Crunchy Postgres for Kubernetes from Crunchy
Data

Crunchy Postgres for Kubernetes is the leading Kubernetes native Postgres solution. Built on PGO, the Postgres Operator

from Crunchy Data, Crunchy Postgres for Kubernetes gives you a declarative Postgres solution that automatically manages
your PostgreSQL clusters providing:

» Fast, easy deployment

High availability

< Backup management and disaster recovery
« Connection management and scaling

» Performance and health monitoring

¢ Much more

Topics to get started

Get started Architecture Supported platforms
Create and connect to your cluster Understand the key components of Guidance on supported Kubernetes,
Crunchy Postgres for Kubernetes OpenShift, and Postgres versions.

Quickstart

Can'twait to try out Crunchy Postgres for Kubernetes? Let us show you the quickest possible path to getting up and running.

Prerequisites

Please be sure you have the following utilities installed on your host machine:

e kubect |

e qgit
Installation

Step 1: Download the Examples

https://www.crunchydata.com/products/crunchy-postgresql-for-kubernetes
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator

First, go to GitHub and fork the Postgres Operator examples repository:

https://github.com/CrunchyData/postgres-operator-examples/fork

Once you have forked this repo, you can download it to your working environment with a command similar to this:

YOUR_G THUB_UN="<your G t Hub user name>"
git clone--depthl"git@ithub.com ${ YOUR G THUB_UN}/ post gr es- oper at or - exanpl es. gi t "
cd post gr es- oper at or - exanpl es

Step 2: Install PGO, the Postgres Operator

You can install PGO, the Postgres Operator from Crunchy Data, using the command below:

kubect | apply -k kust om ze/ i nstal | / nanespace
kubect | apply --server-side-kkustom ze/install/default

This will create a namespace called post gr es- oper at or and create all of the objects required to deploy PGO.

To check on the status of your installation, you can run the following command:

kubect | - n post gres-oper at or get pods \
--sel ect or =post gr es- oper at or . crunchydat a. com contr ol - pl ane=post gr es- oper at or \
--fiel d-sel ect or =st at us. phase=Runni ng

If the PGO Pod is healthy, you should see output similar to:

NANMVE READY STATUS RESTARTS ACE
post gr es- oper at or - 9dd545d64-t4h8d 1/1 Running O 3s

Create a Postgres Cluster

Let's create a simple Postgres cluster. You can do this by executing the following command:

kubect | apply - k kust oni ze/ post gres

This will create a Postgres cluster named hi ppo in the post gr es- oper at or namespace. You can track the progress of
your cluster using the following command:

kubect | - n post gres-operat or descri be post grescl ust ers. post gres- oper at or. crunchyda-
t a. comhi ppo

Connect to the Postgres cluster

As part of creating a Postgres cluster, the Postgres Operator creates a PostgreSQL user account. The credentials for this
account are stored in a Secret that has the name <cl ust er Nane>- pguser - <user Nane>.

Within this Secret are attributes that provide information to let you log into the PostgreSQL cluster. These include:

e user : The name of the user account.

e passwor d: The password for the user account.

https://github.com/CrunchyData/postgres-operator-examples/fork
https://github.com/CrunchyData/postgres-operator-examples/fork

L]

dbnane: The name of the database that the user has access to by default.

« host : The name of the host of the database. This references the Service of the primary Postgres instance.

e port:The port that the database is listening on.

e uri: A PostgreSQL connection URI that provides all the information for logging into the Postgres database.

e jdbc-uri:APostgreSQL JDBC connection URI that provides all the information for logging into the Postgres database
via the JDBC driver.

If you deploy your Postgres cluster with the PgBouncer connection pooler, there are additional values that are populated
in the user Secret, including:

e pgbouncer - host : The name of the host of the PgBouncer connection pooler. This references the Service of the

PgBouncer connection pooler.
* pgbouncer - port : The port that the PgBouncer connection pooler is listening on.

* pgbouncer - uri : A PostgreSQL connection URI that provides all the information for logging into the Postgres database

via the PgBouncer connection pooler.

* pgbouncer-j dbc-uri : A PostgreSQL JDBC connection URI that provides all the information for logging into the

Postgres database via the PgBouncer connection pooler using the JDBC driver.

Note that all connections use TLS. PGO sets up a public key infrastructure (PKI) for your Postgres clusters. You can also
choose to bring your own PKI / certificate authority; this is covered later in the documentation.

Connect via psql in the Terminal

Connect Directly
If you are on the same network as your PostgreSQL cluster, you can connect directly to it using the following command:

psqgl $(kubectl -n post gres-operator get secrets hi ppo-pguser - hi ppo-o0go-tem
pl ate='{{.data.uri | base64decode}}"')

Connect Using a Port-Forward

In a new terminal, create a port forward:

PG_CLUSTER PRI MARY_POD=$(kubect | get pod - n post gr es- oper at or - o nane \

-1 post gres-operator. crunchydat a. coni cl ust er =hi ppo, post gr es- oper at or. cr unchyda-
ta. com rol e=mast er)
kubect| - npost gres-operator port-forward"${PG CLUSTER PRI MARY_PCD} " 5432: 5432

Establish a connection to the PostgreSQL cluster.

PG _CLUSTER_USER_SECRET_NAME=hi ppo- pguser - hi ppo

PGPASSWORD=$(kubect | get secrets -n post gres-oper at or "${ PG CLUSTER USER_ SE-

CRET_NAME}" -0 go-tenpl ate=' {{. dat a. password | base64decode}}') \

PGUSER=$(kubect | get secrets -n postgres-operator "${ PG CLUSTER USER_SECRET NAME}" -0 go-tem
pl ate=' {{. dat a. user | base64decode}}"') \

PGDATABASE=$(kubect | get secrets -n post gres-oper at or " ${ PG_CLUSTER USER_SE-

https://kubernetes.io/docs/concepts/services-networking/service/
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://jdbc.postgresql.org/documentation/use/
https://www.pgbouncer.org/
https://kubernetes.io/docs/concepts/services-networking/service/
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://jdbc.postgresql.org/documentation/use/

CRET_NAME}" - 0 go-tenpl at e=' {{. dat a. dbnanme | base64decode}}"') \
psql -hl ocal host

Connect an Application

The information provided in the user Secret will allow you to connect an application directly to your PostgreSQL database.

For example, let's connect Keycloak. Keycloak is a popular open source identity management tool that is backed by a
PostgreSQL database. Using the hi ppo cluster we created, we can deploy the following manifest file:

cat <<EOF >>keycl oak. yam
api Ver si on: apps/ vl
ki nd: Depl oynent
net adat a:
nane: keycl oak
namespace: post gres-oper at or
| abel s:
app. kuber net es. i o/ nanme: keycl oak
spec:
sel ector:
mat chLabel s:
app. kubernet es. i o/ nane: keycl oak
tenpl at e:
met adat a:
| abel s:
app. kuber net es. i o/ nane: keycl oak
spec:
cont ai ners:
- i mage: quay.i o/ keycl oak/ keycl oak: | at est
nane: keycl oak
env:
- nane: DB_VENDOR
val ue: "post gres"
- nanme: DB_ADDR
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: host } }
- nanme: DB_PORT
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: port } }
- nane: DB _DATABASE
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: dbnane} }
- name: DB_USER
val ueFrom { secret KeyRef: { nanme: hi ppo- pguser - hi ppo, key: user } }
- nanme: DB_PASSWORD
val ueFrom { secr et KeyRef: { nane: hi ppo- pguser - hi ppo, key: password} }
- nane: KEYCLOAK USER
val ue: "adm n"
- nane: KEYCLOAK PASSWORD
val ue: "adm n"
- nanme: PROXY_ADDRESS FORWARDI NG
val ue: "true"
ports:
- name: http
cont ai ner Port: 8080
- name: https
cont ai ner Port: 8443
r eadi nessPr obe:
htt pGet :
pat h: /aut h/real ns/ mast er
port: 8080
restartPolicy: Al ways

ECF

https://www.keycloak.org/

kubect | apply -f keycl oak. yanl

There is a full example for how to deploy Keycloak with the Postgres Operator in the kust om ze/ keycl oak folder.

Next Steps

Congratulations, you've got your Postgres cluster up and running, perhaps with an application connected to it!

You can find out more about the post gr escl ust er s custom resource definition through the documentation and through
kubect| expl ai ni.e.:

kubect | expl ai n post grescl usters

You've seen how easy it is to get a Postgres database up and running and connected to your applications using Crunchy
Postgres for Kubernetes. In the next section we will take a closer look at CPK and how its different components work
together to provide everything you need for a production-ready Postgres cluster.

Overview

Crunchy Postgres for Kubernetes is the leading Kubernetes native Postgres solution. Built on PGO, the Postgres Operator

from Crunchy Data, Crunchy Postgres for Kubernetes gives you a declarative Postgres solution that automatically manages
your PostgreSQL clusters.

Designed for your GitOps workflows, it is easy to get started with Postgres on Kubernetes. Within a few moments, you can
have a production grade Postgres cluster complete with high availability, disaster recovery, and monitoring, all over secure
TLS communications. Even better, Crunchy Postgres for Kubernetes lets you easily customize your Postgres cluster to
tailor it to your workload!

With conveniences like cloning Postgres clusters to using rolling updates to safely roll out disruptive changes with minimal
downtime, Crunchy Postgres for Kubernetes is ready to support your Postgres data at every stage of your release pipeline.
Built for resiliency and uptime, Crunchy Postgres for Kubernetes will keep your desired Postgres in a desired state so you
do not need to worry about it.

Crunchy Postgres for Kubernetes is developed with many years of production experience in automating Postgres man-
agement on Kubernetes, providing a seamless cloud native Postgres solution to keep your data always available.

Key Components

Crunchy Postgres for Kubernetes is designed to provide production ready Kubernetes-native Postgres clusters using a few
key components:

* PGO, the Postgres Operator from Crunchy Data, is the brains behind Crunchy Postgres for Kubernetes enabling users to
interact with their Postgres clusters through PGO. To accomplish this, PGO extends Kubernetes to provide a higher-level

abstraction for rapid creation and management of PostgreSQL clusters by leveraging "Custom Resources" to create

several custom resource definitions (CRDs) that allow for the management of PostgreSQL clusters. PGO itself runs as
a Deployment and is composed of a single container.

https://www.crunchydata.com/products/crunchy-postgresql-for-kubernetes
https://github.com/CrunchyData/postgres-operator
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

» Crunchy Postgres, Crunchy Data's open source distribution of Postgres, along with leading Postgres tools and extensions
such as pgbackrest, Patroni, pgaudit, PostGIS, and more. Each of the components within Crunchy Postgres are built with
upstream source code and compiled, tested and certified by Crunchy Data. These components are provided as a series
of containers via the Crunchy Data access and developer portals.

< The Crunchy Postgres for Kubernetes monitoring stack, a fully integrated solution for monitoring and visualizing key
metrics pertaining to your Postgres databases, as well the containers they run within. Built on industry standards for
monitoring and metrics collection, the Crunchy Postgres for Kubernetes monitoring stack ensures you have the real-time
insights needed to keep all of your Postgres databases running smoothly and efficiently.

« Installers for Kustomize, Helm and OLM, providing flexibility to seamlessly and easily install and deploy Postgres clusters
regardless of your specific Kubernetes distribution, or your preferred tooling for deploying to Kubernetes.

For more detailed architecture information or a full list of components include in Crunchy Postgres for Kubernetes, see:
 Architecture

¢ Supported Platforms

* Release Notes

Architecture

Several pieces must come together to create a production-ready Postgres cluster and Crunchy Postgres for Kubernetes
provides everything that you need. From high-availability to disaster recovery and monitoring, we’ll cover how a Crunchy
Postgres for Kubernetes deployment fits the pieces together.

Operator

PGO, the Postgres Operator from Crunchy Data, runs as a Kubernetes Deployment and is composed of a single container.

This PGO container holds a collection of Kubernetes controllers that manage native Kubernetes resources (Jobs, Pods)
as well as Custom Resources (PostgresCluster). As a user, you provide Kubernetes with the specification of what you want

your Postgres cluster to look like and PGO uses a Custom Resource Definition(CRD) to teach Kubernetes how to handle

those specifications. PGO's controllers do the work of making your specifications a reality. The main custom resource
definition is post gr escl ust er s. post gr es- oper at or . cr unchydat a. com This CRD allows you to control all the
information about a Postgres cluster, including:

* Resource allocation

« High availability

« Backup management

* Where and how your cluster is deployed (affinity, tolerations, topology spread constraints)
 Disaster Recovery / standby clusters

« Monitoring

e and more.
Crunchy Postgres

Crunchy Postgres for Kubernetes enables you to deploy Kubernetes-native production ready clusters of Crunchy Postgres,
Crunchy Data's open source Postgres distribution. When you use one of Crunchy Data’s installers, you're given the option

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

to install and deploy a range of Crunchy Postgres versions and specify the number of replicas (in addition to your primary
Postgres instance) in your cluster. The spec you create for the deployment will command Kubernetes to create a number
of Pods corresponding to the number of Postgres clusters, each running a container with Crunchy Postgres inside.

Crunchy Postgres for Kubernetes uses Kubernetes Statefulsets to create Postgres instance groups and support advanced

operations such as rolling updates to minimize Postgres downtime as well as affinity and toleration rules to force one or
more replicas to run on nodes in different regions.

pgBackRest

A production-ready Postgres cluster demands a disaster recovery solution. Crunchy Postgres for Kubernetes uses
pgBackRest to backup and restore your data. With pgBackRest, you can perform scheduled backups, one-off backups
and point-in-time recoveries. Crunchy Postgres for Kubernetes enables pgBackRest by default. When a new Postgres
cluster is created, a pgBackRest repository is created too. Crunchy Postgres for Kubernetes runs pgBackrest in the same
pod that runs your Crunchy Postgres container. A separate pgBackRest pod can be used to manage backups through
cloud storage services such as S3, GCS, and Azure.

Patroni

You want your data to always be available. Maintaining high availability requires a cluster of Postgres instances where
there is one leader and some number of replicas. If the leader instance goes down, Crunchy Postgres for Kubernetes uses
Patroni to promote a new leader from your replicas. Each container running a Crunchy Postgres instance comes loaded
with Patroni to handle failover and keep your data available.

Monitoring Stack

Resource starvation happens. You can run out of storage space and you can run out of computing power. Crunchy Postgres
for Kubernetes provides a monitoring stack to help you track the health of your Postgres cluster, replete with dashboards,
alerts, and insights into your workloads. While having high availability, backups, and disaster recovery systems in place

helps in the event of something going wrong with your Postgres cluster, monitoring helps you anticipate problems before
they happen. The monitoring stack includes components provided by pgMonitor and pgnodemx and deploys as a collection

of pods containing Grafana, Alertmanager, and Prometheus.

Supported Platforms

Kubernetes, OpenShift, Postgres Versions

Crunchy Postgres for Kubernetes is compatible the following Kubernetes and OpenShift versions. Crnuchy Postgres for
Kubernetes is generally compatible with Kubernetes, but specific distribution compatibility please feel free to contact us.

Crunchy Postgres for Kubernetes Series Kubernetes Version ~ OpenShift Version Postgres version Status

5.4.x 1.24-27 4.11-13 11-15* Active / Developer
5.3.x 1.22-26 4.8-13 11-15¢ Active / Developer
5.2.x 1.21-24 4.6-10 11-15 Active
5.1.x 1.20-24 4.6-10 11-15 Active
5.0.x 1.20-24 4.6-10 10-14 Extended

4.7.x 1.17-1.26 4.4-4.12 11-13 Extended

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
../architecture/backups
../architecture/backups
../architecture/high-availability
../architecture/monitoring
https://github.com/CrunchyData/pgmonitor
https://github.com/CrunchyData/pgnodemx
https://github.com/grafana/grafana
https://github.com/prometheus/alertmanager
https://github.com/prometheus/prometheus

4.6.X 1.17-1.21 4.4-4.12 11-13 Extended

1 Only latest two Postgres releases are available through Developer program

Availability

e Active: Available through Crunchy Data Subscription

« Extended: Crunchy Data 'Extended’ Support Subscription Available

« Developer: Available through Developer Program

Crunchy Data Subscription provides customers with access to all available Crunchy Postgres for Kubernetes versions,

including updates and bug fixes. For more information about version life cycle or Crunchy Data update and release, please
see our contact us or contact us directly via email at info@crunchydata.com.

Installation

This section provides detailed instructions for anything and everything related to installing PGO in your Kubernetes
environment. This includes instructions for installing PGO according to a variety of supported installation methods, along
with information for customizing the installation of PGO according your specific needs.

Additionally, instructions are provided for installing and configuring PGO Monitoring.

Installing PGO

* PGO Kustomize Install

* PGO Helm Install

Installing PGO Monitoring

* PGO Monitoring Kustomize Install

Kustomize

Installing PGO Using Kustomize

If you are deploying using the installer from the Crunchy Data Customer Portal, please refer to the guide there for alternative

setup information.

Prerequisites

First, go to GitHub and fork the Postgres Operator examples repository, which contains the PGO Kustomize installer.

https://github.com/CrunchyData/postgres-operator-examples/fork

Once you have forked this repo, you can download it to your working environment with a command similar to this:

https://www.crunchydata.com/contact
mailto:info@crunchydata.com
https://access.crunchydata.com/
https://github.com/CrunchyData/postgres-operator-examples/fork
https://github.com/CrunchyData/postgres-operator-examples/fork

YOUR_Gd THUB_UN="<your G t Hub user nanme>"
git clone--depthl"git@ithub.com ${ YOUR G THUB_UN}/ post gr es- oper at or - exanpl es. gi t"
cd post gr es- oper at or - exanpl es

The PGO installation project is located in the kust oni ze/ i nst al | directory.

Configuration

While the default Kustomize install should work in most Kubernetes environments, it may be necessary to further customize
the Kustomize project(s) according to your specific needs.

For instance, to customize the image tags utilized for the PGO Deployment, the i nages setting in the kust omi ze/ i n-
stal | /defaul t/ kustomn zati on. yam file can be modified:

i mages:

- nanme: post gr es-oper at or
newNane: regi stry. devel opers. crunchydat a. com crunchydat a/ post gr es- oper at or
newTag: ubi 8-5.4.0-0

If you are deploying using the images from the Crunchy Data Customer Portal, please refer to the private registries guide
for additional setup information.

Please note that the Kustomize install project will also create a namespace for PGO by default (though it is possible to
install without creating the namespace, as shown below). To modify the name of namespace created by the installer, the
kust om ze/i nst al | / nanespace/ nhamespace. yam should be modified:

api Version: vl

ki nd: Nanespace

net adat a:

nanme: cust om nanespace

The namespace setting in kust om ze/ i nstal | / def aul t / kust om zat i on. yam should be modified accordingly.
nanespace: cust om nanespace

By default, PGO deploys with debug logging turned on. If you wish to disable this, you need to set the CRUNCHY_DEBUGen-
vironmental variable to " f al se" that is found in the kust om ze/ i nst al | / manager/ manager . yani file. Alternatively,
you can add the following to your kust omi ze/ i nst al | / manager/ kust onmi zat i on. yam to disable debug logging:

pat chesSt r at egi cMer ge:
e
api Ver si on: apps/ vl
ki nd: Depl oynent
nmet adat a:
name: pgo
spec:
tenpl at e:
spec:
cont ai ners:
- nane: oper at or
env:
- name: CRUNCHY_DEBUG
val ue: "fal se"

https://access.crunchydata.com/

You can also create additional Kustomize overlays to further patch and customize the installation according to your specific
needs.

Installation Mode

When PGO is installed, it can be configured to manage PostgreSQL clusters in all namespaces within the Kubernetes
cluster, or just those within a single namespace. When managing PostgreSQL clusters in all namespaces, a ClusterRole
and ClusterRoleBinding is created to ensure PGO has the permissions it requires to properly manage PostgreSQL clusters
across all namespaces. However, when PGO is configured to manage PostgreSQL clusters within a single namespace
only, a Role and RoleBinding is created instead.

The installation of the necessary resources for a cluster-wide or a namespace-limited operator is done automatically by
Kustomize, as described below in the Install section. The only potential change you may need to make is to the Namespace
resource and the nanespace field if using a namespace other than the default post gr es- oper at or .

Install

Once the Kustomize project has been modified according to your specific needs, PGO can then be installed using kubect |
and Kustomize. To create the target namespace, run the following:

kubect| apply - k kust omi ze/ i nstal | / namespace

This will create the default post gr es- oper at or namespace, unless you have edited the kust om ze/ i nst al | / name-
space/ nanespace. yanl resource. That Nanmespace resource should have the same value as the nanespace field in
the kust oni zat i on. yam file (located either at kust oni ze/ i nstal | / def aul t or kust oni ze/ i nstal | / si ngl e-
nanespace, depending on whether you are deploying the operator with cluster-wide or namespace-limited permissions).

To install PGO itself in cluster-wide mode, apply the kustomization file in the def aul t folder:
kubect | apply --server-side-kkustom ze/install/default

To install PGO itself in namespace-limited mode, apply the kustomization file in the si ngl enanespace folder:
kubect| apply --server-side-kkuston ze/install/singl enamespace

The kust om zat i on. yam files in those folders take care of applying the appropriate permissions.

