a C2-function V :
R

n+m+1
+ → R̄+ as follows:

V (S, I1, . . . , In, W1, . . . , Wm) = V̄ (S, I1, . . . , In, W1, . . . , Wm) – V̄ (Ŝ, Î1, . . . , Ŵm).

Combining (2.29) and (2.35), we obtain

LV ≤ – Hλ + HJI1 –
1 – p

8
σ

p+2
22 Ip+2

1

–
A
S

–
n∑

j=2

γj–1
Ij–1

Ij
–

n∑

j=1

ξjIj

W1
–

m∑

k=2

δk–1
Wk–1

Wk
+ C

–
1 – p

8

⎛

⎝σ
p+2
12 Sp+2 +

n∑

j=1

σ
p+2
j+1,2Ip+2

j +
m∑

k=1

σ
p+2
n+k+1,2W p+2

k

⎞

⎠ ,

where λ � (Rs
0(p) – 1)h2 and C and J can be found in (2.36) and (2.30), respectively. H is

large enough satisfying –Hλ + C < –2.
Then, we have

LV ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Hλ + C + D – A
S – 1–p

8 σ
p+2
12 Sp+2 → –∞, as S → 0+ or S → +∞,

–Hλ + C + HJI1 < –1, as I1 → 0+,

–Hλ + C + D – 1–p
8

n∑

j=1
σ

p+2
j+1,2Ip+2

j → –∞, as Ij → +∞, j = 1, 2, . . . , n,

–Hλ + C + D – 1–p
8

m∑

k=1
σ

p+2
n+k+1,2W p+2

k → –∞, as Wk → +∞, k = 1, 2, . . . , m,

–Hλ + C + D –
n∑

j=2
γj–1

Ij–1
Ij

→ –∞, as Ij–1 ↛ 0+, Ij → 0+, j = 2, 3, . . . , n,

–Hλ + C + D – ξ1I1
W1

→ –∞, as I1 ↛ 0+, W1 → 0+,

–Hλ + C + D –
m∑

k=2
δk–1

Wk–1
Wk

→ –∞, as Wk–1 ↛ 0+, Wk → 0+, k = 2, 3, . . . , m,

where

D = sup
I1∈(0,+∞)

{

HJI1 –
1 – p

8
σ

p+2
22 Ip+1

1

}

.
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Thus, there exists a compact set U ⊂ Rn+m+1
+ such that if Rs

0(p) > 1,

LV (S, I1, . . . , Wm) ≤ –1, (S, I1, . . . , Wm) ∈R
n+m+1
+ \ U .

Noting that Rs
0(p) defined in (2.21) is continuous and nonincreasing in p, lim

p→0+
Rs

0(p) =

Rs
0(0) � Rs

0 makes senses. Therefore, if Rs
0 > 1, then there exists a p ∈ (0, 1) such that Rs

0(p) >

1. Thus, if Rs
0 > 1, the condition (A2) in Lemma A.1 in the Appendix holds.

Step 3. (Proving the ergodicity)

Next, we verify the condition (A1) in Lemma A.1 in the Appendix. The diffusion matrix

of system (1.4) is as follows:

Ã = diag
(

(σ11 + σ12S)2S2, (σ21 + σ22I1)2I2
1 , . . . , (σn+m+1,1 + σn+m+1,2Wm)2W 2

m

)
.

It is obvious that for any compact subset ofRn+m+1
+ , the matrix A is positive-definite. There-

fore, the condition (A1) in Lemma A.1 is satisfied.

Therefore, the conditions (A1) and (A2) in Lemma A.1 in the Appendix are proved. That

is to say, there is a unique and ergodic stationary distribution π(·) for system (1.4). �

Remark 2.1 If σi,j = 0, i = 1, 2, . . . , n + m + 1, j = 1, 2, then Rs
0 is consistent with the basic

reproduction number R0 of the ODE system (1.1) defined in (1.3). That is, our work in-

cludes and extends the work of Song et al. [21], and partially extends the result of Shuai et

al. [10].

Remark 2.2 If there exist white-noise intensities σi,j, i = 1, 2, . . . , n + m + 1, j = 1, 2 such that

σ 2
i,j > 0, then Rs

0 < R0, which implies that the white noises are beneficial to the control of

the diseases.

