Hyounghun Kim


2024

pdf bib
Collective Critics for Creative Story Generation
Minwook Bae | Hyounghun Kim
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Generating a long story of several thousand words with narrative coherence using Large Language Models (LLMs) has been a challenging task. Previous research has addressed this challenge by proposing different frameworks that create a story plan and generate a long story based on that plan. However, these frameworks have been mainly focusing on maintaining narrative coherence in stories, often overlooking creativity in story planning and the expressiveness of the stories generated from those plans, which are desirable properties to captivate readers’ interest. In this paper, we propose Collective Critics for Creative Story Generation framework (CritiCS), which is composed of plan refining stage (CrPlan) and story generation stage (CrText), to integrate a collective revision mechanism that promotes those properties into long-form story generation process. Specifically, in each stage, a group of LLM critics and one leader collaborate to incrementally refine drafts of plan and story throughout multiple rounds. Extensive human evaluation shows that the CritiCS can significantly enhance story creativity and reader engagement, while also maintaining narrative coherence. Furthermore, the design of the framework allows active participation from human writers in any role within the critique process, enabling interactive human-machine collaboration in story writing.

pdf bib
Mixed-Session Conversation with Egocentric Memory
Jihyoung Jang | Taeyoung Kim | Hyounghun Kim
Findings of the Association for Computational Linguistics: EMNLP 2024

Recently introduced dialogue systems have demonstrated high usability. However, they still fall short of reflecting real-world conversation scenarios. Current dialogue systems exhibit an inability to replicate the dynamic, continuous, long-term interactions involving multiple partners. This shortfall arises because there have been limited efforts to account for both aspects of real-world dialogues: deeply layered interactions over the long-term dialogue and widely expanded conversation networks involving multiple participants. As the effort to incorporate these aspects combined, we introduce Mixed-Session Conversation, a dialogue system designed to construct conversations with various partners in a multi-session dialogue setup. We propose a new dataset called MiSC to implement this system. The dialogue episodes of MiSC consist of 6 consecutive sessions, with four speakers (one main speaker and three partners) appearing in each episode. Also, we propose a new dialogue model with a novel memory management mechanism, called Egocentric Memory Enhanced Mixed-Session Conversation Agent (EMMA). EMMA collects and retains memories from the main speaker’s perspective during conversations with partners, enabling seamless continuity in subsequent interactions. Extensive human evaluations validate that the dialogues in MiSC demonstrate a seamless conversational flow, even when conversation partners change in each session. EMMA trained with MiSC is also evaluated to maintain high memorability without contradiction throughout the entire conversation.

2023

pdf bib
Sound of Story: Multi-modal Storytelling with Audio
Jaeyeon Bae | Seokhoon Jeong | Seokun Kang | Namgi Han | Jae-Yon Lee | Hyounghun Kim | Taehwan Kim
Findings of the Association for Computational Linguistics: EMNLP 2023

Storytelling is multi-modal in the real world. When one tells a story, one may use all of the visualizations and sounds along with the story itself. However, prior studies on storytelling datasets and tasks have paid little attention to sound even though sound also conveys meaningful semantics of the story. Therefore, we propose to extend story understanding and telling areas by establishing a new component called background sound which is story context-based audio without any linguistic information. For this purpose, we introduce a new dataset, called Sound of Story (SoS), which has paired image and text sequences with corresponding sound or background music for a story. To the best of our knowledge, this is the largest well-curated dataset for storytelling with sound. Our SoS dataset consists of 27,354 stories with 19.6 images per story and 984 hours of speech-decoupled audio such as background music and other sounds. As benchmark tasks for storytelling with sound and the dataset, we propose retrieval tasks between modalities, and audio generation tasks from image-text sequences, introducing strong baselines for them. We believe the proposed dataset and tasks may shed light on the multi-modal understanding of storytelling in terms of sound.

pdf bib
Conversation Chronicles: Towards Diverse Temporal and Relational Dynamics in Multi-Session Conversations
Jihyoung Jang | Minseong Boo | Hyounghun Kim
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In the field of natural language processing, open-domain chatbots have emerged as an important research topic. However, a major limitation of existing open-domain chatbot research is its singular focus on short single-session dialogue, neglecting the potential need for understanding contextual information in multiple consecutive sessions that precede an ongoing dialogue. Among the elements that compose the context in multi-session conversation settings, the time intervals between sessions and the relationships between speakers would be particularly important. Despite their importance, current research efforts have not sufficiently addressed these dialogical components. In this paper, we introduce a new 1M multi-session dialogue dataset, called Conversation Chronicles, for implementing a long-term conversation setup in which time intervals and fine-grained speaker relationships are incorporated. Following recent works, we exploit a large language model to produce the data. The extensive human evaluation shows that dialogue episodes in Conversation Chronicles reflect those properties while maintaining coherent and consistent interactions across all the sessions. We also propose a dialogue model, called ReBot, which consists of chronological summarization and dialogue generation modules using only around 630M parameters. When trained on Conversation Chronicles, ReBot demonstrates long-term context understanding with a high human engagement score.