Automated Upgrade Checks

By default, PGO will automatically check for updates to itself and software components by making a request to a URL. If
PGO detects there are updates available, it will print them in the logs. As part of the check, PGO will send aggregated,
anonymized information about the current deployment to the endpoint. An upcoming release will allow for PGO to opt-in
to receive and apply updates to software components automatically.

PGO will check for updates upon startup and once every 24 hours. Any errors in checking will have no impact on PGO's
operation. To disable the upgrade check, you can set the CHECK_FOR_UPGRADES environmental variable on the pgo
Deploymentto " f al se".

For more information about collected data, see the Crunchy Data collection notice.

Uninstall

Once PGO has been installed, it can also be uninstalled using kubect | and Kustomize. To uninstall PGO (assuming it
was installed in cluster-wide mode), the following command can be utilized:

kubect| del et e -k kust om ze/ i nstal | /default
To uninstall PGO installed with only namespace permissions, use:
kubect | del et e -k kust om ze/ i nstall/singl enanespace
The namespace created with this installation can likewise be cleaned up with:

kubect | del et e -k kust om ze/i nstal | / namespace

Helm

Installing PGO Using Helm

This section provides instructions for installing and configuring PGO using Helm.

There are two sources for the PGO Helm chart:
« the Postgres Operator examples repo;

« the Helm chart hosted on the Crunchy container registry, which supports direct Helm installs.

The Postgres Operator Examples repo

Prerequisites

First, go to GitHub and fork the Postgres Operator examples repository, which contains the PGO Helm installer.

https://github.com/CrunchyData/postgres-operator-examples/fork

Once you have forked this repo, you can download it to your working environment with a command similar to this:

YOUR_Gd THUB_UN="<your G t Hub user name>"
git clone--depthl"git@ithub.com ${ YOUR G THUB_UN}/ post gr es- oper at or - exanpl es. gi t"
cd post gr es- oper at or - exanpl es

The PGO Helm chart is located in the hel nf i nst al | directory of this repository.

Configuration

https://www.crunchydata.com/developers/data-collection-notice
https://github.com/CrunchyData/postgres-operator-examples/fork
https://github.com/CrunchyData/postgres-operator-examples/fork

The val ues. yamn file for the Helm chart contains all of the available configuration settings for PGO. The default
val ues. yam settings should work in most Kubernetes environments, but it may require some customization depending
on your specific environment and needs.

For instance, it might be necessary to customize the image tags that are utilized using the cont r ol | er | mages setting:

control | erl mages:
cluster: regi stry. devel opers. crunchydat a. conif cr unchydat a/ post gr es- oper at or : ubi 8-5. 4. 0-0

Please note that the val ues. yani file is located in hel m i nstal | .

Logging

By default, PGO deploys with debug logging turned on. If you wish to disable this, you need to set the debug attribute in
the val ues. yanl to false, e.g.:

debug: fal se

Installation Mode

When PGO is installed, it can be configured to manage PostgreSQL clusters in all namespaces within the Kubernetes
cluster, or just those within a single namespace. When managing PostgreSQL clusters in all namespaces, a ClusterRole
and ClusterRoleBinding is created to ensure PGO has the permissions it requires to properly manage PostgreSQL clusters
across all namespaces. However, when PGO is configured to manage PostgreSQL clusters within a single namespace
only, a Role and RoleBinding is created instead.

In order to select between these two modes when installing PGO using Helm, the si ngl eNamespace setting in the
val ues. yam file can be utilized:

si ngl eNanespace: fal se

Specifically, if this setting is set to f al se (which is the default), then a ClusterRole and ClusterRoleBinding will be created,
and PGO will manage PostgreSQL clusters in all namespaces. However, if this setting is setto t r ue, then a Role and
RoleBinding will be created instead, allowing PGO to only manage PostgreSQL clusters in the same namespace utilized
when installing the PGO Helm chart.

Install

Once you have configured the Helm chart according to your specific needs, it can then be installed using hel m

hel mi nstal | <nane>-n <nanespace> hel nii nst al |

Automated Upgrade Checks

By default, PGO will automatically check for updates to itself and software components by making a request to a URL. If
PGO detects there are updates available, it will print them in the logs. As part of the check, PGO will send aggregated,

anonymized information about the current deployment to the endpoint. An upcoming release will allow for PGO to opt-in
to receive and apply updates to software components automatically.

PGO will check for updates upon startup and once every 24 hours. Any errors in checking will have no impact on PGO's
operation. To disable the upgrade check, you can set the di sabl e_check_f or _upgr ades value in the Helm chart to
true.

For more information about collected data, see the Crunchy Data collection notice.

Uninstall

To uninstall PGO, remove all your PostgresCluster objects, then use the hel muni nst al | command:
hel muni nst al | <nanme> - n <nanespace>
Helm [leaves the CRDs][helm-crd-limits] in place. You can remove them with kubect | del et &

kubect| delete-f hel minstall/crds

The Crunchy Container Registry

Installing directly from the registry

Crunchy Data hosts an OCI registry that hel mcan use directly. (Not all hel mcommands support OCI registries. For more
information on which commands can be used, see the Helm documentation.)

You can install PGO directly from the registry using the hel mi nst al | command:
hel mi nstal | pgooci://registry.devel opers. crunchydata. com crunchydat a/ pgo

Or to see what values are set in the default val ues. yam before installing, you could run a hel mshowcommand just as
you would with any other registry:

hel mshowval ues oci : //regi stry. devel opers. crunchydat a. com crunchydat a/ pgo

Downloading from the registry

Rather than deploying directly from the Crunchy registry, you can instead use the registry as the source for the Helm chart.

To do so, download the Helm chart from the Crunchy Container Registry:

#To pul | downt he nost recent Hel mchart
hel mpul | oci://registry. devel opers. crunchydat a. coni cr unchydat a/ pgo

To pul | down a speci fi c Hel mchart
hel mpul | oci://registry. devel opers. crunchydat a. conl crunchydat a/ pgo --versionb5.4.0

Once the Helm chart has been downloaded, uncompress the bundle

https://www.crunchydata.com/developers/data-collection-notice
https://helm.sh/docs/topics/registries/

tar - xvf pgo-5.4.0.tgz

And from there, you can follow the instructions above on setting the Configuration and installing a local Helm chart.

Monitoring

The Crunchy Postgres for Kubernetes Monitoring stack is a fully integrated solution for monitoring and visualizing metrics
captured from PostgreSQL clusters created using PGO. By leveraging pgMonitor to configure and integrate the various
tools, components and metrics needed to effectively monitor PostgreSQL clusters, PGO Monitoring provides an powerful
and easy-to-use solution to effectively monitor and visualize pertinent PostgreSQL database and container metrics.
Included in the monitoring infrastructure are the following components:

» pgMonitor - Provides the configuration needed to enable the effective capture and visualization of PostgreSQL database
metrics using the various tools comprising the PostgreSQL Operator Monitoring infrastructure

» Grafana - Enables visual dashboard capabilities for monitoring PostgreSQL clusters, specifically using Crunchy
PostgreSQL Exporter data stored within Prometheus

* Prometheus - A multi-dimensional data model with time series data, which is used in collaboration with the Crunchy
PostgreSQL Exporter to provide and store metrics

» Alertmanager - Handles alerts sent by Prometheus by deduplicating, grouping, and routing them to receiver integrations.

By leveraging the installation method described in this section, Crunchy Postgres for Kubernetes Monitoring can be
deployed alongside Crunchy Postgres for Kubernetes.

Kustomize

Installing Crunchy Postgres for Kubernetes Moni-
toring Using Kustomize

This section provides instructions for installing and configuring Crunchy Postgres for Kubernetes Monitoring using
Kustomize.

Prerequisites

First, go to GitHub and fork the Postgres Operator examples repository, which contains the Monitoring Kustomize installer.

https://github.com/CrunchyData/postgres-operator-examples/fork

Once you have forked this repo, you can download it to your working environment with a command similar to this:

YOUR G THUB_UN="<your G t Hub user name>"
git clone--depthl"git@ithub. com ${YOUR G THUB_ UN}/ post gr es- oper at or - exanpl es. gi t"
cd post gr es- oper at or - exanpl es

The Monitoring project is located in the kust o ze/ noni t or i ng directory.

https://github.com/CrunchyData/pgmonitor
https://github.com/CrunchyData/pgmonitor
https://grafana.com/
https://prometheus.io/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://github.com/CrunchyData/postgres-operator-examples/fork
https://github.com/CrunchyData/postgres-operator-examples/fork

Configuration

While the default Kustomize install should work in most Kubernetes environments, it may be necessary to further customize
the project according to your specific needs.

For instance, by default f sG oup is set to 26 for the securi t yCont ext defined for the various Deployments comprising
the Monitoring stack:

securityCont ext:
fsGroup: 26

In most Kubernetes environments this setting is needed to ensure processes within the container have the permissions
needed to write to any volumes mounted to each of the Pods comprising the Monitoring stack. However, when installing
in an OpenShift environment (and more specifically when using the r est ri ct ed Security Context Constraint), the

f sG oup setting should be removed since OpenShift will automatically handle setting the proper f sG oup within the
Pod's securi t yCont ext .

Additionally, within this same section it may also be necessary to modify the suppl nent al Gr oups setting according to
your specific storage configuration:

securityCont ext:
suppl enent al G oups: 65534

Therefore, the following files (located under kust om ze/ nmoni t or i ng) should be modified and/or patched (e.g. using
additional overlays) as needed to ensure the securi t yCont ext is properly defined for your Kubernetes environment:

« depl oy- al ert manager . yam
e depl oy- gr af ana. yani
« depl oy- pr onet heus. yani

And to modify the configuration for the various storage resources (i.e. PersistentVolumeClaims) created by the Monitoring
installer, the kust om ze/ noni t ori ng/ pvcs. yam file can also be modified.

Additionally, it is also possible to further customize the configuration for the various components comprising the Monitoring
stack (Grafana, Prometheus and/or AlertManager) by modifying the following configuration resources:

e al ert manager - confi g. yam

e al ert manager -rul es-confi g. yan

« graf ana- dat asour ces. yan

e pronet heus-confi g. yam

Finally, please note that the default username and password for Grafana can be updated by modifying the Grafana Secret
in file kust om ze/ noni t ori ng/ gr af ana- secret . yan .

Install

Once the Kustomize project has been modified according to your specific needs, Monitoring can then be installed using
kubect | and Kustomize:

kubect | apply -k kust onmi ze/ noni t ori ng

Uninstall

And similarly, once Monitoring has been installed, it can uninstalled using kubect | and Kustomize:

kubect | del et e -k kust om ze/ noni toring

Private Registries

PGO, the open source Postgres Operator, can use containers that are stored in private registries. There are a variety of
techniques that are used to load containers from private registries, including image pull secrets. This guide will demonstrate

how to install PGO and deploy a Postgres cluster using the Crunchy Data Customer Portal registry as an example.

Create an Image Pull Secret

The Kubernetes documentation provides several methods for creating image pull secrets. You can choose the method that

is most appropriate for your installation. You will need to create image pull secrets in the namespace that PGO is deployed
and in each namespace where you plan to deploy Postgres clusters.

For example, to create an image pull secret for accessing the Crunchy Data Customer Portal image registry in the
post gr es- oper at or namespace, you can execute the following commands:
kubect | creat e ns post gres-oper at or
kubect | createsecret docker-regi stry crunchy-regcred-n postgres-operator \
--docker -server=regi stry. crunchydat a. com\
- - docker - user nane=<YOUR USERNAME> \

- - docker - emai | =<YOUR EMAI L>\
- - docker - passwor d=<YOUR PASSWORD>

This creates an image pull secret named cr unchy-r egcr ed in the post gr es- oper at or namespace.

Install PGO from a Private Registry

To install PGO from a private registry, you will need to set an image pull secret on the installation manifest.

For example, to set up an image pull secret using the Kustomize install method to install PGO from the Crunchy Data
Customer Portal, you can set the following in the kust om ze/ i nstal | / def aul t / kust om zat i on. yam manifest:

i mages:

- nane: post gr es-oper at or
newNane: regi stry. crunchydat a. com crunchydat a/ post gr es- oper at or
newTag: ubi 8-5.4.0-0

pat chesJson6902:
- target:

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://access.crunchydata.com/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://access.crunchydata.com/
https://access.crunchydata.com/

group: apps
version: vl
ki nd: Depl oynent

name: pgo
pat ch: | -
- op: renove

pat h: / spec/ sel ect or/ mat chLabel s/ app. kuber net es. i o~1nane
- op: renove
pat h: / spec/ sel ect or/ mat chLabel s/ app. kuber net es. i o~1ver si on
- op: add
pat h: /spec/tenpl at e/ spec/ i magePul | Secrets
val ue:
- name: crunchy-regcred

If you are using a version of kubect | priorto v1. 21. 0, you will have to create an explicit patch file named i n-
stall -ops. yan :

- 0p: renove

pat h: / spec/ sel ect or/ mat chLabel s/ app. kuber net es. i o~1nane
- op: renove

pat h: / spec/ sel ect or/ mat chLabel s/ app. kuber net es. i o~1ver si on
- op: add

pat h: / spec/tenpl at e/ spec/i magePul | Secret s

val ue:

- nanme: crunchy-regcred

and modify the manifest to be the following:

i mages:

- nane: post gr es-oper at or
newNane: regi stry. crunchydat a. com crunchydat a/ post gr es- oper at or
newTag: ubi 8-5.4.0-0

pat chesJson6902: - target:
group: apps
version: vl
ki nd: Depl oynent
name: pgo
pat h: install -ops. yan

You can then install PGO from the private registry using the standard installation procedure, e.g.:

kubect| apply --server-side -k kustom ze/install/default

Deploy a Postgres cluster from a Private Registry

To deploy a Postgres cluster using images from a private registry, you will need to set the value of spec. i magePul | Se-
crets onaPost gresd ust er custom resource.

For example, to deploy a Postgres cluster using images from the Crunchy Data Customer Portal with an image pull secret

in the post gr es- oper at or namespace, you can use the following manifest:

api Ver si on: post gr es- oper at or. crunchydat a. com vlbet al
ki nd: Post gresd ust er
net adat a:
nane: hi ppo
spec:

https://access.crunchydata.com/

i magePul | Secrets:
- nane: crunchy-regcred
i mage: regi stry. crunchydat a. com crunchydat a/ crunchy- post gr es: ubi 8-15. 3-5.4.0-0
post gr esVer si on: 15
i nst ances:
- name: i nstancel
dat aVol umed ai nSpec:
accesshMbdes:
- 'ReadWit eOnce'
resour ces
requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. crunchydat a. coni cr unchydat a/ crunchy- pgbackr est : ubi 8-5. 4. 0-0
r epos:
- nanme: repol
vol une:
vol umed ai nmpec:
accesshMdes:
- 'ReadWiteOnce
resour ces:
requests:
storage: 1G

Tutorials

Ready to get started with PGO, the Postgres Operator from Crunchy Data? Us too!

This tutorial covers several concepts around day-to-day life managing a Postgres cluster with PGO. While going through
and looking at various "HOWTOs" with PGO, we will also cover concepts and features that will help you have a successful
cloud native Postgres journey!

In this tutorial, you will learn:

« How to create a Postgres cluster

« How to connect to a Postgres cluster

* How to scale and create a high availability (HA) Postgres cluster

« How to resize your cluster

« How to set up proper disaster recovery and manage backups and restores

* How to apply software updates to Postgres and other components

* How to set up connection pooling

« How to delete your cluster
and more.

You will also see:
* How PGO helps your Postgres cluster achieve high availability
« How PGO can heal your Postgres cluster and ensure all objects are present and available

* How PGO sets up disaster recovery

https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://www.crunchydata.com

« How to manage working with PGO in a single namespace or in a cluster-wide installation of PGO.
Let's get started!

Basic Setup

Setting up your environment

The first thing that you will need is a Kubernetes or Openshift environment running a supported version. You see can all
of the versions in our documentation. You can deploy your environment locally, in the cloud, or even run it via a managed
Kubernetes offering.

You will also need to insure that you have a modern version of gi t installed locally, as well as kubect | installed and
configured on your local workstation. You can install those from your OS's package manager. You can refer to the reference
for git if you are not already familiar with it, or you need to install it by hand. You can also visit the kubectl reference for

more information about how to install and use this tool.

Once you have your tools and environment set up, we can move on to installing Crunchy Postgres for Kubernetes.

Download the Examples

First, go to GitHub and fork the Postgres Operator examples repository:

https://github.com/CrunchyData/postgres-operator-examples/fork

Once you have forked this repository, you can download it to your working directory with a command similar to this:

cd <Your Wor ki ng Di rect ory>
YOUR_Gd THUB_UN="<your G t Hub user nanme>"
git clone--depthl"git@ithub.com ${ YOUR G THUB_UN}/ post gr es- oper at or - exanpl es. gi t"

With the examples repo cloned into your working directory, navigate (for example, cd post gr es- oper at or - exanpl es)
to the top level folder of the repo. If you use | s - | ahit should look something like this:

~/ Code/ Crunchy/ post gr es- oper at or - exanpl es | s - | ah
total 32

drwxr-xr-x 8hippo staff 256BMuy 22 14: 27 .
drwxr-xr-x 9hippo staff 288BJun 29 13:59..

dr wxr - xr-x 14 hi ppo staff 448BMay 912:00.qgit
drwxr-xr-x 3hippo staff 96BJul 19 2022 . git hub
-rw-r--r-- 1hippo staff 211KApr 312:17 LI CENSE. nd
-rwWr--r--@1hippo staff 1.1KMay 9 11: 27 READVE. nd
drwxr-xr-x 4hippo staff 128BJul 19 2022 hel m
drwxr - xr-x 12 hi ppo staff 384BJul 19 2022 kust omni ze

Once you have your local environment set up, we can press onwards to installing Crunchy Postgres for Kubernetes...

Install Crunchy Postgres for Kubernetes

https://git-scm.com
https://kubernetes.io/docs/reference/kubectl/
https://github.com/CrunchyData/postgres-operator-examples/fork
https://github.com/CrunchyData/postgres-operator-examples/fork

Our next task is to install Crunchy Postgres for Kubernetes into a namespace in Kubernetes. This example uses a default
namespace of post gr es- oper at or . However, you can install it in other namespaces or even cluster wide if you need.
You can read more about that in our advanced install guides.

First, we need to set up the namespace that we are going to use. Use this command to create the default namespace:
kubect| apply - k kust omi ze/ i nstal | / nanmespace

Next, you will need to install the various containers and configuration that makes up Crunchy Postgres for Kubernetes. Here
is the command to do that:

kubect| apply --server-side-kkustoni ze/install/default
To check on the status of your installation, you can run the following command:

kubect | - n post gres-oper at or get pods\
--sel ect or =post gr es- oper at or . crunchydat a. com contr ol - pl ane=post gr es- oper at or \
--fiel d-sel ect or =st at us. phase=Runni ng

If the PGO Pod is healthy, you should see output similar to:

NANVE READY STATUS RESTARTS AGE
post gr es- oper at or - 9dd545d64-t 4h8d 1/1 Running O 3s

Now that we have installed all of the supporting containers and configuration, it's time to roll our sleeves up and set up a
Postgres cluster...

Create a Postgres Cluster

If you came here through the quickstart, you may have already created a cluster. If you created a cluster by using the
example in the kust omi ze/ post gr es directory, feel free to skip to connecting to a cluster or follow our instructions on
deleting your cluster for a fresh start.

Create a Postgres Cluster

Creating a Postgres cluster is pretty simple. Using the example in the kust om ze/ post gr es directory, all we have to do
is run:

kubect | apply - k kust oni ze/ post gr es

and PGO will create a simple Postgres cluster named hi ppo in the post gr es- oper at or namespace. You can
track the status of your Postgres cluster using kubect | descri beon the post gr escl ust ers. post gr es- oper a-
tor. crunchydat a. comcustom resource:

kubect | - n post gres-oper at or descri be post grescl ust ers. post gres- oper at or. crunchyda-
t a. comhi ppo

and you can track the state of the Postgres Pod using the following command:

kubect | - n post gres-oper at or get pods\
- -sel ect or =post gr es- oper at or. crunchydat a. con cl ust er =hi ppo, post gr es- oper at or. cr unchyda-
ta.com i nstance

What Happens When a Postgres Cluster is Created

PGO created a Postgres cluster based on the information provided to it in the Kustomize manifests located in the kus-
t om ze/ post gr es directory. Let's better understand what happened by inspecting the kust omi ze/ post gr es/ post -
gres. yam file:

api Ver si on: post gres- operat or. crunchydata. com vlbetal
ki nd: Post gresd ust er
net adat a:
nane: hi ppo
spec:
i mage: regi stry. devel opers. crunchydat a. conif cr unchydat a/ crunchy- post gres: ubi 8- 15. 3-2
post gr esVer si on: 15
i nst ances:
- nane: i nstancel
dat aVol uned ai nSpec:
accesshMdes:
- "ReadWiteOnce”
resour ces
requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- nhanme: repol
vol une:
vol umed ai nSpec:
accesshMbdes:
- "ReadWiteOnce"
r esour ces:
requests:
storage: 1G

When we ran the kubect | appl ycommand earlier, what we did was create a Post gr esCl ust er custom resource in
Kubernetes. PGO detected that we added a new Post gr esCl ust er resource and started to create all the objects needed
to run Postgres in Kubernetes!