3 Numerical simulations

Consider the same parameters in this section as Example 2 of Song et al. [21] in system

(1.4) as follows:

A = 0.5, μ = 0.25, μ1 = 0.85, μ2 = 0.65, ξ1 = 0.15, ξ2 = 0.15, γ1 = 0.55, δ1 = 0.3,

δ2 = 0.2, δ3 = 0.15, β1 = β2 = λ1 = λ2 = 0.15, λ3 = 0.12. (3.1)
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Next, as an example of (1.4), we consider the stochastic cholera model wtih a Holling
type-II functional response disturbed by higher-order perturbation:

dS(t) =

⎛

⎝A –
2∑

j=1

βjIjS
1 + aIj

–
3∑

k=1

λkWkS
1 + aWk

– μS

⎞

⎠dt + (σ11 + σ12S)SdB1(t),

dI1(t) =

⎛

⎝
2∑

j=1

βjIjS
1 + aIj

+
3∑

k=1

λkWkS
1 + aWk

– μ1I1

⎞

⎠dt + (σ21 + σ22I1)I1dB2(t),

dI2(t) = (γ1I1 – μ2I2)dt + (σ31 + σ32I2)I2dB3(t),

dW1(t) = (
2∑

j=1

ξjIj – δ1W1)dt + (σ41 + σ42W1)W1dB4(t),

dWk(t) = (δk–1Wk–1 – δkWk)dt + (σ3+k,1 + σ3+k,2Wk)WkdB3+k(t), k = 2, 3.

(3.2)

Obviously,

fj(S, x) =
βjS

1 + ax
, j = 1, 2; gk(S, x) =

λkS
1 + ax

, k = 1, 2, 3.

Next, we verify that the conditions (H1)–(H3) hold.
(i) –∂fj(S,x)

∂x = – βjaS
(1+ax)2 = –fj(S, x) a

1+ax ≥ –afj(S, x).
Similarly, –∂gk (S,x)

∂x ≥ –agk(S, x). We choose K = a such that (H1) holds.
(ii) We choose M = max

j=1,2; k=1,2,3
{βj, λk} satisfying

fj(S, x) ≤ βjS ≤ MS, gk(S, x) ≤ λkS ≤ MS.

(iii) It is easy to compute that

S3 d2

dS2

(
1

fj(S, 0)

)

=
2
βj

= pj, S3 d2

dS2

(
1

gk(S, 0)

)

=
2
λk

= qk , j = 1, 2; k = 1, 2, 3.

Thus, (H1)–(H3) hold. By (1.3), we obtain that

R0 =
A
μ

(
β1

μ1
+

γ1β2

μ1μ2

)

+
A
μ

(
λ1

δ1
+

λ2

δ2
+

λ3

δ3

)(
ξ1

μ1
+

γ1ξ2

μ1μ2

)

= 1.9873 > 1,

which is the same as the R0 in Example 2 of Song et al. [21] and implies that the positive
equilibrium of the corresponding ODE system of (3.2) is uniformly persistent, illustrated
in the red dotted lines of Fig. 2. Next, we further investigate the effects of higher-order
disturbance of white noises.

Case 1. Choosing dj, nk , j = 1, 2; k = 1, 2, 3 and the white noises σij as follows:

dj = 2.1 > max

{

0,
fj(S0, 0)pj

2μS2
0

}

=
1
A

= 2, j = 1, 2,
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Figure 2 Left: The solutions of the corresponding deterministic and stochastic system (3.2). Initial value:
(S(0), I1(0), I2(0),W1(0),W2(0),W3(0)) = (0.9, 0.4, 0.4, 0.4, 0.4, 0.2). Right: Distribution densities of S(t), I1(t), I2(t),
W1(t),W2(t),W3(t)

nk = 2.1 > max

{

0,
gk(S0, 0)qk

2μS2
0

}

=
1
A

= 2, k = 1, 2, 3

and σ11 = σ12 = 0.01, σ21 = σ22 = 0.02, σ31 = σ32 = 0.03, σ41 = σ42 = 0.04, σ51 = σ52 = 0.05,
σ61 = σ62 = 0.06, we have that from (2.1),

Rs
0 =

⎛

⎝
β1S0

(
1 – d1S0̃h1

)

μ1 + 2 3
√

A2σ 2
22 + σ 2

21
2

+
β2S0

(
1 – d2S0̃h1

)

μ1 + 2 3
√

A2σ 2
22 + σ 2

21
2

· γ1

μ2 + σ 2
31
2

⎞

⎠

+

⎛

⎝
λ1S0

(
1 – n1S0̃h1

)

δ1 + σ 2
41
2

+
3∑

k=2

λkS0
(
1 – nkS0̃h1

)

δ1 + σ 2
41
2

k∏

j=2

δj–1

δj +
σ 2

3+j,1
2

⎞

⎠ ·

⎛

⎜
⎝

ξ1

μ1 + 2 3
√

A2σ 2
22 + σ 2

21
2

+
γ1ξ2

(
μ1 + 2 3

√
A2σ 2

22 + σ 2
21
2

)(
μ2 + σ 2

31
2

)

⎞

⎟
⎠

=1.2342 > 1,

which means that there exists a unique ergodic stationary distribution of system (3.2) ac-
cording to Theorem 2.2, illustrated in the blue lines and the right graphs of Fig. 2. More-
over, Rs

0 = 1.2342 < R∗
0 = 1.9699, where R∗

0 is the critical value of Song et al. [21], which
implies that the higher-order disturbances σi,2, i = 1, 2, . . . , n + m + 1 may decrease the
critical value and speed up the extinction of the diseases.

