Aston Zhang


2024

pdf bib
You Only Look at Screens: Multimodal Chain-of-Action Agents
Zhuosheng Zhang | Aston Zhang
Findings of the Association for Computational Linguistics: ACL 2024

Autonomous graphical user interface (GUI) agents aim to facilitate task automation by interacting with the user interface without manual intervention. Recent studies have investigated eliciting the capabilities of large language models (LLMs) for effective engagement in diverse environments. To align with the input-output requirement of LLMs, most existing approaches are developed under a sandbox setting where they rely on external tools and application-specific APIs to parse the environment into textual elements and interpret the predicted actions. Consequently, those approaches often grapple with inference inefficiency and error propagation risks. To mitigate the challenges, we introduce Auto-GUI, a multimodal solution that directly interacts with the interface, bypassing the need for environment parsing or reliance on application-dependent APIs. Moreover, we propose a chain-of-action technique—leveraging a series of intermediate previous action histories and future action plans—to help the agent decide what action to execute. We evaluate our approach on a new device-control benchmark AITW with 30K unique instructions, spanning multi-step tasks such as application operation, web searching, and web shopping. Experimental results show that Auto-GUI achieves state-of-the-art performance with an action type prediction accuracy of 90% and an overall action success rate of 74%. Code is publicly available at https://github.com/cooelf/Auto-GUI.

pdf bib
In-Context Learning with Iterative Demonstration Selection
Chengwei Qin | Aston Zhang | Chen Chen | Anirudh Dagar | Wenming Ye
Findings of the Association for Computational Linguistics: EMNLP 2024

Spurred by advancements in scale, large language models (LLMs) have demonstrated strong few-shot learning ability via in-context learning (ICL). However, the performance of ICL has been shown to be highly sensitive to the selection of few-shot demonstrations. Selecting the most suitable examples as context remains an ongoing challenge and an open problem. Existing literature has highlighted the importance of selecting examples that are diverse or semantically similar to the test sample while ignoring the fact that the optimal selection dimension, i.e., diversity or similarity, is task-specific. Based on how the test sample is answered, we propose Iterative Demonstration Selection (IDS) to leverage the merits of both dimensions. Using zero-shot chain-of-thought reasoning (Zero-shot-CoT), IDS iteratively selects examples that are diverse but still strongly correlated with the test sample as ICL demonstrations. Specifically, IDS applies Zero-shot-CoT to the test sample before demonstration selection. The output reasoning path is then used to choose demonstrations that are prepended to the test sample for inference. The generated answer is followed by its corresponding reasoning path for extracting a new set of demonstrations in the next iteration. After several iterations, IDS adopts majority voting to obtain the final result. Through extensive experiments on tasks including reasoning, question answering, and topic classification, we demonstrate that IDS can consistently outperform existing ICL demonstration selection methods.

2023

pdf bib
Automated Few-Shot Classification with Instruction-Finetuned Language Models
Rami Aly | Xingjian Shi | Kaixiang Lin | Aston Zhang | Andrew Wilson
Findings of the Association for Computational Linguistics: EMNLP 2023

A particularly successful class of approaches for few-shot learning combines language models with prompts - hand-crafted task descriptions that complement data samples. However, designing prompts by hand for each task commonly requires domain knowledge and substantial guesswork. We observe, in the context of classification tasks, that instruction finetuned language models are remarkably robust towards some dimensions of a prompt’s design. We subsequently propose a simple method to eliminate the need for handcrafted prompts, named AuT-Few. This approach consists of (i) a prompt retrieval module that selects suitable task instructions from the instruction-tuning knowledge base, and (ii) the generation of two distinct, semantically meaningful, class descriptions and a selection mechanism via cross-validation. Over 12 datasets, spanning 8 classification tasks, we show that AuT-Few outperforms current state-of-the-art few-shot learning methods. Moreover, AuT-Few is the best ranking method across datasets on the RAFT few-shot benchmark. Notably, these results are achieved without task-specific handcrafted prompts on unseen tasks.