What else happened? PGO read the value from net adat a. name to provide the Postgres cluster with the name hi ppo.
Additionally, PGO knew which containers to use for Postgres and pgBackRest by looking at the values in spec. i mage
and spec. backups. pgbackr est . i mage respectively. The value in spec. post gr esVer si on is important as it will
help PGO track which major version of Postgres you are using.

PGO knows how many Postgres instances to create through the spec. i nst ances section of the manifest. While name
is optional, we opted to give it the name i nst ancel. We could have also created multiple replicas and instances during
cluster initialization, but we will cover that more when we discuss how to scale and create a HA Postgres cluster.

A very important piece of your Post gr esCl ust er custom resource is the dat aVol uned ai nSpec section. This
describes the storage that your Postgres instance will use. It is modeled after the Persistent Volume Claim. If you do

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

not provide a spec. i nst ances. dat aVol umed ai nSpec. st or aged assNane, then the default storage class in your
Kubernetes environment is used.

As part of creating a Postgres cluster, we also specify information about our backup archive. PGO uses pgBackRest, an
open source backup and restore tool designed to handle terabyte-scale backups. As part of initializing our cluster, we can
specify where we want our backups and archives (write-ahead logs or WAL) stored. We will talk about this portion of the

Post gr esCl ust er spec in greater depth in the disaster recovery section of this tutorial, and also see how we can store
backups in Amazon S3, Google GCS, and Azure Blob Storage.

Troubleshooting

PostgreSQL / pgBackRest Pods Stuck in Pendi ng Phase

The most common occurrence of this is due to PVCs not being bound. Ensure that you have set up your storage options
correctly in any vol uned ai nSpec.You can always update your settings and reapply your changes with kubect | appl y.

Also ensure that you have enough persistent volumes available: your Kubernetes administrator may need to provision

maore.

If you are on OpenShift, you may need to set spec. openshi ft totrue.

Next Steps

We're up and running -- now let's connect to our Postgres cluster!

Connect to a Postgres Cluster

It's one thing to create a Postgres cluster; it's another thing to connect to it. Let's explore how PGO makes it possible to
connect to a Postgres cluster!

Background: Services, Secrets, and TLS

PGO creates a collection of Kubernetes Services to provide stable endpoints for connecting to your Postgres databases.
These endpoints make it easy to provide a consistent way for your application to maintain connectivity to your data. To
inspect what services are available, you can run the following command:

kubect | - n post gres-operat or get svc --sel ect or =post gr es- oper at or. cr unchydat a. coni cl us-
t er =hi ppo

which will yield something similar to:

NANMVE TYPE CLUSTER- |1 P EXTERNAL- | P PORT(S) AGE

hi ppo- ha Clusterl P 10.103. 73. 92 <none> 5432/ TCP 3h14m

hi ppo- ha-config Cdusterl P None <none> <none> 3hl4m

hi ppo- pods Cl usterl P None <none> <none> 3hl4m

hi ppo-primary CusterlP None <none> 5432/ TCP 3h1l4m

hi ppo-replicas CusterlP 10.98.110.215 <none> 5432/ TCP 3h14m

https://pgbackrest.org/
https://www.postgresql.org/docs/current/wal-intro.html
https://kubernetes.io/docs/concepts/services-networking/service/

You do not need to worry about most of these Services, as they are used to help manage the overall health of your Postgres
cluster. For the purposes of connecting to your database, the Service of interest is called hi ppo- pri mar y. Thanks to
PGO, you do not need to even worry about that, as that information is captured within a Secret!

When your Postgres cluster is initialized, PGO will bootstrap a database and create a Postgres user that your ap-
plication can use to access the database. This information is stored in a Secret named with the pattern <cl ust er -
Nane>- pguser - <user Name>. For our hi ppo cluster, this Secret is called hi ppo- pguser - hi ppo. This Secret contains
the information you need to connect your application to your Postgres database:

e user : The name of the user account.
« passwor d: The password for the user account.
< dbnane: The name of the database that the user has access to by default.

* host : The name of the host of the database. This references the Service of the primary Postgres instance.

e port:The port that the database is listening on.

e uri: A PostgreSQL connection URI that provides all the information for logging into the Postgres database.

e jdbc-uri:APostgreSQL JDBC connection URI that provides all the information for logging into the Postgres database
via the JDBC driver.

All connections are over TLS. PGO provides its own certificate authority (CA) to allow you to securely connect your
applications to your Postgres clusters. This allows you to use the veri fy-ful | "SSL mode" of Postgres, which provides

eavesdropping protection and prevents MITM attacks. You can also choose to bring your own CA, which is described later
in this tutorial in the Customize Cluster section.

Modifying Service Type, NodePort Value and Metadata

By default, PGO deploys Services with the Cl ust er | P Service type. Based on how you want to expose your database,
you may want to modify the Services to use a different Service type and NodePort value.

You can modify the Services that PGO manages from the following attributes:
* spec. ser Vi ce - this manages the Service for connecting to a Postgres primary.
e spec. proxy. pgBouncer. servi ce - this manages the Service for connecting to the PgBouncer connection pooler.

* spec. userl nt erface. pgAdni n. servi ce - this manages the Service for connecting to the pgAdmin management
tool.

For example, say you want to set the Postgres primary to use a NodePor t service, a specific nodePor t value, and set a
specific annotation and label, you would add the following to your manifest:

spec:
servi ce:
met adat a:
annot ati ons:
my- annot at i on: val uel
| abel s:
my- | abel : val ue2
type: NodePort
nodePort: 32000

https://kubernetes.io/docs/concepts/services-networking/service/
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://jdbc.postgresql.org/documentation/use/
https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS
https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport

For our hi ppo cluster, you would see the Service type and nodePort modification as well as the annotation and label. For
example:

kubect | - n post gres-oper at or get svc --sel ect or =post gr es- oper at or. cr unchydat a. coni cl us-
t er =hi ppo

will yield something similar to:

NANVE TYPE CLUSTER-1 P EXTERNAL- | P PORT(S) AGE

hi ppo- ha NodePor t 10. 105. 57. 191 <none> 5432: 32000/ TCP 48s
hi ppo- ha-config Custerl P None <none> <none> 48s

hi ppo- pods Clusterl P None <none> <none> 48s

hi ppo-primary CdusterlP None <none> 5432/ TCP 48s

hi ppo-replicas CdusterlP 10.106.18.99 <none> 5432/ TCP 48s

and the top of the output from running
kubect | - n post gres-oper at or descri be svc hi ppo- ha

will show our custom annotation and label have been added:

NAME: hi ppo- ha
Nanespace: post gr es- oper at or
Label s: ny- | abel =val ue2

post gr es- oper at or. crunchydat a. cont cl ust er =hi ppo
post gr es- oper at or. crunchydat a. cont pat r oni =hi ppo- ha
Annot at i ons: ny- annot ati on: val uel

Note that setting the nodePor t value is not allowed when using the (default) Cl ust er | P type, and it must be in-range
and not otherwise in use or the operation will fail. Additionally, be aware that any annotations or labels provided here will
win in case of conflicts with any annotations or labels a user configures elsewhere.

Finally, if you are exposing your Services externally and are relying on TLS verification, you will need to use the custom
TLS features of PGO).

Connect via psql inthe Terminal

Connect Directly

If you are on the same network as your PostgreSQL cluster, you can connect directly to it using the following command:

psqgl $(kubect| -n post gres-operator get secrets hi ppo-pguser-hi ppo-o0go-tem
pl ate='{{.data.uri | base64decode}}"')

Connect Using a Port-Forward

In a new terminal, create a port forward:

PG CLUSTER PRI MARY POD=$(kubect| get pod - n post gr es- oper at or - o name \
-1 post gres-operator. crunchydat a. coni cl ust er =hi ppo, post gr es- oper at or. cr unchyda-

ta. com rol e=nast er)
kubect| - n post gres-operator port-forward"${PG CLUSTER PRI MARY_PCD} " 5432: 5432

Establish a connection to the PostgreSQL cluster.

PG CLUSTER USER SECRET NAME=hi ppo- pguser - hi ppo

PGPASSWORD=$(kubect | get secrets -n post gres-oper at or "${ PG CLUSTER USER SE-

CRET_NAME} " -0 go-tenpl ate=' {{. dat a. password | base64decode}}"') \

PGQUSER=$(kubect | get secrets -npostgres-operator "${ PG CLUSTER USER SECRET_NAME}" -0 go-tem
pl at e=' {{. dat a. user | base64decode}}"') \

PGDATABASE=$(kubect| get secrets -n postgres-operator "${ PG CLUSTER USER_SE-

CRET_NAME}" -0 go-tenpl ate=' {{. dat a. dbnane | base64decode}}"') \

psql -hl ocal host

Connecting With pgAdmin

Crunchy Postgres for Kubernetes also provides a pgAdmin image for users who prefer working with a graphical user
interface. For more information, see our documentation on pgAdmin 4.

Connect an Application

For this tutorial, we are going to connect Keycloak, an open source identity management application. Keycloak can be
deployed on Kubernetes and is backed by a Postgres database. While we provide an example of deploying Keycloak and

a PostgresCluster in the Postgres Operator examples repository, the manifest below deploys it using our hi ppo cluster

that is already running:

kubect | apply--fil enane=- <<EOF
api Ver si on: apps/ vl
ki nd: Depl oynent
nmet adat a:
nane: keycl oak
namespace: post gres-oper at or
| abel s:
app. kuber net es. i o/ nanme: keycl oak
spec:
sel ector:
mat chLabel s:
app. kuber net es. i o/ nane: keycl oak
tenpl at e:
met adat a:
| abel s:
app. kuber net es. i o/ nane: keycl oak
spec:
cont ai ners:
- i mage: quay. i o/ keycl oak/ keycl oak: | at est
args: ["start-dev"]
nane: keycl oak
env:
- nane: DB_VENDOR
val ue: "post gres"
- nanme: DB_ADDR
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: host } }
- nanme: DB_PORT
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: port } }
- nane: DB _DATABASE
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: dbnane} }

https://www.keycloak.org/
https://github.com/CrunchyData/postgres-operator-examples/tree/main/kustomize/keycloak
https://github.com/CrunchyData/postgres-operator-examples/tree/main/kustomize/keycloak
https://github.com/CrunchyData/postgres-operator-examples

- nane: DB_USER
val ueFrom { secret KeyRef: { nanme: hi ppo- pguser - hi ppo, key: user } }
- nane: DB_PASSWORD
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: password} }
- name: KEYCLOAK_ADM N
val ue: "adm n"
- nanme: KEYCLOAK _ADM N_PASSWORD
val ue: "adm n"
- nanme: KC_PROXY
val ue: "edge"
ports:
- name: http
cont ai ner Port: 8080
- name: https
cont ai ner Port: 8443
r eadi nessPr obe:

htt pGet :

pat h: /real ms/ mast er

port: 8080
restartPolicy: Al ways

EOF

Notice this part of the manifest:

- nane: DB_ADDR

val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: host } }

- name: DB_PORT

val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: port } }

- nane: DB_DATABASE

val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: dbnanme} }

- nanme: DB_USER

val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: user } }

- nanme: DB _PASSWORD

val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: password} }

The above manifest shows how all of these values are derived from the hi ppo- pguser - hi ppo Secret. This means that
we do not need to know any of the connection credentials or have to insecurely pass them around -- they are made directly
available to the application!

Using this method, you can tie an application directly into your GitOps pipeline that connects to Postgres without any prior
knowledge of how PGO will deploy Postgres: all of the information your application needs is propagated into the Secret!

Next Steps

Now that we have seen how to connect an application to a cluster, let's learn how to create a high availability Postgres
cluster!

Connection Pooling

Connection pooling can be helpful for scaling and maintaining overall availability between your application and the
database. PGO helps facilitate this by supporting the PgBouncer connection pooler and state manager.

Let's look at how we can add a connection pooler and connect it to our application!

https://www.pgbouncer.org/

Adding a Connection Pooler

We will explore adding a connection pooler using the kust om ze/ keycl oak example in the Postgres Operator examples

repository.

Connection poolers are added using the spec. pr oxy section of the custom resource. Currently, the only connection
pooler supported is PgBouncer.

The only required attribute for adding a PgBouncer connection pooler is to set the spec. pr oxy. pgBouncer . i mage
attribute. In the kust om ze/ keycl oak/ post gres. yan file, add the following YAML to the spec:

proxy:
pgBouncer :
i mage: regi stry. devel opers. crunchydat a. conf cr unchydat a/ cr unchy- pgbouncer : ubi 8-1. 19- 2

(You can also find an example of this in the kust omi ze/ exanpl es/ hi gh-avai | abi | i t y example).

Save your changes and run;
kubect | apply -k kust oni ze/ keycl oak

PGO will detect the change and create a new PgBouncer Deployment!

That was fairly easy to set up, so now let's look at how we can connect our application to the connection pooler.

Connecting to a Connection Pooler

When a connection pooler is deployed to the cluster, PGO adds additional information to the user Secrets to allow
for applications to connect directly to the connection pooler. Recall that in this example, our user Secret is called
keycl oakdb- pguser - keycl oakdb. Describe the user Secret:

kubect | - n post gres-oper at or descri be secrets keycl oakdb- pguser - keycl oakdb

You should see that there are several new attributes included in this Secret that allow for you to connect to your Postgres
instance via the connection pooler:

« pgbouncer - host : The name of the host of the PgBouncer connection pooler. This references the Service of the
PgBouncer connection pooler.

« pgbouncer - port : The port that the PgBouncer connection pooler is listening on.

e pgbouncer - uri : A PostgreSQL connection URI that provides all the information for logging into the Postgres database

via the PgBouncer connection pooler.

* pgbouncer -j dbc- uri : A PostgreSQL JDBC connection URI that provides all the information for logging into the

Postgres database via the PgBouncer connection pooler using the JDBC driver. Note that by default, the connection string
disables JDBC managing prepared transactions for optimal use with PgBouncer.

Open up the file in kust omni ze/ keycl oak/ keycl oak. yan . Update the DB_ADDR and DB_PORT values to be the
following:

- nanme: DB_ADDR
val ueFrom { secret KeyRef: { nane: keycl oakdb- pguser - keycl oakdb, key: pgbouncer-host } }

https://github.com/CrunchyData/postgres-operator-examples
https://www.pgbouncer.org/
https://kubernetes.io/docs/concepts/services-networking/service/
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://jdbc.postgresql.org/documentation/use/
https://www.pgbouncer.org/faq.html#how-to-use-prepared-statements-with-transaction-pooling

- nane: DB_PORT
val ueFrom { secret KeyRef: { nane: keycl oakdb- pguser - keycl oakdb, key: pgbouncer-port } }

This changes Keycloak's configuration so that it will now connect through the connection pooler.

Apply the changes:
kubect | apply -k kust oni ze/ keycl oak

Kubernetes will detect the changes and begin to deploy a new Keycloak Pod. When it is completed, Keycloak will now be
connected to Postgres via the PgBouncer connection pooler!

TLS

PGO deploys every cluster and component over TLS. This includes the PgBouncer connection pooler. If you are using
your own custom TLS setup, you will need to provide a Secret reference for a TLS key / certificate pair for PgBouncer in
spec. pr oxy. pgBouncer . cust onifLSSecr et .

Your TLS certificate for PgBouncer should have a Common Name (CN) setting that matches the PgBouncer Service
name. This is the name of the cluster suffixed with - pgbouncer . For example, for our hi ppo cluster this would be
hi ppo- pgbouncer . For the keycl oakdb example, it would be keycl oakdb- pgbouncer .

To customize the TLS for PgBouncer, you will need to create a Secret in the Namespace of your Postgres cluster that
contains the TLS key (t | s. key), TLS certificate (t | s. crt) and the CA certificate (ca. cr t) to use. The Secret should
contain the following values:

dat a:

ca.crt: <val ue>
tls.crt: <val ue>
tls. key: <val ue>

For example, if you have files named ca. crt, keycl oakdb- pgbouncer . key, and keycl oakdb- pgbouncer. crt
stored on your local machine, you could run the following command:

kubect | createsecret generi c -npost gres-operat or keycl oakdb- pgbouncer.tl s\
--fromfile=ca.crt=ca.crt\

--fromfile=tls.key=keycl oakdb- pghouncer. key \

--fromfile=tls.crt=keycl oakdb- pgbouncer. crt

You can specify the custom TLS Secret in the spec. pr oxy. pgBouncer . cust omlLSSecr et . nane field in your
post grescl ust er. post gr es- oper at or . cr unchydat a. comcustom resource, e.g.:

spec:
pr oxy:
pgBouncer :
cust omrLSSecr et :
nane: keycl oakdb- pgbouncer.tls

Customizing

The PgBouncer connection pooler is highly customizable, both from a configuration and Kubernetes deployment stand-
point. Let's explore some of the customizations that you can do!

Configuration

PgBouncer configuration can be customized through spec. pr oxy. pgBouncer . conf i g. After making configuration

changes, PGO will roll them out to any PgBouncer instance and automatically issue a "reload".

There are several ways you can customize the configuration:
e spec. proxy. pgBouncer. confi g. gl obal : Accepts key-value pairs that apply changes globally to PgBouncer.

e spec. proxy. pgBouncer. confi g. dat abases: Accepts key-value pairs that represent PgBouncer database defin-
itions.

e spec. proxy. pgBouncer. confi g. user s: Accepts key-value pairs that represent connection settings applied to
specific users.

e spec. proxy. pgBouncer. confi g.fil es: Accepts a list of files that are mounted in the / et ¢/ pgbouncer directory

and loaded before any other options are considered using PgBouncer's include directive.

For example, to set the connection pool mode to t r ansact i on, you would set the following configuration:

spec:
pr oxy:
pgBouncer :
config:
gl obal :
pool nobde: transacti on

For a reference on PgBouncer configuration please see:

https://www.pgbouncer.org/config.html

Replicas
PGO deploys one PgBouncer instance by default. You may want to run multiple PgBouncer instances to have some level

of redundancy, though you still want to be mindful of how many connections are going to your Postgres database!

You can manage the number of PgBouncer instances that are deployed through the spec. pr oxy. pgBouncer. repli -
cas attribute.

Resources

You can manage the CPU and memory resources given to a PgBouncer instance through the spec. pr oxy. pgBounc-
er. resour ces attribute. The layout of spec. pr oxy. pgBouncer . r esour ces should be familiar: it follows the same
pattern as the standard Kubernetes structure for setting container resources.

For example, let's say we want to set some CPU and memory limits on our PgBouncer instances. We could add the following
configuration:

spec:

pr oxy:
pgBouncer :

https://www.pgbouncer.org/config.html
https://www.pgbouncer.org/config.html#section-databases
https://www.pgbouncer.org/config.html#section-databases
https://www.pgbouncer.org/config.html#section-users
https://www.pgbouncer.org/config.html#section-users
https://www.pgbouncer.org/config.html#include-directive
https://www.pgbouncer.org/config.html
https://www.pgbouncer.org/config.html
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

resour ces:
limts:
cpu: 200m
menory: 128M
As PGO deploys the PgBouncer instances using a Deployment these changes are rolled out using a rolling update to

minimize disruption between your application and Postgres instances!

Annotations / Labels

You can apply custom annotations and labels to your PgBouncer instances through the spec. pr oxy. pgBouncer . net a-
dat a. annot at i ons and spec. pr oxy. pgBouncer . nmet adat a. | abel s attributes respectively. Note that any changes
to either of these two attributes take precedence over any other custom labels you have added.

Pod Anti-Affinity / Pod Affinity / Node Affinity

You can control the pod anti-affinity, pod affinity, and node affinity through the spec. pr oxy. pgBouncer. affinity
attribute, specifically:

e spec. proxy. pgBouncer. af fi ni ty. nodeAf fi ni ty: controls node affinity for the PgBouncer instances.
e spec. proxy. pgBouncer. af fini ty. podAf fi nity:controls Pod affinity for the PgBouncer instances.

e spec. proxy. pgBouncer. af fi ni ty. podAnti Af fi ni ty: controls Pod anti-affinity for the PgBouncer instances.

Each of the above follows the standard Kubernetes specification for setting affinity.

For example, to set a preferred Pod anti-affinity rule for the kust om ze/ keycl oak example, you would want to add the
following to your configuration:

spec:
pr oxy:
pgBouncer :
affinity:
podAnti Affinity:
pr ef er redDur i ngSchedul i ngl gnor edDur i ngExecut i on
- weight: 1
podAf finityTerm
| abel Sel ect or:
mat chLabel s:
post gr es- oper at or. crunchydat a. com cl ust er: keycl oakdb
post gr es- oper at or. crunchydat a. com' r ol e: pgbouncer
t opol ogyKey: kuber net es. i o/ host nanme

Tolerations

You can deploy PgBouncer instances to Nodes with Taints by setting Tolerations through spec. pr oxy. pgBouncer . t ol -

er at i ons. This attribute follows the Kubernetes standard tolerations layout.

For example, if there were a set of Nodes with a Taint of r ol e=connect i on- pool er s: NoSchedul e that you want to
schedule your PgBouncer instances to, you could apply the following configuration:

spec:

pr oxy:
pgBouncer :

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

tol erati ons:
- effect: NoSchedul e
key: rol e
oper at or: Equal
val ue: connecti on- pool ers

Note that setting a toleration does not hecessarily mean that the PgBouncer instances will be assigned to Nodes with those
taints. Tolerations act as a key: they allow for you to access Nodes. If you want to ensure that your PgBouncer instances

are deployed to specific nodes, you need to combine setting tolerations with node affinity.