2022

pdf bib
CoSIm: Commonsense Reasoning for Counterfactual Scene Imagination
Hyounghun Kim | Abhay Zala | Mohit Bansal
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

As humans, we can modify our assumptions about a scene by imagining alternative objects or concepts in our minds. For example, we can easily anticipate the implications of the sun being overcast by rain clouds (e.g., the street will get wet) and accordingly prepare for that. In this paper, we introduce a new dataset called Commonsense Reasoning for Counterfactual Scene Imagination (CoSIm) which is designed to evaluate the ability of AI systems to reason about scene change imagination. To be specific, in this multimodal task/dataset, models are given an image and an initial question-response pair about the image. Next, a counterfactual imagined scene change (in textual form) is applied, and the model has to predict the new response to the initial question based on this scene change. We collect 3.5K high-quality and challenging data instances, with each instance consisting of an image, a commonsense question with a response, a description of a counterfactual change, a new response to the question, and three distractor responses. Our dataset contains various complex scene change types (such as object addition/removal/state change, event description, environment change, etc.) that require models to imagine many different scenarios and reason about the changed scenes. We present a baseline model based on a vision-language Transformer (i.e., LXMERT) and ablation studies. Through human evaluation, we demonstrate a large human-model performance gap, suggesting room for promising future work on this challenging, counterfactual multimodal task.

pdf bib
RESIN-11: Schema-guided Event Prediction for 11 Newsworthy Scenarios
Xinya Du | Zixuan Zhang | Sha Li | Pengfei Yu | Hongwei Wang | Tuan Lai | Xudong Lin | Ziqi Wang | Iris Liu | Ben Zhou | Haoyang Wen | Manling Li | Darryl Hannan | Jie Lei | Hyounghun Kim | Rotem Dror | Haoyu Wang | Michael Regan | Qi Zeng | Qing Lyu | Charles Yu | Carl Edwards | Xiaomeng Jin | Yizhu Jiao | Ghazaleh Kazeminejad | Zhenhailong Wang | Chris Callison-Burch | Mohit Bansal | Carl Vondrick | Jiawei Han | Dan Roth | Shih-Fu Chang | Martha Palmer | Heng Ji
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations

We introduce RESIN-11, a new schema-guided event extraction&prediction framework that can be applied to a large variety of newsworthy scenarios. The framework consists of two parts: (1) an open-domain end-to-end multimedia multilingual information extraction system with weak-supervision and zero-shot learningbased techniques. (2) schema matching and schema-guided event prediction based on our curated schema library. We build a demo website based on our dockerized system and schema library publicly available for installation (https://github.com/RESIN-KAIROS/RESIN-11). We also include a video demonstrating the system.

pdf bib
On the Limits of Evaluating Embodied Agent Model Generalization Using Validation Sets
Hyounghun Kim | Aishwarya Padmakumar | Di Jin | Mohit Bansal | Dilek Hakkani-Tur
Proceedings of the Third Workshop on Insights from Negative Results in NLP

Natural language guided embodied task completion is a challenging problem since it requires understanding natural language instructions, aligning them with egocentric visual observations, and choosing appropriate actions to execute in the environment to produce desired changes. We experiment with augmenting a transformer model for this task with modules that effectively utilize a wider field of view and learn to choose whether the next step requires a navigation or manipulation action. We observed that the proposed modules resulted in improved, and in fact state-of-the-art performance on an unseen validation set of a popular benchmark dataset, ALFRED. However, our best model selected using the unseen validation set underperforms on the unseen test split of ALFRED, indicating that performance on the unseen validation set may not in itself be a sufficient indicator of whether model improvements generalize to unseen test sets. We highlight this result as we believe it may be a wider phenomenon in machine learning tasks but primarily noticeable only in benchmarks that limit evaluations on test splits, and highlights the need to modify benchmark design to better account for variance in model performance.

2021

pdf bib
Continuous Language Generative Flow
Zineng Tang | Shiyue Zhang | Hyounghun Kim | Mohit Bansal
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent years have witnessed various types of generative models for natural language generation (NLG), especially RNNs or transformer based sequence-to-sequence models, as well as variational autoencoder (VAE) and generative adversarial network (GAN) based models. However, flow-based generative models, which achieve strong performance in image generation due to their invertibility and exact density estimation properties, have been less explored for NLG. In this paper, we propose a flow-based language generation model by adapting previous flow generative models to language generation via continuous input embeddings, adapted affine coupling structures, and a novel architecture for autoregressive text generation. We also apply our framework to Sequence-to-Sequence generation, including text- and video-based Question Generation (QG) and Neural Machine Translation (NMT), and data augmentation for Question Answering (QA). We use our language flow model to provide extra input features for QG and NMT, which achieves improvements over the strong QG baselines on SQuAD and TVQA and NMT baseline on WMT16. We also augment QA data with new context by injecting noise to the latent features of the language flow and show this augmentation leads to a large performance improvement from strong baselines on SQuAD and TVQA.

