@inproceedings{han-etal-2024-definition,
title = "Definition Generation for Automatically Induced Semantic Frame",
author = "Han, Yi and
Sasano, Ryohei and
Takeda, Koichi",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.661/",
doi = "10.18653/v1/2024.findings-acl.661",
pages = "11112--11118",
abstract = "In a semantic frame resource such as FrameNet, the definition sentence of a frame is essential for humans to understand the meaning of the frame intuitively. Recently, several attempts have been made to induce semantic frames from large corpora, but the cost of creating the definition sentences for such frames is significant. In this paper, we address a new task of generating frame definitions from a set of frame-evoking words. Specifically, given a cluster of frame-evoking words and associated exemplars induced as the same semantic frame, we utilize a large language model to generate frame definitions. We demonstrate that incorporating frame element reasoning as chain-of-thought can enhance the inclusion of correct frame elements in the generated definitions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="han-etal-2024-definition">
<titleInfo>
<title>Definition Generation for Automatically Induced Semantic Frame</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryohei</namePart>
<namePart type="family">Sasano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichi</namePart>
<namePart type="family">Takeda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In a semantic frame resource such as FrameNet, the definition sentence of a frame is essential for humans to understand the meaning of the frame intuitively. Recently, several attempts have been made to induce semantic frames from large corpora, but the cost of creating the definition sentences for such frames is significant. In this paper, we address a new task of generating frame definitions from a set of frame-evoking words. Specifically, given a cluster of frame-evoking words and associated exemplars induced as the same semantic frame, we utilize a large language model to generate frame definitions. We demonstrate that incorporating frame element reasoning as chain-of-thought can enhance the inclusion of correct frame elements in the generated definitions.</abstract>
<identifier type="citekey">han-etal-2024-definition</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.661</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.661/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>11112</start>
<end>11118</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Definition Generation for Automatically Induced Semantic Frame
%A Han, Yi
%A Sasano, Ryohei
%A Takeda, Koichi
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F han-etal-2024-definition
%X In a semantic frame resource such as FrameNet, the definition sentence of a frame is essential for humans to understand the meaning of the frame intuitively. Recently, several attempts have been made to induce semantic frames from large corpora, but the cost of creating the definition sentences for such frames is significant. In this paper, we address a new task of generating frame definitions from a set of frame-evoking words. Specifically, given a cluster of frame-evoking words and associated exemplars induced as the same semantic frame, we utilize a large language model to generate frame definitions. We demonstrate that incorporating frame element reasoning as chain-of-thought can enhance the inclusion of correct frame elements in the generated definitions.
%R 10.18653/v1/2024.findings-acl.661
%U https://aclanthology.org/2024.findings-acl.661/
%U https://doi.org/10.18653/v1/2024.findings-acl.661
%P 11112-11118
Markdown (Informal)
[Definition Generation for Automatically Induced Semantic Frame](https://aclanthology.org/2024.findings-acl.661/) (Han et al., Findings 2024)
ACL