Pod Spread Constraints

Besides using affinity, anti-affinity and tolerations, you can also set Topology Spread Constraints through
spec. proxy. pgBouncer . t opol ogySpr eadConst r ai nt s. This attribute follows the Kubernetes standard topology

spread contraint layout.

For example, since each of of our pgBouncer Pods will have the standard post gr es- oper at or. cr unchyda-

ta. com rol e: pgbouncer Label set, we can use this Label when determining the nax Skew. In the example below, since
we have 3 nodes with a maxSkew of 1 and we've set whenUnsat i sfi abl e to Schedul eAnyway, we should ideally see
1 Pod on each of the nodes, but our Pods can be distributed less evenly if other constraints keep this from happening.

pr oxy:
pgBouncer :
replicas: 3
t opol ogySpr eadConstrai nts:
- maxSkew. 1
t opol ogyKey: ny- node- | abel
whenUnsat i sfi abl e: Schedul eAnyway
| abel Sel ect or:
mat chLabel s:
post gr es- oper at or. crunchydat a. com r ol e: pgbouncer

If you want to ensure that your PgBouncer instances are deployed more evenly (or not deployed at all), you need to update
whenUnsat i sfi abl e to DoNot Schedul e.

Next Steps

Now that we can enable connection pooling in a cluster, let's explore some ways that we can manage users and databases
in our Postgres cluster using PGO.

User / Database Management

PGO comes with some out-of-the-box conveniences for managing users and databases in your Postgres cluster. However,
you may have requirements where you need to create additional users, adjust user privileges or add additional databases
to your cluster.

For detailed information for how user and database management works in PGO, please see the User Management section
of the architecture guide.

https://blog.crunchydata.com/blog/kubernetes-pod-tolerations-and-postgresql-deployment-strategies
https://blog.crunchydata.com/blog/kubernetes-pod-tolerations-and-postgresql-deployment-strategies
https://blog.crunchydata.com/blog/kubernetes-pod-tolerations-and-postgresql-deployment-strategies
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/

Creating a New User

You can create a new user with the following snippet in the post gr escl ust er custom resource. Let's add this to our
hi ppo database:

spec:
users:
- nane: rhi no

You can now apply the changes and see that the new user is created. Note the following:
e The user would only be able to connect to the default post gr es database.
¢ The user will not have any connection credentials populated into the hi ppo- pguser - r hi no Secret.

* The user is unprivileged.

Let's create a new database named zoo that we will let the r hi no user access:

spec:
users:
- name: rhino
dat abases:
- 700

Inspect the hi ppo- pguser - r hi no Secret. You should now see that the dbnane and uri fields are now populated!

We can set role privileges by using the standard role attributes that Postgres provides and adding them to the
spec. users. opti ons. Let's say we want the rhino to become a superuser (be careful about doling out Postgres
superuser privileges!). You can add the following to the spec:

spec:
users:
- name: rhino
dat abases:
- Z00
options: " SUPERUSER"

There you have it: we have created a Postgres user named r hi no with superuser privileges that has access to the zoo
database (though a superuser has access to all databases!).

Adjusting Privileges

Let's say you want to revoke the superuser privilege from r hi no. You can do so with the following:

spec:
users:
- name: rhino
dat abases:
- Z00
options: " NOSUPERUSER'

If you want to add multiple privileges, you can add each privilege with a space between them in opt i ons, e.g.:

spec:
users:

https://www.postgresql.org/docs/current/role-attributes.html

- name: rhino
dat abases:
- 700
opti ons: " CREATEDB CREATERCLE"

Managing the post gr es User

By default, PGO does not give you access to the post gr es user. However, you can get access to this account by doing
the following:

spec:
users:
- name: postgres

This will create a Secret of the pattern <cl ust er Nane>- pguser - post gr es that contains the credentials of the
post gr es account. For our hi ppo cluster, this would be hi ppo- pguser - post gr es.

Deleting a User

PGO does not delete users automatically: after you remove the user from the spec, it will still exist in your cluster. To remove
a user and all of its objects, as a superuser you will need to run DROP OANEDIn each database the user has objects in, and
DROP ROLEin your Postgres cluster.

For example, with the above r hi no user, you would run the following:

DROP OANED BY r hi no;
DROP RCLE r hi no;

Note that you may need to run DROP OANED BY r hi no CASCADEyased upon your object ownership structure -- be very
careful with this command!

Deleting a Database

PGO does not delete databases automatically: after you remove all instances of the database from the spec, it will still exist
in your cluster. To completely remove the database, you must run the DROP DATABASEcommand as a Postgres superuser.

For example, to remove the zoo database, you would execute the following:

DROP DATABASE zo00;

Delete a Postgres Cluster

There comes a time when it is necessary to delete your cluster. If you have been following along with the example, you

can delete your Postgres cluster by simply running:
kubect | del et e - k kust om ze/ post gres

PGO will remove all of the objects associated with your cluster.

https://www.postgresql.org/docs/current/sql-drop-owned.html
https://www.postgresql.org/docs/current/sql-droprole.html
https://www.postgresql.org/docs/current/sql-dropdatabase.html
https://github.com/CrunchyData/postgres-operator-examples

With data retention, this is subject to the retention policy of your PVC. For more information on how Kubernetes manages

data retention, please refer to the Kubernetes docs on volume reclaiming.

Backup and Disaster Recovery

Database backups create exciting opportunities. When you need to provision development and staging environments, your
backups help you to mimic production.

When you need to share data across teams, backing up to shared buckets makes access easy. And most importantly, when
a worst case scenario arises, having the ability to restore from your backups will keep you safe from catastrophe.

In Backup Configuration we'll show you how to backup your data to multiple locations for safe keeping. In Backup
Management we'll show you how to create backup schedules, retention policies and how to take one-off backups whenever
you want. In Disaster Recovery and Cloning we'll show you how to design against disaster with standy clusters and how
to practice disaster recovery, so that you'll have the hands-on experience to handle a worst case scenario.

Backup Configuration

An important part of a healthy Postgres cluster is maintaining backups. PGO optimizes its use of open source pgBackRest
to be able to support terabyte size databases. What's more, PGO makes it convenient to perform many common and
advanced actions that can occur during the lifecycle of a database, including:

e Setting automatic backup schedules and retention policies

» Backing data up to multiple locationse Support for backup storage in Kubernetes, AWS S3 (or S3-compatible systems
like MinlO), Google Cloud Storage (GCS), and Azure Blob Storage

» Taking one-off / ad hoc backups
 Performing a "point-in-time-recovery"
¢ Cloning data to a new instance

and more.

Let's explore the various disaster recovery features in PGO by first looking at how to set up backups.

Understanding Backup Configuration and Basic Operations

The backup configuration for a PGO managed Postgres cluster resides in the spec. backups. pgbackr est section of
a custom resource. In addition to indicating which version of pgBackRest to use, this section allows you to configure the
fundamental backup settings for your Postgres cluster, including:

e spec. backups. pgbackrest . confi gur ati on - allows you to add additional configuration and references to Secrets
that are needed for configuration your backups. For example, this may reference a Secret that contains your S3 credentials.

* spec. backups. pgbackrest . gl obal - a convenience for applying global pgBackRest configuration. An example of

this may be setting the global pgBackRest logging level (e.g.| og- | evel - consol e: i nf 9, or providing configuration to
optimize performance.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reclaiming
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reclaiming
https://pgbackrest.org/
https://pgbackrest.org/configuration.html

« spec. backups. pgbackr est . r epos - information on each specific pgBackRest backup repository. This allows you
to configure where and how your backups and WAL archive are stored. You can keep backups in up to four (4) different
locations!

You can configure the r epos section based on the backup storage system you are looking to use. Specifically, you
configure your r epos section according to the storage type you are using. There are four storage types available in
spec. backups. pgbackr est . repos:

Storage Type Description

azure For use with Azure Blob Storage.

gcs For use with Google Cloud Storage (GCS).

s3 For use with Amazon S3 or any S3 compatible storage system such as MinlO.
vol une For use with a Kubernetes Persistent Volume.

Regardless of the backup storage system you select, you must assign a name to spec. backups. pgbackrest. re-
pos. nane, e.g.r epol. pgBackRest follows the convention of assigning configuration to a specific repository using a

r epoNformat, e.g.repol, r epo2, etc. You can customize your configuration based upon the name that you assign in the
spec. We will cover this topic further in the multi-repository example.

By default, backups are stored in a directory that follows the pattern pgbackr est / r epoNwhere Nis the number of the
repo. This typically does not present issues when storing your backup information in a Kubernetes volume, but it can present
complications if you are storing all of your backups in the same backup in a blob storage system like S3/GCS/Azure. You
can avoid conflicts by setting the r epoN- pat h variable in spec. backups. pgbackr est . gl obal . The convention we
recommend for setting this variable is / pgbackr est / $NAMESPACE/ $CLUSTER_NAME/ r epoN. For example, if | have a
cluster named hi ppo in the namespace post gr es- oper at or, | would set the following:

spec:
backups:
pgbackrest :
gl obal :
repol- pat h: / pgbackrest/ post gres- oper at or/ hi ppo/ repol

As mentioned earlier, you can store backups in up to four different repositories. You can also mix and match, e.g. you could
store your backups in two different S3 repositories. Each storage type does have its own required attributes that you need
to set. We will cover that later in this section.

Now that we've covered the basics, let's learn how to set up our backup repositories!

Setting Up a Backup Repository

As mentioned above, PGO, the Postgres Operator from Crunchy Data, supports multiple ways to store backups. Let's look
into each method and see how you can ensure your backups and archives are being safely stored!

Using Kubernetes Volumes

The simplest way to get started storing backups is to use a Kubernetes Volume. This was already configured as part of
the create a Postgres cluster example. Let's take a closer look at some of that configuration:

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

- name: repol

vol une:
vol umed ai npec:
accesshbdes:
- "ReadW i t eOnce"
r esour ces:
requests:
storage: 1G

The one requirement of volume is that you need to fill out the vol uned ai nSpec attribute. This attribute uses the same
format as a persistent volume claim spec! In fact, we performed a similar set up when we created a Postgres cluster.

In the above example, we assume that the Kubernetes cluster is using a default storage class. If your cluster does not
have a default storage class, or you wish to use a different storage class, you will have to set spec. backups. pgback-
rest.repos. vol une. vol uned ai nSpec. st or ageCd assNarne.

Using S3
Setting up backups in S3 requires a few additional modifications to your custom resource spec and either

« the use of a Secret to protect your S3 credentials, or

 setting up identity providers in AWS to allow pgBackRest to assume a role with permissions.

Using S3 Credentials

There is an example for creating a Postgres cluster that uses S3 for backups in the kust oni ze/ s3 directory in the
Postgres Operator examples repository. In this directory, there is a file called s3. conf . exanpl e. Copy this example file

to s3. conf:
cp s3. conf. exanpl e s3. conf

Note that s3. conf is protected from commitby a . gi ti gnore.

Open up s3. conf, you will see something similar to:

repol- s3- key=<YOUR_AW5 S3 KEY>
repol-s3- key-secret =<YOUR_AWS S3 KEY_SECRET>

Replace the values with your AWS S3 credentials and save.

Now, open up kust om ze/ s3/ post gr es. yani . In the s3 section, you will see something similar to:

s3:
bucket: "<YOUR AW5 S3 BUCKET NAME>"
endpoi nt: "<YOUR_AWS_S3_ENDPQO NT>"
regi on: "<YOUR_AWS S3 REGQ ON>"

Again, replace these values with the values that match your S3 configuration. For endpoi nt , only use the domain and, if
necessary, the port (e.g. s3. us- east - 2. amazonaws. com.

Note that r egi on is required by S3, as does pgBackRest. If you are using a storage system with a S3 compatibility layer
that does not require r egi on, you can fill in region with a random value.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://github.com/CrunchyData/postgres-operator-examples

If you are using MinlO, you may need to set the URI style to use pat h mode. You can do this from the global settings, e.g.
for r epol:

spec:
backups:
pgbackrest :
gl obal :
repol-s3-uri-style: path

When your configuration is saved, you can deploy your cluster:
kubect | apply -k kust oni ze/ s3

Watch your cluster: you will see that your backups and archives are now being stored in S3!

Using an AWS-integrated identity provider and role

If you deploy PostgresClusters to AWS Elastic Kubernetes Service, you can take advantage of their IAM role integration.
When you attach a certain annotation to your PostgresCluster spec, AWS will automatically mount an AWS token and
other needed environment variables. These environment variables will then be used by pgBackRest to assume the identity
of a role that has permissions to upload to an S3 repository.

This method requires additional setup in AWS IAM. Use the procedure in the linked documentation for the first two steps

described below:
« Create an OIDC provider for your EKS cluster.

« Create an IAM policy for bucket access and an IAM role with a trust relationship with the OIDC provider in step 1.

The third step is to associate that IAM role with a ServiceAccount, but there's no need to do that manually, as PGO does
that for you. First, make a note of the IAM role's ARN.

You can then make the following changes to the files in the kust om ze/ s3 directory in the Postgres Operator examples

repository:

1. Add the s3 section to the spec in kust omi ze/ s3/ post gr es. yam as discussed in the Using S3 Credentials section

above. In addition to that, add the required eks. amazonaws. coni r ol e- ar n annotation to the PostgresCluster spec
using the IAM ARN that you noted above.

For instance, given an IAM role with the ARN ar n: aws: i am : 123456768901: rol e/ al | ow_bucket access, you
would add the following to the PostgresCluster spec:

spec:
nmet adat a:
annot at i ons:
eks. amazonaws. com rol e-arn: "arn: aws: i am: 123456768901: rol e/ al | ow_bucket access"

That annot at i ons field will get propagated to the ServiceAccounts that require it automatically.

2. Copy the s3. conf . exanpl e file to s3. conf:

cp s3. conf. exanpl e s3. conf

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://github.com/CrunchyData/postgres-operator-examples

Update that kust om ze/ s3/ s3. conf file so that it looks like this:
repol-s3-key-type=web-id
Thatrepol- s3- key-type=web-i d line will tell pgBackRest to use the IAM integration.
With those changes saved, you can deploy your cluster:
kubect | apply -k kust oni ze/ s3

And watch as it spins up and backs up to S3 using pgBackRest's IAM integration.

Using Google Cloud Storage (GCS)

Similar to S3, setting up backups in Google Cloud Storage (GCS) requires a few additional modifications to your custom
resource spec and the use of a Secret to protect your GCS credentials.

There is an example for creating a Postgres cluster that uses GCS for backups in the kust om ze/ gcs directory in the
Postgres Operator examples repository. In order to configure this example to use GCS for backups, you will need do two

things.

First, copy your GCS key secret (which is a JSON file) into kust om ze/ gcs/ gcs- key. j son. Note thata . gi ti gnore
directive prevents you from committing this file.

Next, open the post gr es. yanl file and edit spec. backups. pgbackr est . repos. gcs. bucket to the name of the
GCS bucket that you want to back up to.

Save this file, and then run:
kubect | apply -k kust om ze/ gcs

Watch your cluster: you will see that your backups and archives are now being stored in GCS!

Using Azure Blob Storage

Similar to the above, setting up backups in Azure Blob Storage requires a few additional modifications to your custom
resource spec and the use of a Secret to protect your Azure Storage credentials.

There is an example for creating a Postgres cluster that uses Azure for backups in the kust omi ze/ azur e directory in the
Postgres Operator examples repository. In this directory, there is a file called azur e. conf . exanpl e. Copy this example

file to azur e. conf :
cp azur e. conf . exanpl e azur e. conf

Note that azur e. conf is protected from commit by a. gi ti gnor e.

Open up azur e. conf , you will see something similar to:

repol- azur e- account =<YOUR_AZURE_ACCOUNT>
repol- azur e- key=<YOUR_AZURE_ KEY>

https://pgbackrest.org/configuration.html#section-repository/option-repo-s3-key-type
https://github.com/CrunchyData/postgres-operator-examples
https://github.com/CrunchyData/postgres-operator-examples

Replace the values with your Azure credentials and save.

Now, open up kust om ze/ azur e/ post gr es. yanl . In the azur e section, you will see something similar to:

azure:
cont ai ner: " <YOUR_AZURE_CONTAI NER>"

Again, replace these values with the values that match your Azure configuration.

When your configuration is saved, you can deploy your cluster:
kubect | apply -k kust oni ze/ azure

Watch your cluster: you will see that your backups and archives are now being stored in Azure!

Set Up Multiple Backup Repositories

It is possible to store backups in multiple locations! For example, you may want to keep your backups both within your
Kubernetes cluster and S3. There are many reasons for doing this:

« It is typically faster to heal Postgres instances when your backups are closer
* You can set different backup retention policies based upon your available storage

* You want to ensure that your backups are distributed geographically
and more.

PGO lets you store your backups in up to four locations simultaneously. You can mix and match: for example, you can store
backups both locally and in GCS, or store your backups in two different GCS repositories. It's up to you!

There is an example in the Postgres Operator examples repository in the kust omi ze/ mul ti - backup- r epo folder that

sets up backups in four different locations using each storage type. You can modify this example to match your desired
backup topology.

Additional Notes

While storing Postgres archives (write-ahead log [WAL] files) occurs in parallel when saving data to multiple pgBackRest
repos, you cannot take parallel backups to different repos at the same time. PGO will ensure that all backups are taken
serially. Future work in pgBackRest will address parallel backups to different repos. Please don't confuse this with parallel
backup: pgBackRest does allow for backups to use parallel processes when storing them to a single repo!

Encryption

You can encrypt your backups using AES-256 encryption using the CBC mode. This can be used independent of any
encryption that may be supported by an external backup system.

To encrypt your backups, you need to set the cipher type and provide a passphrase. The passphrase should be long and
random (e.g. the pgBackRest documentation recommends openssl! rand - base64 48The passphrase should be kept
in a Secret.

https://github.com/CrunchyData/postgres-operator-examples

Let's use our hi ppo cluster as an example. Let's create a new directory. First, create a file called pgbackr est - se-
crets. conf in this directory. It should look something like this:

repol- ci pher-pass=your - super - secur e- encrypti on- key- passphr ase

This contains the passphrase used to encrypt your data.

Next, create a kust om zati on. yanl file that looks like this:

namespace: post gres- oper at or

secr et Generat or: - nanme: hi ppo- pgbackrest -secrets
files:
- pgbackrest-secrets. conf

gener at or Opti ons: di sabl eNanmeSuf fi xHash: true

resources: - postgres. yani
Finally, create the manifest for the Postgres cluster in a file named post gr es. yani that is similar to the following:

api Ver si on: post gres- operat or. crunchydata. com vlbetal
ki nd: Post gresd ust er
net adat a
nane: hi ppo
spec:
i mage: regi stry. devel opers. crunchydat a. conf cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3-2
post gr esVer si on: 15
i nst ances:
- dat aVol uned ai nSpec:
accesshMdes:
- ' ReadWiteOnce’
resour ces
requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
configuration:
- secret:
nane: hi ppo- pgbackr est -secrets
gl obal :
r epol- ci pher-type: aes-256-cbhc
r epos:
- nanme: repol
vol une:
vol umed ai nmSpec:
accesshMdes:
- ' ReadWi t eOnce'
resour ces:
requests:
storage: 1G

Notice the reference to the Secret that contains the encryption key:

spec:

backups:
pgbackrest :
confi guration:

- secret:
nane: hi ppo- pgbackr est -secrets

as well as the configuration for enabling AES-256 encryption using the CBC mode:
spec:
backups:
pgbackrest :

gl obal :
repol- ci pher-type: aes-256-cbc

You can now create a Postgres cluster that has encrypted backups!

Limitations

Currently the encryption settings cannot be changed on backups after they are established.

Custom Backup Configuration

Most of your backup configuration can be configured through the spec. backups. pgbackr est . gl obal attribute, or
through information that you supply in the ConfigMap or Secret that you refer to in spec. backups. pgbackr est . con-
fi gurati on.You can also provide additional Secret values if need be, e.g.r epol- ci pher - pass for encrypting backups.

The full list of pgBackRest configuration options is available here:

https://pgbackrest.org/configuration.html

IPv6 Support

If you are running your cluster in an IPv6-only environment, you will need to add an annotation to your PostgresCluster
so that PGO knows to set pgBackRest'st | s- ser ver - addr ess to an IPv6 address. Otherwise, t | s- ser ver - addr ess
will be set to 0. 0. 0. 0, making pgBackRest inaccessible, and backups will not run. The annotation should be added as

shown below:

api Ver si on: post gr es- oper at or. crunchydat a. com vlbet al
ki nd: Post gresd ust er
net adat a:
nane: hi ppo
annot at i ons:
post gr es- oper at or. crunchydat a. com pgbackr est -i p-versi on: | Pv6

Next Steps

We've now seen how to use PGO to get our backups and archives set up and safely stored. Now let's take a look at backup
management and how we can do things such as set backup frequency, set retention policies, and even take one-off

backups!

Backup Management

https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html

In the previous section, we looked at a brief overview of the full disaster recovery feature set that PGO provides and
explored how to configure backups for our Postgres cluster.

Now that we have backups set up, lets look at some of the various backup management tasks we can perform. These
include:

» Setting up scheduled backups

« Setting backup retention policies

« Taking one-off / ad hoc backups

Managing Scheduled Backups

PGO sets up your Postgres clusters so that they are continuously archiving the write-ahead |log: your data is constantly
being stored in your backup repository. Effectively, this is a backup!

