Evaluation of open-domain dialogue systems is highly challenging and development of better techniques is highlighted time and again as desperately needed. Despite substantial efforts to carry out reliable live evaluation of systems in recent competitions, annotations have been abandoned and reported as too unreliable to yield sensible results. This is a serious problem since automatic metrics are not known to provide a good indication of what may or may not be a high-quality conversation. Answering the distress call of competitions that have emphasized the urgent need for better evaluation techniques in dialogue, we present the successful development of human evaluation that is highly reliable while still remaining feasible and low cost. Self-replication experiments reveal almost perfectly repeatable results with a correlation of r=0.969. Furthermore, due to the lack of appropriate methods of statistical significance testing, the likelihood of potential improvements to systems occurring due to chance is rarely taken into account in dialogue evaluation, and the evaluation we propose facilitates application of standard tests. Since we have developed a highly reliable evaluation method, new insights into system performance can be revealed. We therefore include a comparison of state-of-the-art models (i) with and without personas, to measure the contribution of personas to conversation quality, as well as (ii) prescribed versus freely chosen topics. Interestingly with respect to personas, results indicate that personas do not positively contribute to conversation quality as expected.
Chinese character decomposition has been used as a feature to enhance Machine Translation (MT) models, combining radicals into character and word level models. Recent work has investigated ideograph or stroke level embedding. However, questions remain about different decomposition levels of Chinese character representations, radical and strokes, best suited for MT. To investigate the impact of Chinese decomposition embedding in detail, i.e., radical, stroke, and intermediate levels, and how well these decompositions represent the meaning of the original character sequences, we carry out analysis with both automated and human evaluation of MT. Furthermore, we investigate if the combination of decomposed Multiword Expressions (MWEs) can enhance the model learning. MWE integration into MT has seen more than a decade of exploration. However, decomposed MWEs has not previously been explored.
Live video comments, or ”danmu”, are an emerging feature on Asian online video platforms. Danmu are time-synchronous comments that are overlaid on a video playback. These comments uniquely enrich the experience and engagement of their users. These comments have become a determining factor in the popularity of the videos. Similar to the ”cold start problem” in recommender systems, a video will only start to attract attention when sufficient danmu comments have been posted on it. We study this video cold start problem and examine how new comments can be generated automatically on less-commented videos. We propose to predict the danmu comments by exploiting a multi-modal combination of the video visual content, subtitles, audio signals, and any surrounding comments (when they exist). Our method fuses these multi-modalities in a transformer network which is then trained for different comment density scenarios. We evaluate our proposed system through both a retrieval based evaluation method, as well as human judgement. Results show that our proposed system improves significantly over state-of-the-art methods.
Podcasts are a large and growing repository of spoken audio. As an audio format, podcasts are more varied in style and production type than broadcast news, contain more genres than typically studied in video data, and are more varied in style and format than previous corpora of conversations. When transcribed with automatic speech recognition they represent a noisy but fascinating collection of documents which can be studied through the lens of natural language processing, information retrieval, and linguistics. Paired with the audio files, they are also a resource for speech processing and the study of paralinguistic, sociolinguistic, and acoustic aspects of the domain. We introduce the Spotify Podcast Dataset, a new corpus of 100,000 podcasts. We demonstrate the complexity of the domain with a case study of two tasks: (1) passage search and (2) summarization. This is orders of magnitude larger than previous speech corpora used for search and summarization. Our results show that the size and variability of this corpus opens up new avenues for research.
Multi-word expressions (MWEs) are a hot topic in research in natural language processing (NLP), including topics such as MWE detection, MWE decomposition, and research investigating the exploitation of MWEs in other NLP fields such as Machine Translation. However, the availability of bilingual or multi-lingual MWE corpora is very limited. The only bilingual MWE corpora that we are aware of is from the PARSEME (PARSing and Multi-word Expressions) EU Project. This is a small collection of only 871 pairs of English-German MWEs. In this paper, we present multi-lingual and bilingual MWE corpora that we have extracted from root parallel corpora. Our collections are 3,159,226 and 143,042 bilingual MWE pairs for German-English and Chinese-English respectively after filtering. We examine the quality of these extracted bilingual MWEs in MT experiments. Our initial experiments applying MWEs in MT show improved translation performances on MWE terms in qualitative analysis and better general evaluation scores in quantitative analysis, on both German-English and Chinese-English language pairs. We follow a standard experimental pipeline to create our MultiMWE corpora which are available online. Researchers can use this free corpus for their own models or use them in a knowledge base as model features.
In this work, we present the construction of multilingual parallel corpora with annotation of multiword expressions (MWEs). MWEs include verbal MWEs (vMWEs) defined in the PARSEME shared task that have a verb as the head of the studied terms. The annotated vMWEs are also bilingually and multilingually aligned manually. The languages covered include English, Chinese, Polish, and German. Our original English corpus is taken from the PARSEME shared task in 2018. We performed machine translation of this source corpus followed by human post editing and annotation of target MWEs. Strict quality control was applied for error limitation, i.e., each MT output sentence received first manual post editing and annotation plus second manual quality rechecking. One of our findings during corpora preparation is that accurate translation of MWEs presents challenges to MT systems. To facilitate further MT research, we present a categorisation of the error types encountered by MT systems in performing MWE related translation. To acquire a broader view of MT issues, we selected four popular state-of-the-art MT models for comparisons namely: Microsoft Bing Translator, GoogleMT, Baidu Fanyi and DeepL MT. Because of the noise removal, translation post editing and MWE annotation by human professionals, we believe our AlphaMWE dataset will be an asset for cross-lingual and multilingual research, such as MT and information extraction. Our multilingual corpora are available as open access at github.com/poethan/AlphaMWE.
