@inproceedings{mueller-etal-2022-text,
title = "Do Text-to-Text Multi-Task Learners Suffer from Task Conflict?",
author = "Mueller, David and
Andrews, Nicholas and
Dredze, Mark",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-emnlp.206/",
doi = "10.18653/v1/2022.findings-emnlp.206",
pages = "2843--2858",
abstract = "Traditional multi-task learning architectures learn a single model across multiple tasks through a shared encoder followed by task-specific decoders. Learning these models often requires specialized training algorithms that address task-conflict in the shared parameter updates, which otherwise can lead to negative transfer. A new type of multi-task learning within NLP homogenizes multi-task architectures as a shared encoder and language model decoder, which does surprisingly well across a range of diverse tasks. Does this new architecture suffer from task-conflicts that require specialized training algorithms? We study how certain factors in the shift towards text-to-text models affects multi-task conflict and negative transfer, finding that both directional conflict and transfer are surprisingly constant across architectures."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mueller-etal-2022-text">
<titleInfo>
<title>Do Text-to-Text Multi-Task Learners Suffer from Task Conflict?</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Mueller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicholas</namePart>
<namePart type="family">Andrews</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Dredze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Traditional multi-task learning architectures learn a single model across multiple tasks through a shared encoder followed by task-specific decoders. Learning these models often requires specialized training algorithms that address task-conflict in the shared parameter updates, which otherwise can lead to negative transfer. A new type of multi-task learning within NLP homogenizes multi-task architectures as a shared encoder and language model decoder, which does surprisingly well across a range of diverse tasks. Does this new architecture suffer from task-conflicts that require specialized training algorithms? We study how certain factors in the shift towards text-to-text models affects multi-task conflict and negative transfer, finding that both directional conflict and transfer are surprisingly constant across architectures.</abstract>
<identifier type="citekey">mueller-etal-2022-text</identifier>
<identifier type="doi">10.18653/v1/2022.findings-emnlp.206</identifier>
<location>
<url>https://aclanthology.org/2022.findings-emnlp.206/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>2843</start>
<end>2858</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Do Text-to-Text Multi-Task Learners Suffer from Task Conflict?
%A Mueller, David
%A Andrews, Nicholas
%A Dredze, Mark
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Findings of the Association for Computational Linguistics: EMNLP 2022
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F mueller-etal-2022-text
%X Traditional multi-task learning architectures learn a single model across multiple tasks through a shared encoder followed by task-specific decoders. Learning these models often requires specialized training algorithms that address task-conflict in the shared parameter updates, which otherwise can lead to negative transfer. A new type of multi-task learning within NLP homogenizes multi-task architectures as a shared encoder and language model decoder, which does surprisingly well across a range of diverse tasks. Does this new architecture suffer from task-conflicts that require specialized training algorithms? We study how certain factors in the shift towards text-to-text models affects multi-task conflict and negative transfer, finding that both directional conflict and transfer are surprisingly constant across architectures.
%R 10.18653/v1/2022.findings-emnlp.206
%U https://aclanthology.org/2022.findings-emnlp.206/
%U https://doi.org/10.18653/v1/2022.findings-emnlp.206
%P 2843-2858
Markdown (Informal)
[Do Text-to-Text Multi-Task Learners Suffer from Task Conflict?](https://aclanthology.org/2022.findings-emnlp.206/) (Mueller et al., Findings 2022)
ACL