pdf bib
NDH-Full: Learning and Evaluating Navigational Agents on Full-Length Dialogue
Hyounghun Kim | Jialu Li | Mohit Bansal
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Communication between human and mobile agents is getting increasingly important as such agents are widely deployed in our daily lives. Vision-and-Dialogue Navigation is one of the tasks that evaluate the agent’s ability to interact with humans for assistance and navigate based on natural language responses. In this paper, we explore the Navigation from Dialogue History (NDH) task, which is based on the Cooperative Vision-and-Dialogue Navigation (CVDN) dataset, and present a state-of-the-art model which is built upon Vision-Language transformers. However, despite achieving competitive performance, we find that the agent in the NDH task is not evaluated appropriately by the primary metric – Goal Progress. By analyzing the performance mismatch between Goal Progress and other metrics (e.g., normalized Dynamic Time Warping) from our state-of-the-art model, we show that NDH’s sub-path based task setup (i.e., navigating partial trajectory based on its correspondent subset of the full dialogue) does not provide the agent with enough supervision signal towards the goal region. Therefore, we propose a new task setup called NDH-Full which takes the full dialogue and the whole navigation path as one instance. We present a strong baseline model and show initial results on this new task. We further describe several approaches that we try, in order to improve the model performance (based on curriculum learning, pre-training, and data-augmentation), suggesting potential useful training methods on this new NDH-Full task.

2020

pdf bib
Dense-Caption Matching and Frame-Selection Gating for Temporal Localization in VideoQA
Hyounghun Kim | Zineng Tang | Mohit Bansal
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Videos convey rich information. Dynamic spatio-temporal relationships between people/objects, and diverse multimodal events are present in a video clip. Hence, it is important to develop automated models that can accurately extract such information from videos. Answering questions on videos is one of the tasks which can evaluate such AI abilities. In this paper, we propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions. Specifically, we first employ dense image captions to help identify objects and their detailed salient regions and actions, and hence give the model useful extra information (in explicit textual format to allow easier matching) for answering questions. Moreover, our model is also comprised of dual-level attention (word/object and frame level), multi-head self/cross-integration for different sources (video and dense captions), and gates which pass more relevant information to the classifier. Finally, we also cast the frame selection problem as a multi-label classification task and introduce two loss functions, In-andOut Frame Score Margin (IOFSM) and Balanced Binary Cross-Entropy (BBCE), to better supervise the model with human importance annotations. We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin (74.09% versus 70.52%). We also present several word, object, and frame level visualization studies.

pdf bib
ArraMon: A Joint Navigation-Assembly Instruction Interpretation Task in Dynamic Environments
Hyounghun Kim | Abhaysinh Zala | Graham Burri | Hao Tan | Mohit Bansal
Findings of the Association for Computational Linguistics: EMNLP 2020

For embodied agents, navigation is an important ability but not an isolated goal. Agents are also expected to perform specific tasks after reaching the target location, such as picking up objects and assembling them into a particular arrangement. We combine Vision-andLanguage Navigation, assembling of collected objects, and object referring expression comprehension, to create a novel joint navigation-and-assembly task, named ARRAMON. During this task, the agent (similar to a PokeMON GO player) is asked to find and collect different target objects one-by-one by navigating based on natural language (English) instructions in a complex, realistic outdoor environment, but then also ARRAnge the collected objects part-by-part in an egocentric grid-layout environment. To support this task, we implement a 3D dynamic environment simulator and collect a dataset with human-written navigation and assembling instructions, and the corresponding ground truth trajectories. We also filter the collected instructions via a verification stage, leading to a total of 7.7K task instances (30.8K instructions and paths). We present results for several baseline models (integrated and biased) and metrics (nDTW, CTC, rPOD, and PTC), and the large model-human performance gap demonstrates that our task is challenging and presents a wide scope for future work.

2019

pdf bib
Improving Visual Question Answering by Referring to Generated Paragraph Captions
Hyounghun Kim | Mohit Bansal
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Paragraph-style image captions describe diverse aspects of an image as opposed to the more common single-sentence captions that only provide an abstract description of the image. These paragraph captions can hence contain substantial information of the image for tasks such as visual question answering. Moreover, this textual information is complementary with visual information present in the image because it can discuss both more abstract concepts and more explicit, intermediate symbolic information about objects, events, and scenes that can directly be matched with the textual question and copied into the textual answer (i.e., via easier modality match). Hence, we propose a combined Visual and Textual Question Answering (VTQA) model which takes as input a paragraph caption as well as the corresponding image, and answers the given question based on both inputs. In our model, the inputs are fused to extract related information by cross-attention (early fusion), then fused again in the form of consensus (late fusion), and finally expected answers are given an extra score to enhance the chance of selection (later fusion). Empirical results show that paragraph captions, even when automatically generated (via an RL-based encoder-decoder model), help correctly answer more visual questions. Overall, our joint model, when trained on the Visual Genome dataset, significantly improves the VQA performance over a strong baseline model.