We describe work from our investigations of the novel area of multi-modal cross-lingual retrieval (MMCLIR) under low-resource conditions. We study the challenges associated with MMCLIR relating to: (i) data conversion between different modalities, for example speech and text, (ii) overcoming the language barrier between source and target languages; (iii) effectively scoring and ranking documents to suit the retrieval task; and (iv) handling low resource constraints that prohibit development of heavily tuned machine translation (MT) and automatic speech recognition (ASR) systems. We focus on the use case of retrieving text and speech documents in Swahili, using English queries which was the main focus of the OpenCLIR shared task. Our work is developed within the scope of this task. In this paper we devote special attention to the automatic translation (AT) component which is crucial for the overall quality of the MMCLIR system. We exploit a combination of dictionaries and phrase-based statistical machine translation (MT) systems to tackle effectively the subtask of query translation. We address each MMCLIR challenge individually, and develop separate components for automatic translation (AT), speech processing (SP) and information retrieval (IR). We find that results with respect to cross-lingual text retrieval are quite good relative to the task of cross-lingual speech retrieval. Overall we find that the task of MMCLIR and specifically cross-lingual speech retrieval is quite complex. Further we pinpoint open issues related to handling cross-lingual audio and text retrieval for low resource languages that need to be addressed in future research.
A standard word embedding algorithm, such as word2vec and glove, makes a strong assumption that words are likely to be semantically related only if they co-occur locally within a window of fixed size. However, this strong assumption may not capture the semantic association between words that co-occur frequently but non-locally within documents. In this paper, we propose a graph-based word embedding method, named ‘word-node2vec’. By relaxing the strong constraint of locality, our method is able to capture both the local and non-local co-occurrences. Word-node2vec constructs a graph where every node represents a word and an edge between two nodes represents a combination of both local (e.g. word2vec) and document-level co-occurrences. Our experiments show that word-node2vec outperforms word2vec and glove on a range of different tasks, such as predicting word-pair similarity, word analogy and concept categorization.
Task extraction is the process of identifying search intents over a set of queries potentially spanning multiple search sessions. Most existing research on task extraction has focused on identifying tasks within a single session, where the notion of a session is defined by a fixed length time window. By contrast, in this work we seek to identify tasks that span across multiple sessions. To identify tasks, we conduct a global analysis of a query log in its entirety without restricting analysis to individual temporal windows. To capture inherent task semantics, we represent queries as vectors in an abstract space. We learn the embedding of query words in this space by leveraging the temporal and lexical contexts of queries. Embedded query vectors are then clustered into tasks. Experiments demonstrate that task extraction effectiveness is improved significantly with our proposed method of query vector embedding in comparison to existing approaches that make use of documents retrieved from a collection to estimate semantic similarities between queries.
Cross Language Information Retrieval (CLIR) systems are a valuable tool to enable speakers of one language to search for content of interest expressed in a different language. A group for whom this is of particular interest is bilingual Arabic speakers who wish to search for English language content using information needs expressed in Arabic queries. A key challenge in CLIR is crossing the language barrier between the query and the documents. The most common approach to bridging this gap is automated query translation, which can be unreliable for vague or short queries. In this work, we examine the potential for improving CLIR effectiveness by predicting the translation effectiveness using Query Performance Prediction (QPP) techniques. We propose a novel QPP method to estimate the quality of translation for an Arabic-English Cross-lingual User-generated Speech Search (CLUGS) task. We present an empirical evaluation that demonstrates the quality of our method on alternative translation outputs extracted from an Arabic-to-English Machine Translation system developed for this task. Finally, we show how this framework can be integrated in CLUGS to find relevant translations for improved retrieval performance.
Motivated by the adage that a “picture is worth a thousand words” it can be reasoned that automatically enriching the textual content of a document with relevant images can increase the readability of a document. Moreover, features extracted from the additional image data inserted into the textual content of a document may, in principle, be also be used by a retrieval engine to better match the topic of a document with that of a given query. In this paper, we describe our approach of building a ground truth dataset to enable further research into automatic addition of relevant images to text documents. The dataset is comprised of the official ImageCLEF 2010 collection (a collection of images with textual metadata) to serve as the images available for automatic enrichment of text, a set of 25 benchmark documents that are to be enriched, which in this case are children’s short stories, and a set of manually judged relevant images for each query story obtained by the standard procedure of depth pooling. We use this benchmark dataset to evaluate the effectiveness of standard information retrieval methods as simple baselines for this task. The results indicate that using the whole story as a weighted query, where the weight of each query term is its tf-idf value, achieves an precision of 0:1714 within the top 5 retrieved images on an average.