Kshitij Gupta


2025

pdf bib
Aurora-M: Open Source Continual Pre-training for Multilingual Language and Code
Taishi Nakamura | Mayank Mishra | Simone Tedeschi | Yekun Chai | Jason T. Stillerman | Felix Friedrich | Prateek Yadav | Tanmay Laud | Vu Minh Chien | Terry Yue Zhuo | Diganta Misra | Ben Bogin | Xuan-Son Vu | Marzena Karpinska | Arnav Varma Dantuluri | Wojciech Kusa | Tommaso Furlanello | Rio Yokota | Niklas Muennighoff | Suhas Pai | Tosin Adewumi | Veronika Laippala | Xiaozhe Yao | Adalberto Barbosa Junior | Aleksandr Drozd | Jordan Clive | Kshitij Gupta | Liangyu Chen | Qi Sun | Ken Tsui | Nour Moustafa-Fahmy | Nicolo Monti | Tai Dang | Ziyang Luo | Tien-Tung Bui | Roberto Navigli | Virendra Mehta | Matthew Blumberg | Victor May | Hiep Nguyen | Sampo Pyysalo
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track

Pretrained language models are integral part of AI applications, but their high computational cost for training limits accessibility. Initiatives such as Bloom and StarCoder aim to democratize access to pretrained models for collaborative community development. Despite these efforts, such models encounter challenges such as limited multilingual capabilities, risks of catastrophic forgetting during continual pretraining, and the high costs of training models from scratch, alongside the need to align with AI safety standards and regulatory frameworks. This paper presents Aurora-M, a 15B parameter multilingual open-source model trained on English, Finnish, Hindi, Japanese, Vietnamese, and code. Continually pretrained from StarCoderPlus on 435B additional tokens, Aurora-M surpasses 2T tokens in total training token count. It is the first open-source multilingual model fine-tuned on human-reviewed safety instructions, thus aligning its development not only with conventional red-teaming considerations, but also with the specific concerns articulated in the Biden-Harris Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. We evaluate Aurora-M across a wide range of tasks and languages, showcasing its robustness against catastrophic forgetting and its superior performance in multilingual settings, particularly in safety evaluations. We open-source Aurora-M and its variants to encourage responsible open-source development of large language models at https://huggingface.co/aurora-m.

2022

pdf bib
Towards Detecting Political Bias in Hindi News Articles
Samyak Agrawal | Kshitij Gupta | Devansh Gautam | Radhika Mamidi
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

Political propaganda in recent times has been amplified by media news portals through biased reporting, creating untruthful narratives on serious issues causing misinformed public opinions with interests of siding and helping a particular political party. This issue proposes a challenging NLP task of detecting political bias in news articles. We propose a transformer-based transfer learning method to fine-tune the pre-trained network on our data for this bias detection. As the required dataset for this particular task was not available, we created our dataset comprising 1388 Hindi news articles and their headlines from various Hindi news media outlets. We marked them on whether they are biased towards, against, or neutral to BJP, a political party, and the current ruling party at the centre in India.

pdf bib
MALM: Mixing Augmented Language Modeling for Zero-Shot Machine Translation
Kshitij Gupta
Proceedings of the 2nd International Workshop on Natural Language Processing for Digital Humanities

Large pre-trained language models have brought remarkable progress in NLP. Pre-training and Fine-tuning have given state-of-art performance across tasks in text processing. Data Augmentation techniques have also helped build state-of-art models on low or zero resource tasks. Many works in the past have attempted at learning a single massively multilingual machine translation model for zero-shot translation. Although those translation models are producing correct translations, the main challenge is those models are producing the wrong languages for zero-shot translation. This work and its results indicate that prompt conditioned large models do not suffer from off-target language errors i.e. errors arising due to translation to wrong languages. We empirically demonstrate the effectiveness of self-supervised pre-training and data augmentation for zero-shot multi-lingual machine translation.

2021

pdf bib
Translate and Classify: Improving Sequence Level Classification for English-Hindi Code-Mixed Data
Devansh Gautam | Kshitij Gupta | Manish Shrivastava
Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching

Code-mixing is a common phenomenon in multilingual societies around the world and is especially common in social media texts. Traditional NLP systems, usually trained on monolingual corpora, do not perform well on code-mixed texts. Training specialized models for code-switched texts is difficult due to the lack of large-scale datasets. Translating code-mixed data into standard languages like English could improve performance on various code-mixed tasks since we can use transfer learning from state-of-the-art English models for processing the translated data. This paper focuses on two sequence-level classification tasks for English-Hindi code mixed texts, which are part of the GLUECoS benchmark - Natural Language Inference and Sentiment Analysis. We propose using various pre-trained models that have been fine-tuned for similar English-only tasks and have shown state-of-the-art performance. We further fine-tune these models on the translated code-mixed datasets and achieve state-of-the-art performance in both tasks. To translate English-Hindi code-mixed data to English, we use mBART, a pre-trained multilingual sequence-to-sequence model that has shown competitive performance on various low-resource machine translation pairs and has also shown performance gains in languages that were not in its pre-training corpus.

