Detecting semantic arguments of a predicate word has been conventionally modeled as a sentence-level task. The typical reader, however, perfectly interprets predicate-argument relations in a much wider context than just the sentence where the predicate was evoked. In this work, we reformulate the problem of argument detection through textual entailment to capture semantic relations across sentence boundaries. We propose a method that tests whether some semantic relation can be inferred from a full passage by first encoding it into a simple and standalone proposition and then testing for entailment against the passage. Our method does not require direct supervision, which is generally absent due to dataset scarcity, but instead builds on existing NLI and sentence-level SRL resources. Such a method can potentially explicate pragmatically understood relations into a set of explicit sentences. We demonstrate it on a recent document-level benchmark, outperforming some supervised methods and contemporary language models.
Identifying all predicate-argument relations in a sentence has been a fundamental research target in NLP. While traditionally these relations were modeled via formal schemata, the recent QA-SRL paradigm (and its extensions) present appealing advantages of capturing such relations through intuitive natural language question-answer (QA) pairs. In this paper, we extend the QA-based semantics framework to cover adjectival predicates, which carry important information in many downstream settings yet have been scarcely addressed in NLP research. Firstly, based on some prior literature and empirical assessment, we propose capturing four types of core adjectival arguments, through corresponding question types. Notably, our coverage goes beyond prior annotations of adjectival arguments, while also explicating valuable implicit arguments. Next, we develop an extensive data annotation methodology, involving controlled crowdsourcing and targeted expert review. Following, we create a high-quality dataset, consisting of 9K adjective mentions with 12K predicate-argument instances (QAs). Finally, we present and analyze baseline models based on text-to-text language modeling, indicating challenges for future research, particularly regarding the scarce argument types. Overall, we suggest that our contributions can provide the basis for research on contemporary modeling of adjectival information.
Various works suggest the appeals of incorporating explicit semantic representations when addressing challenging realistic NLP scenarios. Common approaches offer either comprehensive linguistically-based formalisms, like AMR, or alternatively Open-IE, which provides a shallow and partial representation. More recently, an appealing trend introduces semi-structured natural-language structures as an intermediate meaning-capturing representation, often in the form of questions and answers.In this work, we further promote this line of research by considering three prior QA-based semantic representations. These cover verbal, nominalized and discourse-based predications, regarded as jointly providing a comprehensive representation of textual information — termed QASem. To facilitate this perspective, we investigate how to best utilize pre-trained sequence-to-sequence language models, which seem particularly promising for generating representations that consist of natural language expressions (questions and answers). In particular, we examine and analyze input and output linearization strategies, as well as data augmentation and multitask learning for a scarce training data setup. Consequently, we release the first unified QASem parsing tool, easily applicable for downstream tasks that can benefit from an explicit semi-structured account of information units in text.
Domain adaptation methods often exploit domain-transferable input features, a.k.a. pivots. The task of Aspect and Opinion Term Extraction presents a special challenge for domain transfer: while opinion terms largely transfer across domains, aspects change drastically from one domain to another (e.g. from restaurants to laptops). In this paper, we investigate and establish empirically a prior conjecture, which suggests that the linguistic relations connecting opinion terms to their aspects transfer well across domains and therefore can be leveraged for cross-domain aspect term extraction. We present several analyses supporting this conjecture, via experiments with four linguistic dependency formalisms to represent relation patterns. Subsequently, we present an aspect term extraction method that drives models to consider opinion–aspect relations via explicit multitask objectives. This method provides significant performance gains, even on top of a prior state-of-the-art linguistically-informed model, which are shown in analysis to stem from the relational pivoting signal.
Multi-text applications, such as multi-document summarization, are typically required to model redundancies across related texts. Current methods confronting consolidation struggle to fuse overlapping information. In order to explicitly represent content overlap, we propose to align predicate-argument relations across texts, providing a potential scaffold for information consolidation. We go beyond clustering coreferring mentions, and instead model overlap with respect to redundancy at a propositional level, rather than merely detecting shared referents. Our setting exploits QA-SRL, utilizing question-answer pairs to capture predicate-argument relations, facilitating laymen annotation of cross-text alignments. We employ crowd-workers for constructing a dataset of QA-based alignments, and present a baseline QA alignment model trained over our dataset. Analyses show that our new task is semantically challenging, capturing content overlap beyond lexical similarity and complements cross-document coreference with proposition-level links, offering potential use for downstream tasks.
We propose a new semantic scheme for capturing predicate-argument relations for nominalizations, termed QANom. This scheme extends the QA-SRL formalism (He et al., 2015), modeling the relations between nominalizations and their arguments via natural language question-answer pairs. We construct the first QANom dataset using controlled crowdsourcing, analyze its quality and compare it to expertly annotated nominal-SRL annotations, as well as to other QA-driven annotations. In addition, we train a baseline QANom parser for identifying nominalizations and labeling their arguments with question-answer pairs. Finally, we demonstrate the extrinsic utility of our annotations for downstream tasks using both indirect supervision and zero-shot settings.
Question-answer driven Semantic Role Labeling (QA-SRL) was proposed as an attractive open and natural flavour of SRL, potentially attainable from laymen. Recently, a large-scale crowdsourced QA-SRL corpus and a trained parser were released. Trying to replicate the QA-SRL annotation for new texts, we found that the resulting annotations were lacking in quality, particularly in coverage, making them insufficient for further research and evaluation. In this paper, we present an improved crowdsourcing protocol for complex semantic annotation, involving worker selection and training, and a data consolidation phase. Applying this protocol to QA-SRL yielded high-quality annotation with drastically higher coverage, producing a new gold evaluation dataset. We believe that our annotation protocol and gold standard will facilitate future replicable research of natural semantic annotations.
Discourse relations describe how two propositions relate to one another, and identifying them automatically is an integral part of natural language understanding. However, annotating discourse relations typically requires expert annotators. Recently, different semantic aspects of a sentence have been represented and crowd-sourced via question-and-answer (QA) pairs. This paper proposes a novel representation of discourse relations as QA pairs, which in turn allows us to crowd-source wide-coverage data annotated with discourse relations, via an intuitively appealing interface for composing such questions and answers. Based on our proposed representation, we collect a novel and wide-coverage QADiscourse dataset, and present baseline algorithms for predicting QADiscourse relations.