However, in a disaster recovery scenario, you likely want to get your Postgres cluster back up and running as quickly as

possible (e.g. a short "recovery time objective (RTO)"). What helps accomplish this is to take periodic backups. This makes
it faster to restore!

pgBackRest, the backup management tool used by PGO, provides different backup types to help both from a space
management and RTO optimization perspective. These backup types include:

e ful | : A backup of your entire Postgres cluster. This is the largest of all of the backup types.
« di fferential : Abackup of all of the data since the last f ul | backup.

« i ncrenent al : A backup of all of the data since the lastful | ,di fferenti al, ori ncrenent al backup.

Selecting the appropriate backup strategy for your Postgres cluster is outside the scope of this tutorial, but let's look at
how we can set up scheduled backups.

Backup schedules are stored in the spec. backups. pgbackr est . r epos. schedul es section. Each value in this
section accepts a cron-formatted string that dictates the backup schedule.

Let's say that our backup policy is to take a full backup weekly on Sunday at 1am and take differential backups daily at
lam on every day except Sunday. We would want to add configuration to our spec that looks similar to:

spec:
backups:
pgbackrest :
r epos:
- name: repol
schedul es:
full: "01** 0"
differential: "01** 1-6"

To manage scheduled backups, PGO will create several Kubernetes CronJobs that will perform backups on the specified
periods. The backups will use the configuration that you specified.

Ensuring you take regularly scheduled backups is important to maintaining Postgres cluster health. However, you don't
need to keep all of your backups: this could cause you to run out of space! As such, it's also important to set a backup
retention policy.

https://www.postgresql.org/docs/current/wal-intro.html
https://en.wikipedia.org/wiki/Disaster_recovery#Recovery_Time_Objective
https://pgbackrest.org/
https://docs.k8s.io/concepts/workloads/controllers/cron-jobs/#cron-schedule-syntax
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/

Managing Backup Retention

PGO lets you set backup retention on full and differential backups. When a full backup expires, either through your retention
policy or through manual expiration, pgBackRest will clean up any backup and WAL files associated with it. For example,
if you have a full backup with four associated incremental backups, when the full backup expires, all of its incremental
backups also expire.

There are two different types of backup retention you can set:
e count : This is based on the number of backups you want to keep. This is the default.
e ti ne: This is based on the total number of days you would like to keep a backup.

Let's look at an example where we keep full backups for 14 days. The most convenient way to do this is through the
spec. backups. pgbackr est . gl obal section:

spec:
backups:
pgbackrest :
gl obal :
repol-retention-full: "14"
repol-retention-full-type: tine

The full list of available configuration options is in the pgBackRest configuration guide.

Taking a One-Off Backup

There are times where you may want to take a one-off backup, such as before major application changes or updates. This
is not your typical declarative action -- in fact a one-off backup is imperative in its nature! -- but it is possible to take a
one-off backup of your Postgres cluster with PGO.

First, you need to configure the spec. backups. pgbackr est . manual section to be able to take a one-off backup. This
contains information about the type of backup you want to take and any other pgBackRest configuration options.

Let's configure the custom resource to take a one-off full backup:

spec:
backups:
pgbackrest :
manual
repoNane: repol
options:
- --type=full

This does not trigger the one-off backup -- you have to do that by adding the post gr es- oper at or . cr unchyda-
t a. com pgbackr est - backup annotation to your custom resource. The best way to set this annotation is with a
timestamp, so you know when you initialized the backup.

For example, for our hi ppo cluster, we can run the following command to trigger the one-off backup:

kubect | annot at e - n post gr es- oper at or post grescl ust er hi ppo\
post gr es- oper at or . crunchydat a. coni pgbackr est - backup="$(dat e) "

https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html

PGO will detect this annotation and create a new, one-off backup Job!

If you intend to take one-off backups with similar settings in the future, you can leave those in the spec; just update the
annotation to a different value the next time you are taking a backup.

To re-run the command above, you will need to add the - - over wri t e flag so the annotation's value can be updated, i.e.

kubect | annot at e - n post gr es- oper at or post grescl uster hi ppo--overwite\
post gr es- oper at or. crunchydat a. conml pgbackr est - backup="$(dat e) "

Next Steps

We've covered the fundamental tasks with managing backups. What about restores? Or cloning data into new Postgres

clusters? Let's explore!

Disaster Recovery and Cloning

Perhaps someone accidentally dropped the user s table. Perhaps you want to clone your production database to a
step-down environment. Perhaps you want to exercise your disaster recovery system (and it is important that you do!).

Regardless of scenario, it's important to know how you can perform a "restore" operation with PGO to be able to recovery
your data from a particular point in time, or clone a database for other purposes.

Let's look at how we can perform different types of restore operations. First, let's understand the core restore properties

on the custom resource.

Restore Properties

@ Info

As of v5.0.5, PGO offers the ability to restore from an existing PostgresCluster or a remote cloud-based data
source, such as S3, GCS, etc. For more on that, see the Clone From Backups Stored in S3 / GCS / Azure Blob

Storage section.

Note that you cannot use both a local PostgresCluster data source and a remote cloud-based data source at one
time; if both the dat aSour ce. post gr esCl ust er and dat aSour ce. pgbackr est fields are filled in, the local
PostgresCluster data source will take precedence.

There are several attributes on the custom resource that are important to understand as part of the restore process. All of
these attributes are grouped together in the spec. dat aSour ce. post gr esC ust er section of the custom resource.

Please review the table below to understand how each of these attributes work in the context of setting up a restore
operation.

e spec. dat aSour ce. post gr esC ust er . cl ust er Nane: The name of the cluster that you are restoring from. This
corresponds to the nmet adat a. nane attribute on a different post gr escl ust er custom resource.

* spec. dat aSour ce. post gr esC ust er . cl ust er Nanespace: The namespace of the cluster that you are restoring
from. Used when the cluster exists in a different namespace.

e spec. dat aSour ce. post gr esC ust er . r epoNane: The name of the pgBackRest repository from the spec. dat a-
Sour ce. post gr esCl ust er. cl ust er Nane to use for the restore. Can be one of r epol, r epo2, r epo3, orr epo4.The
repository must exist in the other cluster.

* spec. dat aSour ce. post gr esCl ust er. opt i ons: Any additional pgBackRest restore options or general options that

PGO allows. For example, you may want to set - - pr ocess- max to help improve performance on larger databases; but
you will not be able to set- - t ar get - act i on, since that option is currently disallowed. (PGO always sets it to pr onot e
ifa--target is present, and otherwise leaves it blank.)

* spec. dat aSour ce. post gr esC ust er. resour ces: Setting resource limits and requests of the restore job can

ensure that it runs efficiently.

e spec. dat aSour ce. post gresC ust er. af fi ni ty: Custom Kubernetes affinity rules constrain the restore job so

that it only runs on certain nodes.

e spec. dat aSour ce. post gresCl ust er. t ol erati ons: Custom Kubernetes tolerations allow the restore job to run

on tainted nodes.

Let's walk through some examples for how we can clone and restore our databases.

Clone a Postgres Cluster

Let's create a clone of our hi ppo cluster that we created previously. We know that our cluster is named hi ppo (based on
its met adat a. nane) and that we only have a single backup repository called r epol.

Let's call our new cluster el ephant . We can create a clone of the hi ppo cluster using a manifest like this:

api Ver si on: post gres- operat or. crunchydata. com vlbetal
ki nd: Post gresd ust er
nmet adat a
nane: el ephant
spec:
dat aSour ce:
post gresCl ust er:
cl ust er Nane: hi ppo
repoNane: repol
i mage: regi stry. devel opers. crunchydat a. coni cr unchydat a/ cr unchy- post gr es: ubi 8- 15. 3-2
post gr esVer si on: 15
i nst ances:
- dat aVol umed ai nSpec:
accesshMbdes:
- "ReadWit eOnce"
resour ces
requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- name: repol
vol une:
vol umed ai nmSpec:
accesshMbdes:
- "ReadWit eOnce"
resour ces:

https://pgbackrest.org/command.html#command-restore
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#requests-and-limits
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

requests:
storage: 1G

Note this section of the spec:
spec:
dat aSour ce:
post gresCl uster:

cl ust er Nane: hi ppo
repoNane: repol

This is the part that tells PGO to create the el ephant cluster as an independent copy of the hi ppo cluster.

The above is all you need to do to clone a Postgres cluster! PGO will work on creating a copy of your data on a new
persistent volume claim (PVC) and work on initializing your cluster to spec. Easy!

Perform a Point-in-time-Recovery (PITR)

Did someone drop the user table? You may want to perform a point-in-time-recovery (PITR) to revert your database back
to a state before a change occurred. Fortunately, PGO can help you do that.

You can set up a PITR using the restore command of pgBackRest, the backup management tool that powers the disaster

recovery capabilities of PGO. You will need to set a few options on spec. dat aSour ce. post gresC ust er. opti ons
to perform a PITR. These options include:

e --type=ti nme: This tells pgBackRest to perform a PITR.

e --target:Where to perform the PITR to. An example recovery target is 2021- 06- 09 14: 15: 11- 04 The timezone
specified here as -04 for EDT. Please see the pgBackRest documentation for other timezone options.

e --set (optional): Choose which backup to start the PITR from.

A few quick notes before we begin:

« To perform a PITR, you must have a backup that finished before your PITR time. In other words, you can't perform a
PITR back to a time where you do not have a backup!

 All relevant WAL files must be successfully pushed for the restore to complete correctly.

« Be sure to select the correct repository name containing the desired backup!

With that in mind, let's use the el ephant example above. Let's say we want to perform a point-in-time-recovery (PITR) to
2021- 06- 09 14: 15: 11- 04 we can use the following manifest:

api Ver si on: post gres- operat or. crunchydat a. com vlbet al
ki nd: Post gresd ust er
net adat a:
nane: el ephant
spec:
dat aSour ce:
post gresCl ust er:
cl ust er Nane: hi ppo
repoNane: repol
options:
- --type=tinme
- --target="2021- 06-09 14: 15: 11- 04"
i mage: regi stry. devel opers. crunchydat a. conf cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3-2
post gr esVer si on: 15

https://pgbackrest.org/command.html#command-restore
https://www.pgbackrest.org
https://pgbackrest.org/user-guide.html#pitr

i nst ances:
- dat aVol uned ai nSpec
accesshMdes:
- "ReadWit eOnce"
resour ces
requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- hanme: repol
vol une:
vol umed ai nSpec
accesshMbdes:
- "ReadW it eOnce"
resour ces:
requests:
storage: 1G

The section to pay attention to is this:

spec:
dat aSour ce:

post gresCl ust er:

cl ust er Nane: hi ppo

repoNane: repol

opti ons:

- --type=tine

- --target="2021-06- 09 14: 15: 11- 04"

Notice how we put in the options to specify where to make the PITR.

Using the above manifest, PGO will go ahead and create a new Postgres cluster that recovers its data up until
2021- 06- 09 14: 15: 11- 04 At that point, the cluster is promoted and you can start accessing your database from that
specific point in time!

Perform an In-Place Point-in-time-Recovery (PITR)

Similar to the PITR restore described above, you may want to perform a similar reversion back to a state before a change
occurred, but without creating another PostgreSQL cluster. Fortunately, PGO can help you do this as well.

You can set up a PITR using the restore command of pgBackRest, the backup management tool that powers the disaster
recovery capabilities of PGO. You will need to set a few options on spec. backups. pgbackrest. restore. opti ons
to perform a PITR. These options include:

e --type=ti me: This tells pgBackRest to perform a PITR.
e --target:Where to perform the PITR to. An example recovery target is 2021- 06- 09 14: 15: 11- 04

e --set (optional): Choose which backup to start the PITR from.

A few quick notes before we begin:

» To perform a PITR, you must have a backup that finished before your PITR time. In other words, you can't perform a
PITR back to a time where you do not have a backup!

https://pgbackrest.org/command.html#command-restore
https://www.pgbackrest.org

« All relevant WAL files must be successfully pushed for the restore to complete correctly.

< Be sure to select the correct repository name containing the desired backup!

To perform an in-place restore, users will first fill out the restore section of the spec as follows:

spec:
backups:
pgbackrest :
restore:
enabl ed: true
repoNane: repol
options:
- --type=tine
- --target="2021-06- 09 14: 15: 11- 04"

And to trigger the restore, you will then annotate the PostgresCluster as follows:

kubect | annot at e - n post gr es- oper at or post grescl uster hi ppo--overwite\
post gr es- oper at or. crunchydat a. com pgbackr est - rest ore=i d1

And once the restore is complete, in-place restores can be disabled:

spec:
backups:
pgbackrest :
restore:
enabl ed: fal se

Notice how we put in the options to specify where to make the PITR.

Using the above manifest, PGO will go ahead and re-create your Postgres cluster to recover its data up until
2021- 06- 09 14: 15: 11- 04 At that point, the cluster is promoted and you can start accessing your database from that
specific point in time!

Restore Individual Databases

You might need to restore specific databases from a cluster backup, for performance reasons or to move selected
databases to a machine that does not have enough space to restore the entire cluster backup.

N\ Warning

pgBackRest supports this case, but it is important to make sure this is what you want. Restoring in this manner will
restore the requested database from backup and make it accessible, but all of the other databases in the backup
will NOT be accessible after restore.

For example, if your backup includes databasest est 1, t est 2, and t est 3, and you request that t est 2 be
restored, the t est 1 and t est 3 databases will NOT be accessible after restore is completed. Please review the
pgBackRest documentation on the limitations on restoring individual databases.

You can restore individual databases from a backup using a spec similar to the following:

https://pgbackrest.org/user-guide.html#restore/option-db-include

spec:
backups:
pgbackr est :

restore:

enabl ed: true

repoNane: repol

opti ons:

- --db-i ncl ude=hi ppo

where - - db- i ncl ude=hi ppo would restore only the contents of the hi ppo database.

Standby Cluster

Advanced high-availability and disaster recovery strategies involve spreading your database clusters across data centers to
help maximize uptime. PGO provides ways to deploy postgresclusters that can span multiple Kubernetes clusters using an
external storage system or PostgreSQL streaming replication. The disaster recovery architecture documentation provides
a high-level overview of using standby clusters with PGO.

Creating a standby Cluster

This tutorial section will describe how to create three different types of standby clusters, one using an external storage
system, one that is streaming data directly from the primary, and one that takes advantage of both external storage and
streaming. These example clusters can be created in the same Kubernetes cluster, using a single PGO instance, or spread
across different Kubernetes clusters and PGO instances with the correct storage and networking configurations.

Repo-based Standby

A repo-based standby will recover from WAL files that a pgBackRest repo stored in external storage. The primary
cluster should be created with a cloud-based backup configuration. The following manifest defines a Postgrescluster with
st andby. enabl ed set to true and r epoName configured to point to the s3 repo configured in the primary:

api Ver si on: post gr es- oper at or. crunchydat a. com vlbet al

ki nd: Post gresd ust er

net adat a:
nane: hi ppo- st andby

spec:
i mage: regi stry. devel opers. crunchydat a. conf cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3- 2
post gr esVer si on: 15

i nst ances:
- dat aVol umed ai nSpec: { accessModes: [ReadW it eOnce], resources: { requests: { storage: 1G } } }
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- nhanme: repol
s3:

bucket: "ny-bucket"
endpoi nt: "s3. ca-central - 1. amazonaws. cont
regi on: "ca-central - 1"
st andby:
enabl ed: true
repoNane: repol

Streaming Standby

A streaming standby relies on an authenticated connection to the primary over the network. The primary cluster should
be accessible via the network and allow TLS authentication (TLS is enabled by default). In the following manifest, we
have st andby. enabl ed set to t r ue and have provided both the host and port that point to the primary cluster. We
have also defined cust onTLSSecr et and cust onRepl i cati onTLSSecr et to provide certs that allow the standby to
authenticate to the primary. For this type of standby, you must use custom TLS:

api Ver si on: post gres-operator. crunchydata. com vlibetal
ki nd: Post gresd ust er
net adat a
nane: hi ppo- st andby
spec:
i mage: regi stry. devel opers. crunchydat a. coni cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3-2
post gr esVer si on: 15
i nst ances:

- dat aVol umed ai nSpec: { accessModes: [ReadWiteOnce], resources: { requests: { storage: 1G } } }
backups:

pgbackrest :

r epos:

- nhanme: repol

vol une:
vol umed ai nSpec: { accessMbdes: [ReadWiteOnce], resources: { requests: { storage: 1G } } }

cust onrLSSecr et :

nanme: cl uster-cert
cust onRepl i cati onTLSSecr et :

nanme: replication-cert
st andby:

enabl ed: true

host: "192.0. 2. 2"

port: 5432

Streaming Standby with an External Repo

Another option is to create a standby cluster using an external pgBackRest repo that streams from the primary. With this
setup, the standby cluster will continue recovering from the pgBackRest repo if streaming replication falls behind. In this
manifest, we have enabled the settings from both previous examples:

api Ver si on: post gres- oper at or. crunchydat a. com vlbetal

ki nd: Post gresd ust er

net adat a

nane: hi ppo- st andby

spec:

i mage: regi stry. devel opers. crunchydat a. conif cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3-2
post gr esVer si on: 15

i nst ances:
- dat aVol uned ai nSpec: { accessMdes: [ReadWiteOnce], resources: { requests: { storage: 1G } }}
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- name: repol
s3:

bucket: "ny- bucket"
endpoi nt: "s3.ca-central - 1. amazonaws. cont
regi on: "ca-central - 1"

cust onrLSSecr et :

nanme: cl uster-cert

cust onRepl i cati onTLSSecr et :

nane: replication-cert
st andby:

enabl ed: true
repoNane: repol

host: "192.0. 2. 2"
port: 5432

Promoting a Standby Cluster

At some point, you will want to promote the standby to start accepting both reads and writes. This has the net effect of
pushing WAL (transaction archives) to the pgBackRest repository, so we need to ensure we don't accidentally create a
split-brain scenario. Split-brain can happen if two primary instances attempt to write to the same repository. If the primary
cluster is still active, make sure you shutdown the primary before trying to promote the standby cluster.

Once the primary is inactive, we can promote the standby cluster by removing or disabling its spec. st andby section:

spec:
st andby:
enabl ed: fal se

This change triggers the promotion of the standby leader to a primary PostgreSQL instance and the cluster begins
accepting writes.

Clone From Backups Stored in S3/GCS / Azure Blob Storage

You can clone a Postgres cluster from backups that are stored in AWS S3 (or a storage system that uses the S3 protocol),
GCS, or Azure Blob Storage without needing an active Postgres cluster! The method to do so is similar to how you clone
from an existing PostgresCluster. This is useful if you want to have a data set for people to use but keep it compressed on
cheaper storage.

For the purposes of this example, let's say that you created a Postgres cluster named hi ppo that has its backups stored
in S3 that looks similar to this:

api Ver si on: post gres- oper at or. crunchydat a. com vlbetal
ki nd: Post gresd ust er
net adat a
nane: hi ppo
spec:
i mage: regi stry. devel opers. crunchydat a. conf cr unchydat a/ cr unchy- post gr es: ubi 8- 15. 3- 2
post gr esVer si on: 15
i nst ances:
- dat aVol uned ai nfSpec:
accesshMdes:
- ' ReadWi t eOnce'
resour ces
requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
confi gurati on:
- secret:
name: pgo- s3-creds
gl obal :
repol- pat h: / pgbackrest/ post gres- oper at or/ hi ppo/ repol

manual :
repoNane: repol
options:
- --type=full
r epos:
- nanme: repol
s3:
bucket: ' ny- bucket'
endpoi nt: ' s3. ca-central - 1. anazonaws. comni
region: 'ca-central -1'

Ensure that the credentials in pgo- s3- cr eds match your S3 credentials. For more details on deploying a Postgres cluster
using S3 for backups, please see the Backups section of the tutorial.

For optimal performance when creating a new cluster from an active cluster, ensure that you take a recent full backup of
the previous cluster. The above manifest is set up to take a full backup. Assuming hi ppo is created in the post gr es- op-
er at or namespace, you can trigger a full backup with the following command:

kubect | annot at e - n post gr es- oper at or post grescl uster hi ppo--overwite\
post gr es- oper at or . crunchydat a. coni pgbackr est - backup="$(dat e ' +%_% %M %&')

Wait for the backup to complete. Once this is done, you can delete the Postgres cluster.

Now, let's clone the data from the hi ppo backup into a new cluster called el ephant . You can use a manifest similar to
this:

api Ver si on: post gr es- oper at or. crunchydat a. com vlbet al
ki nd: Post gresd ust er
net adat a:
nane: el ephant
spec:
i mage: regi stry. devel opers. crunchydat a. conf cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3-2
post gr esVer si on: 15
dat aSour ce
pgbackrest :
stanza: db
confi guration:
- secret:
nanme: pgo- s3-creds
gl obal :
repol- pat h: / pgbackrest/ post gres- oper at or/ hi ppo/ repol
r epo:
name: repol
s3:
bucket: ' ny- bucket
endpoi nt: ' s3. ca-central - 1. amazonaws. comni
region: 'ca-central -1'
i nst ances:
- dat aVol uned ai nSpec
accesshMdes:
- ' ReadWi t eOnce'
resour ces
requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
confi guration:
- secret:
nane: pgo- s3-creds

gl obal :
repol- pat h: / pgbackrest/ post gres-oper at or/ el ephant/repol
r epos:
- nane: repol
s3:
bucket: ' ny- bucket'
endpoi nt: ' s3. ca-central - 1. amazonaws. comni
region: 'ca-central -1

There are a few things to note in this manifest. First, note that the spec. dat aSour ce. pgbackr est object in our new
PostgresCluster is very similar but slightly different from the old PostgresCluster's spec. backups. pgbackr est object.
The key differences are:

« No image is necessary when restoring from a cloud-based data source
e st anza is a required field when restoring from a cloud-based data source
* backups. pgbackr est has ar epos field, which is an array

« dat aSour ce. pgbackr est has ar epo field, which is a single object

Note also the similarities:

* We are reusing the secret for both (because the new restore pod needs to have the same credentials as the original
backup pod)

e The r epo object is the same

e The gl obal object is the same

This is because the new restore pod for the el ephant PostgresCluster will need to reuse the configuration and credentials
that were originally used in setting up the hi ppo PostgresCluster.