pdf bib
Is ChatGPT a General-Purpose Natural Language Processing Task Solver?
Chengwei Qin | Aston Zhang | Zhuosheng Zhang | Jiaao Chen | Michihiro Yasunaga | Diyi Yang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Spurred by advancements in scale, large language models (LLMs) have demonstrated the ability to perform a variety of natural language processing (NLP) tasks zero-shot—i.e., without adaptation on downstream data. Recently, the debut of ChatGPT has drawn a great deal of attention from the natural language processing (NLP) community due to the fact that it can generate high-quality responses to human input and self-correct previous mistakes based on subsequent conversations. However, it is not yet known whether ChatGPT can serve as a generalist model that can perform many NLP tasks zero-shot. In this work, we empirically analyze the zero-shot learning ability of ChatGPT by evaluating it on 20 popular NLP datasets covering 7 representative task categories. With extensive empirical studies, we demonstrate both the effectiveness and limitations of the current version of ChatGPT. We find that ChatGPT performs well on many tasks favoring reasoning capabilities (e.g., arithmetic reasoning) while it still faces challenges when solving specific tasks such as sequence tagging. We additionally provide in-depth analysis through qualitative case studies.

pdf bib
A Cheaper and Better Diffusion Language Model with Soft-Masked Noise
Jiaao Chen | Aston Zhang | Mu Li | Alex Smola | Diyi Yang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Diffusion models that are based on iterative denoising have been recently proposed and leveraged in various generation tasks like image generation. Whereas, as a way inherently built for continuous data, existing diffusion models still have some limitations in modeling discrete data, e.g., languages. For example, the generally used Gaussian noise can not handle the discrete corruption well, and the objectives in continuous spaces fail to be stable for textual data in the diffusion process especially when the dimension is high. To alleviate these issues, we introduce a novel diffusion model for language modeling, Masked-Diffuse LM, with lower training cost and better performances, inspired by linguistic features in languages. Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data. Also, we directly predict the categorical distribution with cross-entropy loss function in every diffusion step to connect the continuous space and discrete space in a more efficient and straightforward way. Through experiments on 5 controlled generation tasks, we demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.

2021

pdf bib
On Orthogonality Constraints for Transformers
Aston Zhang | Alvin Chan | Yi Tay | Jie Fu | Shuohang Wang | Shuai Zhang | Huajie Shao | Shuochao Yao | Roy Ka-Wei Lee
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Orthogonality constraints encourage matrices to be orthogonal for numerical stability. These plug-and-play constraints, which can be conveniently incorporated into model training, have been studied for popular architectures in natural language processing, such as convolutional neural networks and recurrent neural networks. However, a dedicated study on such constraints for transformers has been absent. To fill this gap, this paper studies orthogonality constraints for transformers, showing the effectiveness with empirical evidence from ten machine translation tasks and two dialogue generation tasks. For example, on the large-scale WMT’16 En→De benchmark, simply plugging-and-playing orthogonality constraints on the original transformer model (Vaswani et al., 2017) increases the BLEU from 28.4 to 29.6, coming close to the 29.7 BLEU achieved by the very competitive dynamic convolution (Wu et al., 2019).

2020

pdf bib
Poison Attacks against Text Datasets with Conditional Adversarially Regularized Autoencoder
Alvin Chan | Yi Tay | Yew-Soon Ong | Aston Zhang
Findings of the Association for Computational Linguistics: EMNLP 2020

This paper demonstrates a fatal vulnerability in natural language inference (NLI) and text classification systems. More concretely, we present a ‘backdoor poisoning’ attack on NLP models. Our poisoning attack utilizes conditional adversarially regularized autoencoder (CARA) to generate poisoned training samples by poison injection in latent space. Just by adding 1% poisoned data, our experiments show that a victim BERT finetuned classifier’s predictions can be steered to the poison target class with success rates of >80% when the input hypothesis is injected with the poison signature, demonstrating that NLI and text classification systems face a huge security risk.

