@inproceedings{chen-etal-2023-toward,
title = "Toward Expanding the Scope of Radiology Report Summarization to Multiple Anatomies and Modalities",
author = "Chen, Zhihong and
Varma, Maya and
Wan, Xiang and
Langlotz, Curtis and
Delbrouck, Jean-Benoit",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-short.41/",
doi = "10.18653/v1/2023.acl-short.41",
pages = "469--484",
abstract = "Radiology report summarization (RRS) is a growing area of research. Given the Findings section of a radiology report, the goal is to generate a summary (called an Impression section) that highlights the key observations and conclusions of the radiology study. However, RRS currently faces essential limitations. First, many prior studies conduct experiments on private datasets, preventing reproduction of results and fair comparisons across different systems and solutions. Second, most prior approaches are evaluated solely on chest X-rays. To address these limitations, we propose a dataset (MIMIC-RRS) involving three new modalities and seven new anatomies based on the MIMIC-III and MIMIC-CXR datasets. We then conduct extensive experiments to evaluate the performance of models both within and across modality-anatomy pairs in MIMIC-RRS. In addition, we evaluate their clinical efficacy via RadGraph, a factual correctness metric."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2023-toward">
<titleInfo>
<title>Toward Expanding the Scope of Radiology Report Summarization to Multiple Anatomies and Modalities</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhihong</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maya</namePart>
<namePart type="family">Varma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Curtis</namePart>
<namePart type="family">Langlotz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean-Benoit</namePart>
<namePart type="family">Delbrouck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Radiology report summarization (RRS) is a growing area of research. Given the Findings section of a radiology report, the goal is to generate a summary (called an Impression section) that highlights the key observations and conclusions of the radiology study. However, RRS currently faces essential limitations. First, many prior studies conduct experiments on private datasets, preventing reproduction of results and fair comparisons across different systems and solutions. Second, most prior approaches are evaluated solely on chest X-rays. To address these limitations, we propose a dataset (MIMIC-RRS) involving three new modalities and seven new anatomies based on the MIMIC-III and MIMIC-CXR datasets. We then conduct extensive experiments to evaluate the performance of models both within and across modality-anatomy pairs in MIMIC-RRS. In addition, we evaluate their clinical efficacy via RadGraph, a factual correctness metric.</abstract>
<identifier type="citekey">chen-etal-2023-toward</identifier>
<identifier type="doi">10.18653/v1/2023.acl-short.41</identifier>
<location>
<url>https://aclanthology.org/2023.acl-short.41/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>469</start>
<end>484</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Toward Expanding the Scope of Radiology Report Summarization to Multiple Anatomies and Modalities
%A Chen, Zhihong
%A Varma, Maya
%A Wan, Xiang
%A Langlotz, Curtis
%A Delbrouck, Jean-Benoit
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F chen-etal-2023-toward
%X Radiology report summarization (RRS) is a growing area of research. Given the Findings section of a radiology report, the goal is to generate a summary (called an Impression section) that highlights the key observations and conclusions of the radiology study. However, RRS currently faces essential limitations. First, many prior studies conduct experiments on private datasets, preventing reproduction of results and fair comparisons across different systems and solutions. Second, most prior approaches are evaluated solely on chest X-rays. To address these limitations, we propose a dataset (MIMIC-RRS) involving three new modalities and seven new anatomies based on the MIMIC-III and MIMIC-CXR datasets. We then conduct extensive experiments to evaluate the performance of models both within and across modality-anatomy pairs in MIMIC-RRS. In addition, we evaluate their clinical efficacy via RadGraph, a factual correctness metric.
%R 10.18653/v1/2023.acl-short.41
%U https://aclanthology.org/2023.acl-short.41/
%U https://doi.org/10.18653/v1/2023.acl-short.41
%P 469-484
Markdown (Informal)
[Toward Expanding the Scope of Radiology Report Summarization to Multiple Anatomies and Modalities](https://aclanthology.org/2023.acl-short.41/) (Chen et al., ACL 2023)
ACL