In this example, we are creating a new cluster which is also backing up to the same S3 bucket; only the spec. back-
ups. pgbackr est . gl obal field has changed to point to a different path. This will ensure that the new el ephant cluster
will be pre-populated with the data from hi ppo's backups, but will backup to its own folders, ensuring that the original
backup repository is appropriately preserved.

Deploy this manifest to create the el ephant Postgres cluster. Observe that it comes up and running:
kubect | - n post gres-oper at or descri be post grescl ust er el ephant

When it is ready, you will see that the number of expected instances matches the number of ready instances, e.g.:

I nst ances:

Nane: 00
Ready Replicas: 1
Repl i cas: 1

Updat ed Replicas: 1

The previous example shows how to use an existing S3 repository to pre-populate a PostgresCluster while using a new
S3 repository for backing up. But PostgresClusters that use cloud-based data sources can also use local repositories.

For example, assuming a PostgresCluster called r hi no that was meant to pre-populate from the original hi ppo Post-
gresCluster, the manifest would look like this:

api Ver si on: post gr es- oper at or. crunchydat a. com vlbetal
ki nd: Post gresd ust er

net adat a
name: rhi no
spec:
i mage: regi stry. devel opers. crunchydat a. coni cr unchydat a/ cr unchy- post gr es: ubi 8- 15. 3-2
post gr esVer si on: 15
dat aSour ce
pgbackrest :
stanza: db
confi guration:
- secret:
name: pgo- s3-creds
gl obal :
repol- pat h: / pgbackrest/ post gres- oper at or/ hi ppo/ r epol
r epo:
nanme: repol
s3:
bucket: ' ny- bucket
endpoi nt: ' s3. ca-central - 1. amazonaws. com
region: 'ca-central -1'
i nst ances:
- dat aVol uned ai nfSpec:
accesshMdes:
- 'ReadWi t eOnce'
resour ces
requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- nanme: repol
vol une:
vol umed ai nmpec:
accesshMdes:
- 'ReadWi t eOnce'
resour ces:
requests:
storage: 1G

Next Steps

Now that we've learned the basics of setting up a cluster and have seen how to set up backups and disastery recovery,
let's look at some Day Two Tasks such as making our cluster highly available, enabling a monitoring stack, and making

customizations to our cluster.

Day Two Tasks

Working through the Basic Setup showed you how to install Crunchy Postgres for Kubernetes and how to get a Postgres

cluster up and running.
You now have the power to deploy a Postgres cluster to production running on Kubernetes! However there are a few

questions you should be asking yourself.
e Am | prepared to monitor and support this cluster?

« How will I know if my cluster is running out of resources?

« How can | protect against infrastructure outages?

« What if | need to change some configuration settings on my running cluster?

In the Day Two tutorials, we will show you how to install our monitoring stack, so that you can track the health of your cluster
and anticipate problems before they arise. In our High Availability tutorial, we'll show you how easy it is to add replicas to

your cluster and tailor your topology to mitigate downtime. Do you need to further customize your cluster for situations we
haven't covered? We will show you how to Customize a Postgres Cluster.

High Availability
Postgres is known for its reliability: it is very stable and typically "just works." However, there are many things that can
happen in a distributed environment like Kubernetes that can affect Postgres uptime, including:

The database storage disk fails or some other hardware failure occurs

The network on which the database resides becomes unreachable

The host operating system becomes unstable and crashes

A key database file becomes corrupted
« A data center is lost

« A Kubernetes component (e.g. a Service) is accidentally deleted

There may also be downtime events that are due to the normal case of operations, such as performing a minor upgrade,
security patching of operating system, hardware upgrade, or other maintenance.

The good news: PGO is prepared for this, and your Postgres cluster is protected from many of these scenarios. However,
to maximize your high availability (HA), let's first scale up your Postgres cluster.

HA Postgres: Adding Replicas to your Postgres Cluster

PGO provides several ways to add replicas to make a HA cluster:
 Increase the spec. i nst ances. r epl i cas value

« Add an additional entry in spec. i nst ances

For the purposes of this tutorial, we will go with the first method and set spec. i nst ances. r epl i cas to 2. Your manifest
should look similar to:

api Ver si on: post gres-operator. crunchydat a. com vlbetal
ki nd: Post gresd ust er
net adat a:
nane: hi ppo
spec:
i mage: regi stry. devel opers. crunchydat a. coni cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3-2
post gr esVer si on: 15
i nst ances:
- name: i nstancel
replicas: 2
dat aVol umed ai nSpec:
accesshMbdes:
- "ReadWit eOnce”
resour ces:

requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. comf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- name: repol
vol une:
vol umed ai nmSpec:
accesshMdes:
- "ReadWit eOnce"
resour ces:
requests:
storage: 1G

Apply these updates to your Postgres cluster with the following command:
kubect | appl y - k kust oni ze/ post gr es

Within moments, you should see a new Postgres instance initializing! You can see all of your Postgres Pods for the hi ppo
cluster by running the following command:

kubect | - n post gr es-oper at or get pods\
- -sel ect or =post gr es- oper at or. crunchydat a. con cl ust er =hi ppo, post gr es- oper at or. cr unchyda-
ta.com i nst ance- set

Let's test our high availability set up.

Testing Your HA Cluster

An important part of building a resilient Postgres environment is testing its resiliency, so let's run a few tests to see how
PGO performs under pressure!

Test #1: Remove a Service

Let's try removing the primary Service that our application is connected to. This test does not actually require a HA Postgres
cluster, but it will demonstrate PGO's ability to react to environmental changes and heal things to ensure your applications
can stay up.

Recall in the connecting a Postgres cluster that we observed the Services that PGO creates, e.g.:

kubect | - n post gres-operat or get svc\
- -sel ect or =post gr es- oper at or. crunchydat a. com cl ust er =hi ppo

yields something similar to:

NANMVE TYPE CLUSTER-1 P EXTERNAL- | P PORT(S) AGE

hi ppo- ha Clusterl P 10.103. 73. 92 <none> 5432/ TCP 4h8m

hi ppo- ha-config C usterl P None <none> <none> 4h8m

hi ppo- pods Clusterl P None <none> <none> 4h8m

hi ppo-primary CusterlP None <none> 5432/ TCP 4h8m

hi ppo-replicas CusterlP 10.98.110.215 <none> 5432/ TCP 4h8m

We also mentioned that the application is connected to the hi ppo- pri mary Service. What happens if we were to delete
this Service?

kubect | - n post gres-oper at or del et e svc hi ppo-pri mary
This would seem like it could create a downtime scenario, but run the above selector again:

kubect | - n post gres-operat or get svc\
- -sel ect or =post gr es- oper at or . crunchydat a. com cl ust er =hi ppo

You should see something similar to:

NANVE TYPE CLUSTER-| P EXTERNAL-IP PORT(S) ACE

hi ppo- ha Clusterl P 10.103. 73. 92 <none> 5432/ TCP 4h8m

hi ppo- ha-config Cdusterl P None <none> <none> 4h8m

hi ppo- pods Clusterl P None <none> <none> 4h8m

hi ppo-primary CusterlP None <none> 5432/ TCP 3s

hi ppo-replicas Clusterl P 10.98.110. 215 <none> 5432/ TCP 4h8m

Wow -- PGO detected that the primary Service was deleted and it recreated it! Based on how your application connects
to Postgres, it may not have even noticed that this event took place!

Now let's try a more extreme downtime event.

Test #2: Remove the Primary StatefulSet

StatefulSets are a Kubernetes object that provide helpful mechanisms for managing Pods that interface with stateful
applications, such as databases. They provide a stable mechanism for managing Pods to help ensure data is retrievable
in a predictable way.

What happens if we remove the StatefulSet that is pointed to the Pod that represents the Postgres primary? First, let's
determine which Pod is the primary. We'll store it in an environmental variable for convenience.

PRI MARY_POD=$(kubect| - n post gres-oper at or get pods \
--sel ect or =post gr es- oper at or. crunchydat a. conl r ol e=mast er \
-0jsonpath="{.itens[*].netadata.l abel s. post gres-operator\.crunchydata\.conlinstance}"')

Inspect the environmental variable to see which Pod is the current primary:
echo $PRI MARY_PCD

should yield something similar to:
hi ppo-i nstancel- zj 5s

We can use the value above to delete the StatefulSet associated with the current Postgres primary instance:
kubect | del et e sts -n post gres-operator "${ PRI MARY_POD} "

Let's see what happens. Try getting all of the StatefulSets for the Postgres instances in the hi ppo cluster:

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

kubect | get sts-npostgres-operator \
- -sel ect or =post gr es- oper at or. crunchydat a. con cl ust er =hi ppo, post gr es- oper at or. cr unchyda-
ta.com i nstance

You should see something similar to:

NAME READY AGE
hi ppo-i nst ancel-6kbw 1/1 15m
hi ppo-i nstancel-zj5s 0/1 1s

PGO recreated the StatefulSet that was deleted! After this "catastrophic” event, PGO proceeds to heal the Postgres
instance so it can rejoin the cluster. We cover the high availability process in greater depth later in the documentation.

What about the other instance? We can see that it became the new primary though the following command:

kubect | - n post gres-oper at or get pods \
- -sel ect or=post gr es- oper at or . crunchydat a. com r ol e=mast er \
-ojsonpath="{.itens[*]. netadata. | abel s. post gres-operator\.crunchydata\.com instance}'

which should yield something similar to:
hi ppo-i nst ancel- 6kbw

You can test that the failover successfully occurred in a few ways. You can connect to the example Keycloak application
that we deployed in the Connect an Application tutorial. Based on Keycloak's connection retry logic, you may need to wait
a moment for it to reconnect, but you will see it connected and resume being able to read and write data. You can also
connect to the Postgres instance directly and execute the following command:

SELECT NOT pg_cat al og. pg_is_in_recovery() i s_primry;

If it returns t r ue (or t), then the Postgres instance is a primary!

What if PGO was down during the downtime event? Failover would still occur: the Postgres HA system works independently
of PGO and can maintain its own uptime. PGO will still need to assist with some of the healing aspects, but your application
will still maintain read/write connectivity to your Postgres cluster!

Synchronous Replication

PostgreSQL supports synchronous replication, which is a replication mode designed to limit the risk of transaction loss.
Synchronous replication waits for a transaction to be written to at least one additional server before it considers the
transaction to be committed. For more information on synchronous replication, please read about PGO's high availability
architecture

To add synchronous replication to your Postgres cluster, you can add the following to your spec:

spec:
patroni :
dynam cConfi gurati on:
synchr onous_node: true

While PostgreSQL defaults synchr onous_comni t to on, you may also want to explicitly set it, in which case the above
block becomes:

spec:
patroni :
dynam cConfi gurati on:
synchr onous_node: true
post gresql :
par anet er s:
synchronous_conmit: 'on

Note that Patroni, which manages many aspects of the cluster's availability, will favor availability over synchronicity. This
means that if a synchronous replica goes down, Patroni will allow for asynchronous replication to continue as well as writes
to the primary. However, if you want to disable all writing if there are no synchronous replicas available, you would have to
enable synchr onous_node_stri ct,i.e.:

spec:
patroni :
dynam cConfi gurati on:
synchr onous_node: true
synchr onous_node_strict: true

Affinity

Kubernetes affinity rules, which include Pod anti-affinity and Node affinity, can help you to define where you want your

workloads to reside. Pod anti-affinity is important for high availability: when used correctly, it ensures that your Postgres
instances are distributed amongst different Nodes. Node affinity can be used to assign instances to specific Nodes, e.g. to
utilize hardware that's optimized for databases.

Understanding Pod Labels

PGO sets up several labels for Postgres cluster management that can be used for Pod anti-affinity or affinity rules in general.
These include:

e post gres-oper at or. crunchydat a. coni cl ust er : This is assigned to all managed Pods in a Postgres cluster. The
value of this label is the name of your Postgres cluster, in this case: hi ppo.

* post gres-operator. crunchydat a. coni i nst ance- set : This is assigned to all Postgres instances within a group
of spec. i nst ances. In the example above, the value of this label is i nst ancel. If you do not assign a label, the value
is automatically set by PGO using a NN format, e.g. 00.

e post gres-operator. crunchydat a. conl i nst ance: This is a unique label assigned to each Postgres instance
containing the name of the Postgres instance.

Let's look at how we can set up affinity rules for our Postgres cluster to help improve high availability.

Pod Anti-affinity

Kubernetes has two types of Pod anti-affinity:

https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

« Preferred: With preferred (pr ef er r edDur i ngSchedul i ngl gnor edDur i ngExecut i on) Pod anti-affinity, Kubernetes
will make a best effort to schedule Pods matching the anti-affinity rules to different Nodes. However, if it is not possible to
do so, then Kubernetes may schedule one or more Pods to the same Node.

* Required: With required (r equi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on) Pod anti-affinity, Kubernetes
mandates that each Pod matching the anti-affinity rules must be scheduled to different Nodes. However, a Pod may not
be scheduled if Kubernetes cannot find a Node that does not contain a Pod matching the rules.

There is a trade-off with these two types of pod anti-affinity: while "required" anti-affinity will ensure that all the matching
Pods are scheduled on different Nodes, if Kubernetes cannot find an available Node, your Postgres instance may not
be scheduled. Likewise, while "preferred" anti-affinity will make a best effort to scheduled your Pods on different Nodes,
Kubernetes may compromise and schedule more than one Postgres instance of the same cluster on the same Node.

By understanding these trade-offs, the makeup of your Kubernetes cluster, and your requirements, you can choose the
method that makes the most sense for your Postgres deployment. We'll show examples of both methods below!

Using Preferred Pod Anti-Affinity

First, let's deploy our Postgres cluster with preferred Pod anti-affinity. Note that if you have a single-node Kubernetes cluster,
you will not see your Postgres instances deployed to different nodes. However, your Postgres instances will be deployed.

We can set up our HA Postgres cluster with preferred Pod anti-affinity like so:

api Ver si on: post gres-operator. crunchydat a. com vlibetal
ki nd: Post gresd ust er
net adat a
nane: hi ppo
spec:
i mage: regi stry. devel opers. crunchydat a. coni cr unchydat a/ cr unchy- post gr es: ubi 8- 15. 3-2
post gresVer si on: 15
i nst ances:
- name: i nstancel
replicas: 2
dat aVol uned ai nSpec:
accesshMbdes:
- "ReadWit eOnce"
resour ces
requests:
storage: 1G
affinity:
podAnti Affinity:
pr ef erredDur i ngSchedul i ngl gnor edDur i ngExecut i on
-weight: 1
podAf finityTerm
t opol ogyKey: kuber net es. i o/ host nane
| abel Sel ect or:
mat chLabel s:
post gr es- oper at or. crunchydat a. conf cl ust er: hi ppo
post gr es- oper at or. crunchydat a. com i nst ance-set: i nst ancel
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- name: repol
vol une:
vol umed ai nmSpec:
accessMdes:
- "ReadWit eOnce"

resour ces:
requests:
storage: 1G

Apply those changes in your Kubernetes cluster.

Let's take a closer look at this section:

affinity:
podAnti Affinity:
pr ef erredDur i ngSchedul i ngl gnor edDur i ngExecut i on:
-weight: 1

podAffinityTerm

t opol ogyKey: kuber net es. i o/ host nane

| abel Sel ect or:

mat chLabel s:

post gr es- oper at or. crunchydat a. contf cl ust er: hi ppo
post gr es- oper at or. crunchydat a. conl i nst ance-set: i nst ancel

spec. i nstances. affinity. podAnti Affinity follows the standard Kubernetes Pod anti-affinity spec. The values

for the mat chLabel s are derived from what we described in the previous section: post gr es- oper at or . cr unchy-
dat a. cont cl ust er is set to our cluster name of hi ppo, and post gr es- oper at or. crunchydat a. coni i n-

st ance- set is set to the instance set name of i nst ancel. We choose a t opol ogyKey of kuber net es. i o/ host -
nane, which is standard in Kubernetes clusters.

Preferred Pod anti-affinity will perform a best effort to schedule your Postgres Pods to different nodes. Let's see how you
can require your Postgres Pods to be scheduled to different nodes.

Using Required Pod Anti-Affinity

Required Pod anti-affinity forces Kubernetes to scheduled your Postgres Pods to different Nodes. Note that if Kubernetes
is unable to schedule all Pods to different Nodes, some of your Postgres instances may become unavailable.

Using the previous example, let's indicate to Kubernetes that we want to use required Pod anti-affinity for our Postgres
clusters:

api Ver si on: post gres-operator. crunchydat a. com vibetal
ki nd: Post gresd ust er
net adat a:
nane: hi ppo
spec:
i mage: regi stry. devel opers. crunchydat a. conf cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3- 2
post gr esVer si on: 15
i nst ances:
- nane: i nstancel
replicas: 2
dat aVol uned ai nSpec:
accessMbdes:
- "ReadWit eOnce"
resour ces:
requests:
storage: 1G
affinity:
podAnt i Affinity:
requi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on:
- t opol ogyKey: kuber net es. i o/ host nane
| abel Sel ect or:

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

mat chLabel s:
post gr es- oper at or. crunchydat a. com cl ust er: hi ppo
post gr es- oper at or. crunchydat a. com i nst ance-set : i nstancel
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. comf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- name: repol
vol une:
vol umedl ai nmpec:
accesshMdes:
- "ReadWit eOnce"
resour ces:
requests:
storage: 1G

Apply those changes in your Kubernetes cluster.

If you are in a single Node Kubernetes clusters, you will notice that not all of your Postgres instance Pods will be scheduled.
This is due to the r equi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on preference. However, if you have enough
Nodes available, you will see the Postgres instance Pods scheduled to different Nodes:

kubect | get pods - n post gr es-oper at or -ow de\
- -sel ect or =post gr es- oper at or. crunchydat a. con cl ust er =hi ppo, post gr es- oper at or. cr unchyda-
ta.com i nstance

Node Affinity

Node affinity can be used to assign your Postgres instances to Nodes with specific hardware or to guarantee a Postgres
instance resides in a specific zone. Node affinity can be set within the spec. i nst ances. af fi nity. nodeAffinity
attribute, following the standard Kubernetes node affinity spec.

Let's see an example with required Node affinity. Let's say we have a set of Nodes that are reserved for database usage
that have a label wor kl oad- r ol e=db. We can create a Postgres cluster with a required Node affinity rule to scheduled
all of the databases to those Nodes using the following configuration:

api Ver si on: post gres-operator. crunchydat a. com vlbetal
ki nd: Post gresd ust er
net adat a
nane: hi ppo
spec:
i mage: regi stry. devel opers. crunchydat a. coni cr unchydat a/ cr unchy- post gr es: ubi 8- 15. 3-2
post gresVer si on: 15
i nst ances:
- name: i nstancel
replicas: 2
dat aVol uned ai nSpec:
accesshMbdes:
- "ReadWit eOnce"
resour ces
requests:
storage: 1G
affinity:
nodeAffinity:
requi redDur i ngSchedul i ngl gnor edDur i ngExecut i on
nodeSel ect or Ter ns:
- mat chExpr essi ons:
- key: wor kl oad-rol e

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

operator: In
val ues:
- db
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. comf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- name: repol
vol une:
vol umedl ai nmpec:
accesshMdes:
- "ReadWit eOnce"
resour ces:
requests:
storage: 1G

Pod Topology Spread Constraints

In addition to affinity and anti-affinity settings, Kubernetes Pod Topology Spread Constraints can also help you to define

where you want your workloads to reside. However, while PodAffinity allows any number of Pods to be added to a qualifying
topology domain, and PodAntiAffinity allows only one Pod to be scheduled into a single topology domain, topology spread
constraints allow you to distribute Pods across different topology domains with a finer level of control.

API Field Configuration

The spread constraint AP| fields can be configured for instance, PgBouncer and pgBackRest repo host pods. The basic
configuration is as follows:

t opol ogySpr eadConstrai nts:
- maxSkew: <i nt eger >
t opol ogyKey: <stri ng>
whenUnsat i sfiabl e: <string>
| abel Sel ect or: <obj ect >

where "maxSkew" describes the maximum degree to which Pods can be unevenly distributed, "topologyKey" is the key

that defines a topology in the Nodes' Labels, "whenUnsatisfiable" specifies what action should be taken when "maxSkew
can't be satisfied, and "labelSelector" is used to find matching Pods.