2019

pdf bib
Lightweight and Efficient Neural Natural Language Processing with Quaternion Networks
Yi Tay | Aston Zhang | Anh Tuan Luu | Jinfeng Rao | Shuai Zhang | Shuohang Wang | Jie Fu | Siu Cheung Hui
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Many state-of-the-art neural models for NLP are heavily parameterized and thus memory inefficient. This paper proposes a series of lightweight and memory efficient neural architectures for a potpourri of natural language processing (NLP) tasks. To this end, our models exploit computation using Quaternion algebra and hypercomplex spaces, enabling not only expressive inter-component interactions but also significantly (75%) reduced parameter size due to lesser degrees of freedom in the Hamilton product. We propose Quaternion variants of models, giving rise to new architectures such as the Quaternion attention Model and Quaternion Transformer. Extensive experiments on a battery of NLP tasks demonstrates the utility of proposed Quaternion-inspired models, enabling up to 75% reduction in parameter size without significant loss in performance.

pdf bib
Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives
Yi Tay | Shuohang Wang | Anh Tuan Luu | Jie Fu | Minh C. Phan | Xingdi Yuan | Jinfeng Rao | Siu Cheung Hui | Aston Zhang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper tackles the problem of reading comprehension over long narratives where documents easily span over thousands of tokens. We propose a curriculum learning (CL) based Pointer-Generator framework for reading/sampling over large documents, enabling diverse training of the neural model based on the notion of alternating contextual difficulty. This can be interpreted as a form of domain randomization and/or generative pretraining during training. To this end, the usage of the Pointer-Generator softens the requirement of having the answer within the context, enabling us to construct diverse training samples for learning. Additionally, we propose a new Introspective Alignment Layer (IAL), which reasons over decomposed alignments using block-based self-attention. We evaluate our proposed method on the NarrativeQA reading comprehension benchmark, achieving state-of-the-art performance, improving existing baselines by 51% relative improvement on BLEU-4 and 17% relative improvement on Rouge-L. Extensive ablations confirm the effectiveness of our proposed IAL and CL components.

bib
Dive into Deep Learning for Natural Language Processing
Haibin Lin | Xingjian Shi | Leonard Lausen | Aston Zhang | He He | Sheng Zha | Alexander Smola
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): Tutorial Abstracts

Deep learning has become the dominant approach to NLP problems, especially when applied on large scale corpora. Recent progress on unsupervised pre-training techniques such as BERT, ELMo, GPT-2, and language modeling in general, when applied on large corpora, is shown to be effective in improving a wide variety of downstream tasks. These techniques push the limits of available hardware, requiring specialized frameworks optimized for GPU, ASIC, and distributed cloud-based training.A few complexities pose challenges to scale these models and algorithms effectively. Compared to other areas where deep learning is applied, these NLP models contain a variety of moving parts: text normalization and tokenization, word representation at subword-level and word-level, variable-length models such as RNN and attention, and sequential decoder based on beam search, among others.In this hands-on tutorial, we take a closer look at the challenges from these complexities and see how with proper tooling with Apache MXNet and GluonNLP, we can overcome these challenges and achieve state-of-the-art results for real-world problems. GluonNLP is a powerful new toolkit that combines MXNet’s speed, the flexibility of Gluon, and an extensive new library automating the most laborious aspects of deep learning for NLP.

2018

pdf bib
Entropy-Based Subword Mining with an Application to Word Embeddings
Ahmed El-Kishky | Frank Xu | Aston Zhang | Stephen Macke | Jiawei Han
Proceedings of the Second Workshop on Subword/Character LEvel Models

Recent literature has shown a wide variety of benefits to mapping traditional one-hot representations of words and phrases to lower-dimensional real-valued vectors known as word embeddings. Traditionally, most word embedding algorithms treat each word as the finest meaningful semantic granularity and perform embedding by learning distinct embedding vectors for each word. Contrary to this line of thought, technical domains such as scientific and medical literature compose words from subword structures such as prefixes, suffixes, and root-words as well as compound words. Treating individual words as the finest-granularity unit discards meaningful shared semantic structure between words sharing substructures. This not only leads to poor embeddings for text corpora that have long-tail distributions, but also heuristic methods for handling out-of-vocabulary words. In this paper we propose SubwordMine, an entropy-based subword mining algorithm that is fast, unsupervised, and fully data-driven. We show that this allows for great cross-domain performance in identifying semantically meaningful subwords. We then investigate utilizing the mined subwords within the FastText embedding model and compare performance of the learned representations in a downstream language modeling task.