pdf bib
CoMeT: Towards Code-Mixed Translation Using Parallel Monolingual Sentences
Devansh Gautam | Prashant Kodali | Kshitij Gupta | Anmol Goel | Manish Shrivastava | Ponnurangam Kumaraguru
Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching

Code-mixed languages are very popular in multilingual societies around the world, yet the resources lag behind to enable robust systems on such languages. A major contributing factor is the informal nature of these languages which makes it difficult to collect code-mixed data. In this paper, we propose our system for Task 1 of CACLS 2021 to generate a machine translation system for English to Hinglish in a supervised setting. Translating in the given direction can help expand the set of resources for several tasks by translating valuable datasets from high resource languages. We propose to use mBART, a pre-trained multilingual sequence-to-sequence model, and fully utilize the pre-training of the model by transliterating the roman Hindi words in the code-mixed sentences to Devanagri script. We evaluate how expanding the input by concatenating Hindi translations of the English sentences improves mBART’s performance. Our system gives a BLEU score of 12.22 on test set. Further, we perform a detailed error analysis of our proposed systems and explore the limitations of the provided dataset and metrics.

pdf bib
Volta at SemEval-2021 Task 6: Towards Detecting Persuasive Texts and Images using Textual and Multimodal Ensemble
Kshitij Gupta | Devansh Gautam | Radhika Mamidi
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

Memes are one of the most popular types of content used to spread information online. They can influence a large number of people through rhetorical and psychological techniques. The task, Detection of Persuasion Techniques in Texts and Images, is to detect these persuasive techniques in memes. It consists of three subtasks: (A) Multi-label classification using textual content, (B) Multi-label classification and span identification using textual content, and (C) Multi-label classification using visual and textual content. In this paper, we propose a transfer learning approach to fine-tune BERT-based models in different modalities. We also explore the effectiveness of ensembles of models trained in different modalities. We achieve an F1-score of 57.0, 48.2, and 52.1 in the corresponding subtasks.

pdf bib
Volta at SemEval-2021 Task 9: Statement Verification and Evidence Finding with Tables using TAPAS and Transfer Learning
Devansh Gautam | Kshitij Gupta | Manish Shrivastava
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

Tables are widely used in various kinds of documents to present information concisely. Understanding tables is a challenging problem that requires an understanding of language and table structure, along with numerical and logical reasoning. In this paper, we present our systems to solve Task 9 of SemEval-2021: Statement Verification and Evidence Finding with Tables (SEM-TAB-FACTS). The task consists of two subtasks: (A) Given a table and a statement, predicting whether the table supports the statement and (B) Predicting which cells in the table provide evidence for/against the statement. We fine-tune TAPAS (a model which extends BERT’s architecture to capture tabular structure) for both the subtasks as it has shown state-of-the-art performance in various table understanding tasks. In subtask A, we evaluate how transfer learning and standardizing tables to have a single header row improves TAPAS’ performance. In subtask B, we evaluate how different fine-tuning strategies can improve TAPAS’ performance. Our systems achieve an F1 score of 67.34 in subtask A three-way classification, 72.89 in subtask A two-way classification, and 62.95 in subtask B.

pdf bib
ViTA: Visual-Linguistic Translation by Aligning Object Tags
Kshitij Gupta | Devansh Gautam | Radhika Mamidi
Proceedings of the 8th Workshop on Asian Translation (WAT2021)

Multimodal Machine Translation (MMT) enriches the source text with visual information for translation. It has gained popularity in recent years, and several pipelines have been proposed in the same direction. Yet, the task lacks quality datasets to illustrate the contribution of visual modality in the translation systems. In this paper, we propose our system under the team name Volta for the Multimodal Translation Task of WAT 2021 from English to Hindi. We also participate in the textual-only subtask of the same language pair for which we use mBART, a pretrained multilingual sequence-to-sequence model. For multimodal translation, we propose to enhance the textual input by bringing the visual information to a textual domain by extracting object tags from the image. We also explore the robustness of our system by systematically degrading the source text. Finally, we achieve a BLEU score of 44.6 and 51.6 on the test set and challenge set of the multimodal task.

2020

pdf bib
IlliniMet: Illinois System for Metaphor Detection with Contextual and Linguistic Information
Hongyu Gong | Kshitij Gupta | Akriti Jain | Suma Bhat
Proceedings of the Second Workshop on Figurative Language Processing

Metaphors are rhetorical use of words based on the conceptual mapping as opposed to their literal use. Metaphor detection, an important task in language understanding, aims to identify metaphors in word level from given sentences. We present IlliniMet, a system to automatically detect metaphorical words. Our model combines the strengths of the contextualized representation by the widely used RoBERTa model and the rich linguistic information from external resources such as WordNet. The proposed approach is shown to outperform strong baselines on a benchmark dataset. Our best model achieves F1 scores of 73.0% on VUA ALLPOS, 77.1% on VUA VERB, 70.3% on TOEFL ALLPOS and 71.9% on TOEFL VERB.

2015

pdf bib
Going global? Let’s measure your product for world-readiness!
Kshitij Gupta | Lily Wen
Proceedings of Translating and the Computer 37