Example Spread Constraints

To help illustrate how you might use this with your cluster, we can review examples for configuring spread constraints on
our Instance and pgBackRest repo host Pods. For this example, assume we have a three node Kubernetes cluster where
the first node is labeled with ny- node- | abel =one, the second node is labeled with ny- node- | abel =t wo and the final
node is labeled ny- node- | abel =t hr ee. The label key ny- node- | abel will function as our t opol ogyKey. Note all
three nodes in our examples will be schedulable, so a Pod could live on any of the three Nodes.

Instance Pod Spread Constraints
To begin, we can set our topology spread constraints on our cluster Instance Pods. Given this configuration

i nst ances:
- name: i nstancel

https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/#spread-constraints-for-pods

replicas: 5
t opol ogySpr eadConstraints:

- maxSkew: 1

t opol ogyKey: ny- node- | abel

whenUnsat i sfi abl e: DoNot Schedul e

| abel Sel ect or:
mat chLabel s:
post gr es- oper at or. crunchydat a. conl i nst ance-set: i nst ancel

we will expect 5 Instance pods to be created. Each of these Pods will have the standard post gr es- oper at or . cr unchy-
dat a. cont i nst ance-set: i nst ancellabel set, so each Pod will be properly counted when determining the

max Skew. Since we have 3 nodes with a maxSkew of 1 and we've set whenUnsat i sfi abl e to DoNot Schedul e, we
should see 2 Pods on 2 of the nodes and 1 Pod on the remaining Node, thus ensuring our Pods are distributed as evenly
as possible.

pgBackRest Repo Pod Spread Constraints

We can also set topology spread constraints on our cluster's pgBackRest repo host pod. While we normally will only have
a single pod per cluster, we could use a more generic label to add a preference that repo host Pods from different clusters
are distributed among our Nodes. For example, by setting our mat chLabel value to post gr es- oper at or . cr unchyda-

ta. com pgbackrest : and our whenUnsat i sfi abl e value to Schedul eAnyway, we will allow our repo host Pods

to be scheduled no matter what Nodes may be available, but attempt to minimize skew as much as possible.

r epoHost :

t opol ogySpr eadConstrai nts:

- maxSkew: 1

t opol ogyKey: ny- node- | abel

whenUnsat i sfi abl e: Schedul eAnyway

| abel Sel ect or:

mat chLabel s:
post gr es- oper at or. crunchydat a. com pgbackr est :

Putting it All Together

Now that each of our Pods has our desired Topology Spread Constraints defined, let's put together a complete cluster
definition:

api Ver si on: post gr es- oper at or. crunchydat a. com vlbet al
ki nd: Post gresd ust er
net adat a:
namne: hi ppo
spec:
i mage: regi stry. devel opers. crunchydat a. conf cr unchydat a/ cr unchy- post gr es: ubi 8- 15. 3- 2
post gr esVer si on: 15
i nst ances:
- nane: i nstancel
replicas: 5
t opol ogySpr eadConstrai nts:
- maxSkew: 1
t opol ogyKey: ny- node- | abel
whenUnsat i sfi abl e: DoNot Schedul e
| abel Sel ect or:
mat chLabel s:
post gr es- oper at or. crunchydat a. com i nst ance-set : i nst ancel
dat aVol umed ai nSpec:
accessMdes:

- "ReadWit eOnce"
resour ces
requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epoHost :
t opol ogySpr eadConstrai nts:
- maxSkew: 1
t opol ogyKey: ny- node- | abel
whenUnsat i sfi abl e: Schedul eAnyway
| abel Sel ect or:
mat chLabel s:
post gr es- oper at or. crunchydat a. com pgbackrest: ""
r epos:
- nane: repol
vol une:
vol umed ai nmSpec:
accesshMbdes:
- "ReadW it eOnce"
resour ces:
requests:
storage: 1G

You can then apply those changes in your Kubernetes cluster.

Once your cluster finishes deploying, you can check that your Pods are assigned to the correct Nodes:

kubect | get pods - n post gres-oper at or -ow de - -sel ect or =post gr es- oper at or. cr unchyda-
ta. com cl ust er =hi ppo

Next Steps

We've now seen how PGO helps your application stay "always on" with your Postgres database. Now let's see how we can
monitor our Postgres cluster to detect and prevent issues from occurring.

Monitoring

While having high availability and disaster recovery systems in place helps in the event of something going wrong with your
PostgreSQL cluster, monitoring helps you anticipate problems before they happen. Monitoring can also help you diagnose
and resolve issues that may cause degraded performance.

Adding the Exporter Sidecar

Let's look at how we can add the Crunchy Postgres Exporter sidecar to your cluster using the kust om ze/ post gr es

example in the Postgres Operator examples repository.

Monitoring tools are added using the spec. noni t or i ng section of the custom resource. Currently, the only monitoring
tool supported is the Crunchy PostgreSQL Exporter configured with pgMonitor.

In the kust omni ze/ post gr es/ post gres. yani file, add the following YAML to the spec:

https://github.com/CrunchyData/postgres-operator-examples
https://github.com/CrunchyData/pgmonitor

noni t ori ng:
pgnoni t or:

exporter:

i mage: regi stry. devel opers. crunchydat a. conl cr unchydat a/ cr unchy- post gr es- ex-
porter:ubi8-5.4.0-0

Save your changes and run:
kubect | apply - k kust oni ze/ post gres

PGO will detect the change and add the Exporter sidecar to all Postgres Pods that exist in your cluster. PGO will also
configure the Exporter to connect to the database and gather metrics. These metrics can be accessed using the PGO
Monitoring stack.

Configuring TLS Encryption for the Exporter

PGO allows you to configure the exporter sidecar to use TLS encryption. If you provide a custom TLS Secret via the
exporter spec:

noni t ori ng:

pgnoni t or:

exporter:
cust onrLSSecr et :
nane: hi ppo.tls

Like other custom TLS Secrets that can be configured with PGO, the Secret will need to be created in the same Namespace
as your PostgresCluster. It should also contain the TLS key (t | s. key) and TLS certificate (t | s. crt) needed to enable
encryption.

dat a:
tls.crt: <val ue>
tls. key: <val ue>

After you configure TLS for the exporter, you will need to update your Prometheus deployment to use TLS, and your
connection to the exporter will be encrypted. Check out the Prometheus documentation for more information on configuring
TLS for Prometheus.

Accessing the Metrics

Once the Crunchy PostgreSQL Exporter has been enabled in your cluster, follow the steps outlined in PGO Monitoring
to install the monitoring stack. This will allow you to deploy a pgMonitor configuration of Prometheus, Grafana, and

Alertmanager monitoring tools in Kubernetes. These tools will be set up by default to connect to the Exporter containers
on your Postgres Pods.

Next Steps

Now that we can monitor our cluster, let's look at how we can customize the Postgres cluster configuration.

https://prometheus.io/
https://prometheus.io/
https://github.com/CrunchyData/pgmonitor
https://prometheus.io/
https://grafana.com/
https://prometheus.io/docs/alerting/latest/alertmanager/

Customize a Postgres Cluster

Postgres is known for its ease of customization; PGO helps you to roll out changes efficiently and without disruption. Let's
see how we can easily tweak our Postgres configuration.

Custom Postgres Configuration

Part of the trick of managing multiple instances in a Postgres cluster is ensuring all of the configuration changes are
propagated to each of them. This is where PGO helps: when you make a Postgres configuration change for a cluster, PGO
will apply it to all of the Postgres instances.

For example, let's say we wanted to tweak the Postgres settings max_par al | el _wor ker s, max_wor ker _processes,
shar ed_buf f er s, and wor k_nmem We can do this in the spec. pat roni . dynanmi cConfi gur ati on section and the
changes will be applied to all instances. Here is an example updated manifest that tweaks those settings:

api Ver si on: post gres-operator. crunchydat a. com vibetal
ki nd: Post gresd ust er
nmet adat a
nane: hi ppo
spec:
i mage: regi stry. devel opers. crunchydat a. conf cr unchydat a/ cr unchy- post gr es: ubi 8- 15. 3- 2
post gr esVer si on: 15
i nst ances:
- nane: i nstancel
replicas: 2
dat aVol unmed ai nSpec
accesshMdes:
- "ReadWit eOnce"
resour ces
requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. comf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- name: repol
vol une:
vol umedl ai nmpec:
accesshMdes:
- "ReadWit eOnce"
resour ces:
requests:
storage: 1G
patroni :
dynam cConfi gurati on:
post gr esql
par anmet er s
max_paral | el _workers: 2
max_wor ker _processes: 2
shared _buffers: 1GB
wor k_nmem 2MB

In particular, we added the following to spec:

pat r oni
dynam cConfi gurati on:
post gresql :

par anet er s:

max_paral | el _workers: 2
max_wor ker _processes: 2
shared buffers: 1GB

wor k_nmem 2MB

Apply these updates to your Postgres cluster with the following command:
kubect | apply - k kust oni ze/ post gres

PGO will go and apply these settings, restarting each Postgres instance when necessary. You can verify that the changes
are present using the Postgres SHONMcommand, e.g.

SHOWWwor k_nem

should yield something similar to:

Customize TLS

All connections in PGO use TLS to encrypt communication between components. PGO sets up a PKI and certificate
authority (CA) that allow you create verifiable endpoints. However, you may want to bring a different TLS infrastructure
based upon your organizational requirements. The good news: PGO lets you do this!

If you want to use the TLS infrastructure that PGO provides, you can skip the rest of this section and move on to learning
how to add custom labels.

How to Customize TLS

There are a few different TLS endpoints that can be customized for PGO, including those of the Postgres cluster and
controlling how Postgres instances authenticate with each other. Let's look at how we can customize TLS by defining

e aspec. cust onTLSSecr et , used to both identify the cluster and encrypt communications
e aspec. cust onRepl i cati onTLSSecr et , used for replication authentication

(For more information on the spec. cust omrLSSecr et and spec. cust onRepl i cati onTLSSecr et fields, see the
Post gr esCl ust er CRD)

To customize the TLS for a Postgres cluster, you will need to create two Secrets in the Namespace of your Postgres cluster.
One of these Secrets will be the cust oniTLSSecr et and the other will be the cust onRepl i cati onTLSSecr et . Both
secrets contain a TLS key (t | s. key), TLS certificate (t | s. crt) and CA certificate (ca. crt) to use.

Note: If spec. cust omILSSecr et is provided you must also provide spec. cust onRepl i cati onTLSSecr et and both
must contain the same ca. crt .

The custom TLS and custom replication TLS Secrets should contain the following fields (though see below for a workaround
if you cannot control the field names of the Secret's dat a):

dat a:

ca.crt: <val ue>
tls.crt: <val ue>
tls. key: <val ue>

For example, if you have files named ca. crt, hi ppo. key, and hi ppo. crt stored on your local machine, you could run
the following command to create a Secret from those files:

kubect | creat e secret generi c -npostgres-operator hi ppo-cluster.tls\
--fromfile=ca.crt=ca.crt\

--fromfile=tls.key=hippo. key\
--fromfile=tls.crt=hippo.crt

After you create the Secrets, you can specify the custom TLS Secret in your post gr escl ust er. post gr es- op-

erat or. crunchydat a. comcustom resource. For example, if you created a hi ppo- cl uster. tl s Secret and a
hi ppo-replication.tls Secret, you would add them to your Postgres cluster:

spec:
cust onrLSSecr et :
nane: hi ppo-cluster.tls
cust onRepl i cati onTLSSecr et :
nane: hi ppo-replication.tls

If you're unable to control the key-value pairs in the Secret, you can create a mapping to tell the Postgres Operator what
key holds the expected value. That would look similar to this:

spec:
cust omrLSSecr et :
name: hi ppo.tls
itens:

- key: <tls.crt keyinthereferencedhippo.tls Secret>
path: tls.crt

- key: <tls.keykeyinthereferencedhippo.tls Secret>
pat h: tls. key

- key: <ca.crt keyinthereferenced hi ppo.tls Secret>
pat h: ca.crt

For instance, if the hi ppo. t| s Secrethadthetl s. crt inakeynamed hi ppo-tls.crt,thetls. key in akey named
hi ppo-tl s. key, and the ca. crt in a key named hi ppo- ca. crt, then your mapping would look like:

spec:
cust onTLSSecr et :
nanme: hi ppo.tls
items:
- key: hi ppo-tls.crt
path: tls.crt
- key: hi ppo-tls. key
path: tls. key
- key: hi ppo-ca.crt
pat h: ca.crt

Note: Although the custom TLS and custom replication TLS Secrets share the same ca. crt , they do not share the same
tls.crt:

* Your spec. cust onTLSSecr et TLS certificate should have a Common Name (CN) setting that matches the primary
Service name. This is the name of the cluster suffixed with - pr i mar y. For example, for our hi ppo cluster this would be
hi ppo-pri mary.

* Your spec. cust onmRepl i cati onTLSSecr et TLS certificate should have a Common Name (CN) setting that matches

_crunchyr epl , which is the preset replication user.

As with the other changes, you can roll out the TLS customizations with kubect | appl y.

Labels

There are several ways to add your own custom Kubernetes Labels to your Postgres cluster.

« Cluster: You can apply labels to any PGO managed object in a cluster by editing the spec. net adat a. | abel s section
of the custom resource.

» Postgres: You can apply labels to a Postgres instance set and its objects by editing spec. i nst ances. net adat a. | a-
bel s.

» pgBackRest: You can apply labels to pgBackRest and its objects by editing post gr escl ust er s. spec. backups. pg-
backr est . net adat a. | abel s.

« PgBouncer: You can apply labels to PgBouncer connection pooling instances by editing spec. pr oxy. pgBounc-
er. nmet adat a. | abel s.

Annotations

There are several ways to add your own custom Kubernetes Annotations to your Postgres cluster.

« Cluster: You can apply annotations to any PGO managed object in a cluster by editing the spec. net adat a. annot a-
ti ons section of the custom resource.

« Postgres: You can apply annotations to a Postgres instance set and its objects by editing spec. i nst ances. net ada-
ta. annot ati ons.

« pgBackRest: You can apply annotations to pgBackRest and its objects by editing spec. backups. pgbackr est . net a-
dat a. annot at i ons.

< PgBouncer: You can apply annotations to PgBouncer connection pooling instances by editing spec. pr oxy. pgBounc-
er. met adat a. annot ati ons.

Pod Priority Classes

PGO allows you to use pod priority classes to indicate the relative importance of a pod by settinga pri ori t yC assName

field on your Postgres cluster. This can be done as follows:

« Instances: Priority is defined per instance set and is applied to all Pods in that instance set by editing the spec. i n-
stances. pri orit yC assNane section of the custom resource.

» Dedicated Repo Host: Priority defined under the repoHost section of the spec is applied to the dedicated repo host by
editing the spec. backups. pgbackr est . repoHost. pri orit yCl assNane section of the custom resource.

« PgBouncer: Priority is defined under the pgBouncer section of the spec and will apply to all PgBouncer Pods by editing
the spec. proxy. pgBouncer . pri orit yC assNane section of the custom resource.

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/

« Backup (manual and scheduled): Priority is defined under the spec. backups. pgbackrest . jobs. priorityd ass-
Nane section and applies that priority to all pgBackRest backup Jobs (manual and scheduled).

* Restore (data source or in-place): Priority is defined for either a "data source” restore or an in-place restore by editing
the spec. dat aSour ce. post gresC ust er. pri orityd assNane section of the custom resource.

« Data Migration: The priority defined for the first instance set in the spec (array position 0) is used for the PGDATA and
WAL migration Jobs. The pgBackRest repo migration Job will use the priority class applied to the repoHost.

Separate WAL PVCs

PostgreSQL commits transactions by storing changes in its Write-Ahead Log (WAL). Because the way WAL files are

accessed and utilized often differs from that of data files, and in high-performance situations, it can desirable to put WAL
files on separate storage volume. With PGO, this can be done by adding the wal Vol uned ai nSpec block to your desired
instance in your PostgresCluster spec, either when your cluster is created or anytime thereafter:

spec:
i nst ances:
- name: i nstance
wal Vol unedl ai nSpec:
accessMdes:
- "ReadW it eOnce"
r esour ces:
requests:
storage: 1G

This volume can be removed later by removing the wal Vol uneC ai nSpec section from the instance. Note that when
changing the WAL directory, care is taken so as not to lose any WAL files. PGO only deletes the PVC once there are no
longer any WAL files on the previously configured volume.

Custom Sidecar Containers

PGO allows you to configure custom sidecar Containers for your PostgreSQL instance and pgBouncer Pods.

To use the custom sidecar features, you will need to enable them via the PGO feature gate.

PGO feature gates are enabled by setting the PGO_FEATURE GATES environment variable on the PGO Deployment. For
a feature named 'FeatureName', that would look like

PGO_FEATURE GATES=" Feat ur eNanme=t r ue"

Please note that it is possible to enable more than one feature at a time as this variable accepts a comma delimited list,
for example:

PGO FEATURE GATES=" Feat ur eNane=t r ue, Feat ur eNane2=t r ue, Feat ur eNane3=true. .. "

N Warning

https://www.postgresql.org/docs/current/wal-intro.html
https://kubernetes.io/docs/concepts/workloads/pods/#how-pods-manage-multiple-containers
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/

Any feature name added to PGO_FEATURE _GATES must be defined by PGO and must be
set to true or false. Any misconfiguration will prevent PGO from deploying. See
the considerations below for additional guidance.

Custom Sidecar Containers for PostgreSQL Instance Pods

To configure custom sidecar Containers for any of your PostgreSQL instance Pods you will need to enable that feature via
the PGO feature gate.

As mentioned above, PGO feature gates are enabled by setting the PGO_FEATURE_GATES environment variable on the
PGO Deployment. For the PostgreSQL instance sidecar container feature, that will be

PGO FEATURE GATES="1 nst anceSi decar s=t rue"

Once this feature is enabled, you can add your custom Containers as an array to spec. i nst ances. cont ai ner s. See
the custom sidecar example below for more information!

Custom Sidecar Containers for pgBouncer Pods

Similar to your PostgreSQL instance Pods, to configure custom sidecar Containers for your pgBouncer Pods you will need
to enable it via the PGO feature gate.

As mentioned above, PGO feature gates are enabled by setting the PGO_FEATURE_GATES environment variable on the
PGO Deployment. For the pgBouncer custom sidecar container feature, that will be

PGO FEATURE GATES=" P@Bouncer Si decar s=t r ue"

Once this feature is enabled, you can add your custom Containers as an array to spec. pr oxy. pgBouncer . cont ai n-
er s. See the custom sidecar example below for more information!

Custom Sidecar Example

As a simple example, consider

api Ver si on: post gres- operat or. crunchydata. com vlbetal
ki nd: Post gresd uster
net adat a:
nane: si decar - hi ppo
spec:
i mage: regi stry. devel opers. crunchydat a. conf cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3- 2
post gr esVer si on: 15
i nst ances:
- nane: i nstancel
cont ai ners:
- name: t est cont ai ner
i mage: nmycont ai ner 1: | at est
- nane: testcontainer2
i mage: nmycont ai ner 1: | at est
dat aVol uned ai nSpec:
accesshMbdes:
- "ReadWit eOnce"
resour ces:

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.27/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.27/#container-v1-core

requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. comf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- name: repol
vol une:
vol umed ai nmpec:
accesshMdes:
- "ReadWit eOnce"
resour ces:
requests:
storage: 1G
proxy:
pgBouncer :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbouncer : ubi 8-1. 19- 2
cont ai ners:
- name: bouncertestcontai nerl
i mage: nmycont ai ner 1: | at est

In the above example, we've added two sidecar Containers to the i nst ancel Pod and one sidecar container to the
pgBouncer Pod. These Containers can be defined in the manifest at any time, but the Containers will not be added to
their respective Pods until the feature gate is enabled.

Considerations

< Volume mounts and other Pod details are subject to change between releases.

* The custom sidecar features are currently feature-gated. Any sidecar Containers, as well as any settings included in their
configuration, are added and used at your own risk. Improperly configured sidecar Containers could impact the health
and/or security of your PostgreSQL cluster!

« When adding a sidecar container, we recommend adding a unique prefix to the container name to avoid potential naming
conflicts with the official PGO containers.

Database Initialization SQL

PGO can run SQL for you as part of the cluster creation and initialization process. PGO runs the SQL using the psql client
SO you can use meta-commands to connect to different databases, change error handling, or set and use variables. Its
capabilities are described in the psgl documentation.

Initialization SQL ConfigMap

The Postgres cluster spec accepts a reference to a ConfigMap containing your init SQL file. Update your cluster spec to
include the ConfigMap name, spec. dat abasel ni t SQL. nane, and the data key, spec. dat abasel ni t SQ.. key, for
your SQL file. For example, if you create your ConfigMap with the following command:

kubect | - n post gres-operat or creat e confi gmap hi p-
po-init-sql --fromfile=init.sql=/path/to/init.sql

You would add the following section to your Postgrescluster spec:

https://www.postgresql.org/docs/current/app-psql.html

spec:
dat abasel ni t SQL:
key: init.sql
nane: hi ppo-init-sql

@ Info

The ConfigMap must exist in the same namespace as your Postgres cluster.

After you add the ConfigMap reference to your spec, apply the change with kubect | appl y - k kust om ze/ post gr es
PGO will create your hi ppo cluster and run your initialization SQL once the cluster has started. You can verify that your
SQL has been run by checking the dat abasel ni t SQL status on your Postgres cluster. While the status is set, your init
SQL will not be run again. You can check cluster status with the kubect | descri becommand:

kubect | - n post gres-oper at or descri be post grescl ust ers. post gr es- oper at or. crunchyda-
t a. comhi ppo

{\ Warning

In some cases, due to how Kubernetes treats PostgresCluster status, PGO may run your SQL commands more
than once. Please ensure that the commands defined in your init SQL are idempotent.

