@inproceedings{xu-etal-2020-cognitively,
title = "A Cognitively Motivated Approach to Spatial Information Extraction",
author = "Xu, Chao and
Dietz Saldanha, Emmanuelle-Anna and
Gromann, Dagmar and
Zhou, Beihai",
editor = "Kordjamshidi, Parisa and
Bhatia, Archna and
Alikhani, Malihe and
Baldridge, Jason and
Bansal, Mohit and
Moens, Marie-Francine",
booktitle = "Proceedings of the Third International Workshop on Spatial Language Understanding",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.splu-1.3",
doi = "10.18653/v1/2020.splu-1.3",
pages = "18--28",
abstract = "Automatic extraction of spatial information from natural language can boost human-centered applications that rely on spatial dynamics. The field of cognitive linguistics has provided theories and cognitive models to address this task. Yet, existing solutions tend to focus on specific word classes, subject areas, or machine learning techniques that cannot provide cognitively plausible explanations for their decisions. We propose an automated spatial semantic analysis (ASSA) framework building on grammar and cognitive linguistic theories to identify spatial entities and relations, bringing together methods of spatial information extraction and cognitive frameworks on spatial language. The proposed rule-based and explainable approach contributes constructions and preposition schemas and outperforms previous solutions on the CLEF-2017 standard dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2020-cognitively">
<titleInfo>
<title>A Cognitively Motivated Approach to Spatial Information Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chao</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emmanuelle-Anna</namePart>
<namePart type="family">Dietz Saldanha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dagmar</namePart>
<namePart type="family">Gromann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beihai</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third International Workshop on Spatial Language Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Parisa</namePart>
<namePart type="family">Kordjamshidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Archna</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malihe</namePart>
<namePart type="family">Alikhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Baldridge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic extraction of spatial information from natural language can boost human-centered applications that rely on spatial dynamics. The field of cognitive linguistics has provided theories and cognitive models to address this task. Yet, existing solutions tend to focus on specific word classes, subject areas, or machine learning techniques that cannot provide cognitively plausible explanations for their decisions. We propose an automated spatial semantic analysis (ASSA) framework building on grammar and cognitive linguistic theories to identify spatial entities and relations, bringing together methods of spatial information extraction and cognitive frameworks on spatial language. The proposed rule-based and explainable approach contributes constructions and preposition schemas and outperforms previous solutions on the CLEF-2017 standard dataset.</abstract>
<identifier type="citekey">xu-etal-2020-cognitively</identifier>
<identifier type="doi">10.18653/v1/2020.splu-1.3</identifier>
<location>
<url>https://aclanthology.org/2020.splu-1.3</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>18</start>
<end>28</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Cognitively Motivated Approach to Spatial Information Extraction
%A Xu, Chao
%A Dietz Saldanha, Emmanuelle-Anna
%A Gromann, Dagmar
%A Zhou, Beihai
%Y Kordjamshidi, Parisa
%Y Bhatia, Archna
%Y Alikhani, Malihe
%Y Baldridge, Jason
%Y Bansal, Mohit
%Y Moens, Marie-Francine
%S Proceedings of the Third International Workshop on Spatial Language Understanding
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F xu-etal-2020-cognitively
%X Automatic extraction of spatial information from natural language can boost human-centered applications that rely on spatial dynamics. The field of cognitive linguistics has provided theories and cognitive models to address this task. Yet, existing solutions tend to focus on specific word classes, subject areas, or machine learning techniques that cannot provide cognitively plausible explanations for their decisions. We propose an automated spatial semantic analysis (ASSA) framework building on grammar and cognitive linguistic theories to identify spatial entities and relations, bringing together methods of spatial information extraction and cognitive frameworks on spatial language. The proposed rule-based and explainable approach contributes constructions and preposition schemas and outperforms previous solutions on the CLEF-2017 standard dataset.
%R 10.18653/v1/2020.splu-1.3
%U https://aclanthology.org/2020.splu-1.3
%U https://doi.org/10.18653/v1/2020.splu-1.3
%P 18-28
Markdown (Informal)
[A Cognitively Motivated Approach to Spatial Information Extraction](https://aclanthology.org/2020.splu-1.3) (Xu et al., SpLU 2020)
ACL