Case 2. Fixing the parameters as in (3.1) and σi,2, i = 1, 2, . . . , 6 as in Case 1, we increase
the white-noise intensities σi1, i = 1, 2, . . . , 6 as follows:

σ11 = 0.61, σ21 = 0.62, σ31 = 0.63, σ41 = 0.64, σ51 = 0.65, σ61 = 0.66.
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Figure 3 The solutions of the corresponding deterministic and stochastic system (3.2), which implies that the
stronger white noises may result in the extinction of the diseases. Initial value:
(S(0), I1(0), I2(0),W1(0),W2(0),W3(0)) = (0.9, 0.8, 0.7, 0.8, 0.7, 0.6)

We have that Rs
0 = 0.2895 < 1 from (2.1), which shows that the diseases Ii(t), Wi(t) tend

to extinction from Fig. 3. For the general response function, we do not give the proof of
extinction of the diseases in this article.

4 Conclusion and discussion
The spread and control of the infectious disease cholera disturbed by higher-order en-
vironment noises have always been hot topics discussed by many scholars and experts.
In this article, we propose a stochastic cholera model, which is the summarization and
generalization of Song et al. [21] and the corresponding ODE system. The distinguishing
features are the general nonlinear incidence rates fj(S, Ij)Ij, gk(S, Wk)Wk , j = 1, 2, . . . , n; k =
1, 2, . . . , m and the higher-order perturbations are only dependent on S (or Ij (Wk)) and
include many existing results about cholera epidemics.

For the general stochastic system (1.4), we obtain the existence and ergodicity of the
stationary distribution by using the theory of Khasminskii [28]. The most essential and
difficult step is to construct a Lyapunov function satisfying Lemma A.1 in the Appendix.
Due to the complexity and generality of system (1.4), we divide the construction of the
Lyapunov function into three steps to determine the critical value Rs

0 corresponding to
the basic reproductive number R0 of the ODE system (1.1). Finally, we apply our results to
the stochastic system with a Holling type-II functional response and show that if Rs

0 > 1,
the diseases will prevail and the stronger white noises will result in the extinction of the
diseases.

In this article, we show that the higher-order white noises can decrease the critical value
and result in the extinction of the diseases, which provides us new insights into control-
ling the spread of the diseases. However, there are still many interesting problems worth

studying in the near future. For example, when fj(Ij) =
βjI2

j
1+aI2

j
, gk(Ij) = λk I2

k
1+aI2

k
, that is, a Holling

type-III functional response, our condition (H1) does not hold. It is challenging to deal
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with the existence of a stationary distribution for this case. We will leave these investiga-
tions to future work.

Appendix
Let X(t) be a homogeneous Markov process in R

n+m+1
+ , which can be described by the

following equation:

dX(t) = b(X(t))dt +
n+m+1∑

r=1

σr(X(t))dBr(t). (A.1)

The diffusion matrix is defined as follows:

A(x) = (aij(x))1≤i,j≤n+m+1, aij(x) =
n+m+1∑

r=1

σ i
r (X)σ j

r(X).

Applying the differential operator L to a function V ∈ C2(Rn+m+1
+ , R+), Eq. (A.1) can be

defined by

LV (X) =
n+m+1∑

i=1

bi(X)
∂V
∂Xi

+
1
2

n+m+1∑

i,j=1

aij(X)
∂2V
∂XiXj

.

Lemma A.1 [28] Assume there exists a bounded domain D ⊂R
n+m+1
+ with regular bound-

ary �, and the following conditions hold:
(A1) there is a positive constant M̃ satisfying

n+m+1∑

i,j=1

aij(x)ςiςj ≥ M̃|ς |2, for x ∈ D,ς = (ς1,ς2, . . . ,ςn+m+1) ∈R
n+m+1
+ ;

(A2) there exists a function V ∈ C2(Rn+m+1
+ ; R+) and a positive constant Ĉ such that

LV (x) ≤ –Ĉ for any R
n+m+1
+ \D̄.

Then, system (1.4) is a unique and ergodic Markov process with a stationary distribution
π(·), and letting f (·) be a function integrable with respect to the measure π , then

Px

{

lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫

Rn+m+1
+

f (x)π(dx)

}

= 1.
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