Now that dat abasel ni t SQL is defined in your cluster status, verify database objects have been created as expected.
After verifying, we recommend removing the spec. dat abasel ni t SQL field from your spec. Removing the field from the
spec will also remove dat abasel ni t SQL from the cluster status.

PSQL Usage

PGO uses the psql interactive terminal to execute SQL statements in your database. Statements are passed in using
standard input and the filename flag (e.g. psql -f).

SQL statements are executed as superuser in the default maintenance database. This means you have full control to create
database objects, extensions, or run any SQL statements that you might need.

Integration with User and Database Management

If you are creating users or databases, please see the User/Database Management documentation. Databases created
through the user management section of the spec can be referenced in your initialization sql. For example, if a database
zoo is defined:

spec:
users:
- nane: hi ppo
dat abases:
- "zoo0"

You can connect to zoo by adding the following psgl meta-command to your SQL.:

\c zoo
createtabl et zooasselect s, mi5(randon()::text) fromgenerate Series(1,5) s;

Transaction support

By default, psql commits each SQL command as it completes. To combine multiple commands into a single transaction,
use the BEG Nand COVM T commands.

BEGQ N;
createtabl et randomas sel ect s, md5(randon()::text) fromgenerate Series(1,5) s;
COW T;

PSQL Exit Code and Database Init SQL Status

The exit code from psql will determine when the dat abasel ni t SQL status is set. When psql returns 0 the status will be
set and SQL will not be run again. When psql returns with an error exit code the status will not be set. PGO will continue
attempting to execute the SQL as part of its reconcile loop until psqgl returns normally. If psql exits with a failure, you will
need to edit the file in your ConfigMap to ensure your SQL statements will lead to a successful psql return. The easiest
way to make live changes to your ConfigMap is to use the following kubect | edi t command:

kubect | - n<cl ust er-nanespace>edit confi gmap hi ppo-i nit-sql

Be sure to transfer any changes back over to your local file. Another option is to make changes in your local file and use
kubect| --dry-runto create a template and pipe the output into kubect | appl y.

kubect| create confi gmap hi p-
po-init-sqgl --fromfile=init.sql=/path/to/init.sqgl --dry-run=client -oyam | kubect| ap-

ply-f -

@ Hint

If you edit your ConfigMap and your changes aren't showing up, you may be waiting
for PGO to reconcile your cluster. After some time, PGO will automatically reconcile
the cluster or you can trigger reconciliation by applying any change to your cluster
(e.g. with kubect | apply - k kust om ze/ post gr ep

To ensure that psql returns a failure exit code when your SQL commands fail, set the ON_ERROR_STOPR variable as part
of your SQL file:

\set ON_ ERROR STOP
\echoAnyerror will eadtoexit code 3
createtabl et randomas sel ect s, nd5(randon{()::text) fromgenerate Series(1,5) s;

Troubleshooting

Changes Not Applied

https://www.postgresql.org/docs/current/tutorial-transactions.html
https://www.postgresql.org/docs/current/sql-begin.html
https://www.postgresql.org/docs/current/sql-commit.html
https://www.postgresql.org/docs/current/app-psql.html#APP-PSQL-VARIABLES

If your Postgres configuration settings are not present, ensure that you are using the syntax that Postgres expects. You
can see this in the Postgres configuration documentation.

Next Steps

You've now seen how you can further customize your Postgres cluster. Let's move on to some administrative tasks you
might need to complete while maintaining your Postgres database.

Cluster Management

Managing the lifecycle of your Postgres cluster means keeping components

up-to-date with the latest bug-fixes and security patches, rotating your TLS certificates,

and resizing memory and CPU as your resource needs ebb and flow. A production-grade

Postgres cluster has a lot of moving pieces that need to be periodically refreshed.

Crunchy Postgres for Kubernetes makes it easy with rolling updates and fine-grained controls for administering your
Postgres cluster.

Administrative Tasks

Manually Restarting PostgreSQL

There are times when you might need to manually restart PostgreSQL. This can be done by adding or updating a custom
annotation to the cluster's spec. met adat a. annot at i ons section. PGO will notice the change and perform a rolling
restart.

For example, if you have a cluster named hi ppo in the namespace post gr es- oper at or, all you need to do is patch
the hippo PostgresCluster with the following:

kubect | pat ch post grescl ust er/ hi ppo -n post gres- operat or --type nmerge\
--patch' {"spec": {"netadata": {"annotations":{"restarted":"'"$(date)""'"}}}}'

Watch your hippo cluster: you will see the rolling update has been triggered and the restart has begun.

Shutdown

You can shut down a Postgres cluster by setting the spec. shut down attribute to t r ue. You can do this by editing the
manifest, or, in the case of the hi ppo cluster, executing a command like the below:

kubect | pat ch post grescl ust er/ hi ppo -n post gres- operat or --type nmerge\
--patch' {"spec": {"shutdown": true}}’

The effect of this is that all the Kubernetes workloads for this cluster are scaled to 0. You can verify this with the following
command:

kubect | get depl oy, sts, cronj ob --sel ect or =post gr es- oper at or. cr unchydat a. coni cl ust er =hi ppo

https://www.postgresql.org/docs/current/runtime-config.html

NANVE READY UP- TO- DATE AVAI LABLE AGE
depl oynent . apps/ hi ppo- pgbouncer 0/0 0 0 1lh

NANMVE READY AGE
st at ef ul set. apps/ hi ppo-00-1wgx 0/0 1h

NANMVE SCHEDULE SUSPEND ACTI VE
cronj ob. bat ch/ hi ppo-repol-full @aily True O

To turn a Postgres cluster that is shut down back on, you can set spec. shut down to f al se.

Pausing Reconciliation and Rollout

You can pause the Postgres cluster reconciliation process by setting the spec. paused attribute to t r ue. You can do this
by editing the manifest, or, in the case of the hi ppo cluster, executing a command like the below:

kubect | pat ch post grescl ust er/ hi ppo - n post gr es- oper at or --type nerge\
--patch' {"spec": {"paused": true}}"

Pausing a cluster will suspend any changes to the cluster’s current state until reconciliation is resumed. This allows you to
fully control when changes to the PostgresCluster spec are rolled out to the Postgres cluster. While paused, no statuses
are updated other than the "Progressing"” condition.

To resume reconciliation of a Postgres cluster, you can either set spec. paused to f al se or remove the setting from your
manifest.

Rotating TLS Certificates

Credentials should be invalidated and replaced (rotated) as often as possible to minimize the risk of their misuse. Unlike
passwords, every TLS certificate has an expiration, so replacing them is inevitable.

In fact, PGO automatically rotates the client certificates that it manages before the expiration date on the certificate. A new
client certificate will be generated after 2/3rds of its working duration; so, for instance, a PGO-created certificate with an
expiration date 12 months in the future will be replaced by PGO around the eight month mark. This is done so that you do
not have to worry about running into problems or interruptions of service with an expired certificate.

Triggering a Certificate Rotation

If you want to rotate a single client certificate, you can regenerate the certificate of an existing cluster by deleting the
tl s. key field from its certificate Secret.

Is it time to rotate your PGO root certificate? All you need to do is delete the pgo- r oot - cacert secret. PGO will
regenerate it and roll it out seamlessly, ensuring your apps continue communicating with the Postgres cluster without
having to update any configuration or deal with any downtime.

kubect | del et e secret pgo-root-cacert

@ Info

PGO only updates secrets containing the generated root certificate. It does not
touch custom certificates.

Rotating Custom TLS Certificates

When you use your own TLS certificates with PGO, you are responsible for replacing them appropriately. Here's how.

PGO automatically detects and loads changes to the contents of PostgreSQL server and replication Secrets without down-
time. You or your certificate manager need only replace the values in the Secret referenced by spec. cust onTLSSecr et .

If instead you change spec. cust onTLSSecr et to refer to a new Secret or new fields, PGO will perform a rolling restart.

@ Info

When changing the PostgreSQL certificate authority, make sure to update
cust onRepl i cati onTLSSecr et as
well.

PGO automatically notifies PgBouncer when there are changes to the contents of PgBouncer certificate Secrets. Recent
PgBouncer versions load those changes without downtime, but versions prior to 1.16.0 need to be restarted manually.
There are a few ways to restart an older version PgBouncer to reload Secrets:

« Store the new certificates in a new Secret. Edit the PostgresCluster object to refer to the new Secret, and PGO will
perform a rolling restart of PgBouncer.spec:
pr oxy:
pgBouncer :
cust onlLSSecr et :
nane: hi ppo. pgbouncer. new.tls

or

* Replace the old certificates in the current Secret. PGO doesn't notice when the contents of your Secret change, so you
need to trigger a rolling restart of PgBouncer. Edit the PostgresCluster object to add a unique annotation. The name and
value are up to you, so long as the value differs from the previous value.spec:
pr oxy:
pgBouncer :
net adat a:
annot at i ons:
restarted: Ql-certs

This kubect | pat chcommand uses your local date and time:

kubect | pat ch post grescl uster/hi ppo--type nerge\
--patch' {"spec": {"proxy":{"pgBouncer":{"netadata": {"annotations":{"restart -

ed":"'"$(date)"' "}}}}}}"

Changing the Primary

There may be times when you want to change the primary in your HA cluster. This can be done using the pa-
troni.sw tchover section of the PostgresCluster spec. It allows you to enable switchovers in your PostgresClusters,
target a specific instance as the new primary, and run a failover if your PostgresCluster has entered a bad state.

Let's go through the process of performing a switchover!

First you need to update your spec to prepare your cluster to change the primary. Edit your spec to have the following fields:

spec:
patroni:
swi t chover:
enabl ed: true

After you apply this change, PGO will be looking for the trigger to perform a switchover in your cluster. You will trigger
the switchover by adding the post gr es- oper at or . crunchydat a. com tri gger - swi t chover annotation to your
custom resource. The best way to set this annotation is with a timestamp, so you know when you initiated the change.

For example, for our hi ppo cluster, we can run the following command to trigger the switchover:

kubect | annot at e - n post gr es- oper at or post grescl ust er hi ppo\
post gr es- oper at or. crunchydat a. com tri gger - swi t chover="$(date) "

@ Hint

If you want to perform another switchover you can re-run the annotation command and add the - - overwri t e
flag:

kubect | annot at e - n post gr es- oper at or post grescl uster hi ppo--overwite\
post gr es- oper at or. crunchydat a. com tri gger - swi t chover="$(date)"

PGO will detect this annotation and use the Patroni API to request a change to the current primary!

The roles on your database instance Pods will start changing as Patroni works. The new primary will have the mast er
role label, and the old primary will be updated torepl i ca.

The status of the switch will be tracked using the st at us. pat r oni . swi t chover field. This will be set to the value defined
in your trigger annotation. If you use a timestamp as the annotation this is another way to determine when the switchover
was requested.

After the instance Pod labels have been updated and st at us. pat r oni . swi t chover has been set, the primary has
been changed on your cluster!

Q@ Info

After changing the primary, we recommend that you disable switchovers by setting

spec. patroni . swi t chover. enabl ed to false or remove the field from your spec entirely.
If the field is removed the corresponding status will also be removed from the
PostgresCluster.

Targeting an instance

Another option you have when switching the primary is providing a target instance as the new primary. This target instance
will be used as the candidate when performing the switchover. The spec. patroni . swi t chover. t arget| nstance
field takes the name of the instance that you are switching to.

This name can be found in a couple different places; one is as the name of the StatefulSet and another is on the
database Pod as the post gr es- oper at or . crunchydat a. coml i nst ance label. The following commands can help
you determine who is the current primary and what name to use as the t ar get | nst ance:

kubect | get pods -| post gres-operator. crunchydat a. coni cl ust er =hi ppo \
- L post gres- oper at or. crunchydat a. conf i nst ance \
- L post gres- oper at or. crunchydat a. com rol e

NANVE READY STATUS RESTARTS AGE | NSTANCE ROLE
hi ppo-i nstancel-jdb5-0 3/3 Running O 2mi7s hi ppo-instancel-j db5 naster
hi ppo-i nstancel-wrbp-0 3/3 Running O 2mi7s hi ppo-instancel-wnbp replica

In our example cluster hi ppo-i nst ancel- j db5 is currently the primary meaning we want to target hi ppo- i n-
st ancel- wnbp in the switchover. Now that you know which instance is currently the primary and how to find your
t ar get | nst ance, let's update your cluster spec:

spec:
patroni:
swi t chover:
enabl ed: true
target | nstance: hi ppo-i nstancel-wrbp

After applying this change you will once again need to trigger the switchover by annotating the PostgresCluster (see
above commands). You can verify the switchover has completed by checking the Pod role labels and st at us. pa-
troni.sw tchover.

Failover

Finally, we have the option to failover when your cluster has entered an unhealthy state. The only spec change necessary
to accomplish this is updating the spec. pat roni . swi t chover . t ype field to the Fai | over type. One note with this
isthatat ar get | nst ance is required when performing a failover. Based on the example cluster above, assuming

hi ppo-i nst ancel- wnbp is still a replica, we can update the spec:

spec:
patroni:
swi t chover:
enabl ed: true
target | nstance: hi ppo-i nstancel-wrbp
type: Fail over

Apply this spec change and your PostgresCluster will be prepared to perform the failover. Again you will need to
trigger the switchover by annotating the PostgresCluster (see above commands) and verify that the Pod role labels and
st at us. patroni . swi t chover are updated accordingly.

N\ Warning

Errors encountered in the switchover process can leave your cluster in a bad state.
If you encounter issues, found in the operator logs, you can update the spec to

fix the issues and apply the change. Once the change has been applied, PGO will
attempt to perform the switchover again.

Next Steps

We've covered a lot in terms of building, maintaining, scaling, customizing, and restarting our Postgres cluster. However,
there may come a time where we need to resize our Postgres cluster. How do we do that?

Resize a Postgres Cluster

You did it -- the application is a success! Traffic is booming, so much so that you need to add more resources to your
Postgres cluster. However, you're worried that any resize operation may cause downtime and create a poor experience for
your end users.

This is where PGO comes in: PGO will help orchestrate rolling out any potentially disruptive changes to your cluster to
minimize or eliminate and downtime for your application. To do so, we will assume that you have deployed a high availability
Postgres cluster as described in the Day Two Tasks tutorial.

Let's dive in.

Resize Memory and CPU

Memory and CPU resources are an important component for vertically scaling your Postgres cluster. Coupled with tweaks
to your Postgres configuration file, allocating more memory and CPU to your cluster can help it to perform better under
load.

It's important for instances in the same high availability set to have the same resources. PGO lets you adjust CPU
and memory within the r esour ces sections of the post gr escl ust er s. post gr es- oper at or. crunchydat a. com
custom resource. These include:

e spec. i nst ances. r esour ces section, which sets the resource values for the PostgreSQL container, as well as any
init containers in the associated pod and containers created by the pgDat aVol une and pgWALVol une data migration
jobs.

e spec. i nstances. si decars. replicaCert Copy. r esour ces section, which sets the resources for the r epl i -
ca- cert - copy sidecar container.

e spec. noni t ori ng. pgnoni t or. export er.resour ces section, which sets the resources for the expor t er sidecar
container.

« spec. backups. pgbackr est . r epoHost . r esour ces section, which sets the resources for the pgBackRest repo
host container, as well as any init containers in the associated pod and containers created by the pgBackRest Vol une
data migration job.

e spec. backups. pgbackr est . si decar s. pgbackr est . r esour ces section, which sets the resources for the pg-
backr est sidecar container.

* spec. backups. pgbackr est . si decar s. pgbackr est Conf i g. r esour ces section, which sets the resources for
the pgbackr est - conf i g sidecar container.

* spec. backups. pgbackrest . j obs. r esour ces section, which sets the resources for any pgBackRest backup job.

« spec. backups. pgbackr est. restore. resour ces section, which sets the resources for manual pgBackRest
restore jobs.

« spec. dat aSour ce. post gr esC ust er. r esour ces section, which sets the resources for pgBackRest restore jobs
created during the cloning process.

e spec. proxy. pgBouncer . r esour ces section, which sets the resources for the pgbouncer container.
e spec. proxy. pgBouncer . si decar s. pgbouncer Confi g. r esour ces section, which sets the resources for the

pgbouncer - conf i g sidecar container.

The layout of these r esour ces sections should be familiar: they follow the same pattern as the standard Kubernetes

structure for setting container resources. Note that these settings also allow for the configuration of QoS classes.

For example, using the spec. i nst ances. r esour ces section, let's say we want to update our hi ppo Postgres cluster
so that each instance has a limit of 2. 0 CPUs and 4G of memory. We can make the following changes to the manifest:

api Ver si on: post gr es- oper at or. crunchydat a. com vlbetal
ki nd: Post gresd ust er
net adat a
nanme: hi ppo
spec:
i mage: regi stry. devel opers. crunchydat a. conf cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3- 2
post gr esVer si on: 15
i nst ances:
- name: i nstancel
replicas: 2
resour ces
limts:
cpu: 2.0
menory: 4G
dat aVol uned ai nSpec:
accesshMdes:
- "ReadWiteOnce”
resour ces
requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- nhanme: repol
vol une:
vol umed ai nSpec:
accesshMbdes:
- "ReadWiteOnce"
r esour ces:
requests:
storage: 1G

In particular, we added the following to spec. i nst ances:

resources:
limts:

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/

cpu: 2.0
menory: 4G

Apply these updates to your Postgres cluster with the following command:
kubect | apply - k kust oni ze/ post gres
Now, let's watch how the rollout happens:

wat ch " kubect| - n post gres-operat or get pods \

--sel ect or =post gr es- oper at or. cr unchydat a. con cl ust er =hi ppo, post gr es- oper at or. cr unchyda-
ta. com i nstance\

-o=j sonpat h=' {range .itens[*]}{. netadat a. nane}{\"\t\"}{. net adat a. | abel s. post gr es- oper a-
tor\.crunchydata\.comrol e} {\"\t\"}{.status. phase}{\"\t\"}{.spec.containers[].re-
sources. limts}{\"\n\"}{end}""

Observe how each Pod is terminated one-at-a-time. This is part of a "rolling update". Because updating the resources of a
Pod is a destructive action, PGO first applies the CPU and memaory changes to the replicas. PGO ensures that the changes
are successfully applied to a replica instance before moving on to the next replica.

Once all of the changes are applied, PGO will perform a "controlled switchover": it will promote a replica to become a
primary, and apply the changes to the final Postgres instance.

By rolling out the changes in this way, PGO ensures there is minimal to zero disruption to your application: you are able to
successfully roll out updates and your users may not even notice!

Resize PVC

Your application is a success! Your data continues to grow, and it's becoming apparently that you need more disk.
That's great: you can resize your PVC directly on your post gr escl ust er s. post gr es- oper at or. cr unchydat a. com
custom resource with minimal to zero downtime.

PVC resizing, also known as volume expansion, is a function of your storage class: it must support volume resizing.

Additionally, PVCs can only be sized up: you cannot shrink the size of a PVC.
You can adjust PVC sizes on all of the managed storage instances in a Postgres instance that are using Kubernetes
storage. These include:

e spec. i nst ances. dat aVol uned ai nSpec. r esour ces. r equest s. st or age: The Postgres data directory (aka
your database).

e spec. backups. pgbackrest . repos. vol une. vol uned ai nSpec. r esour ces. r equest s. st or age: The pg-
BackRest repository when using "volume" storage

The above should be familiar: it follows the same pattern as the standard Kubernetes PVC structure.

For example, let's say we want to update our hi ppo Postgres cluster so that each instance now uses a 10G PVC and
our backup repository uses a 20G PVC. We can do so with the following markup:

api Ver si on: post gres-operator. crunchydat a. com vlbetal
ki nd: Post gresd ust er
net adat a:
nane: hi ppo
spec:

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

i mage: regi stry. devel opers. crunchydat a. conif cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3-2

post gr esVer si on: 15
i nst ances:
- nane: i nstancel
replicas: 2
resour ces
limts:
cpu: 2.0
menory: 4G
dat aVol unmed ai nSpec
accesshMdes:
- "ReadWit eOnce"
resour ces
requests:
st orage: 10G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- name: repol
vol une:
vol umedl ai nmpec:
accesshMdes:
- "ReadWit eOnce"
resour ces:
requests:
st orage: 20G

In particular, we added the following to spec. i nst ances:

dat aVol uned ai nSpec
resour ces:
requests:
st orage: 10G

and added the following to spec. backups. pgbackr est . r epos. vol une:

vol uned ai nSpec:
accessMdes:
- "ReadWit eOnce"
r esour ces:
requests:
st orage: 20G

Apply these updates to your Postgres cluster with the following command:

kubect | appl y - k kust oni ze/ post gr es

Resize PVCs With StorageClass That Does Not Allow Expansion

Not all Kubernetes Storage Classes allow for volume expansion. However, with PGO, you can still resize your Postgres

cluster data volumes even if your storage class does not allow it!
Let's go back to the previous example:
api Ver si on: post gres-operator. crunchydat a. com vlibetal

ki nd: Post gresd uster
net adat a

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims

nane: hi ppo
spec:
i mage: regi stry. devel opers. crunchydat a. coni cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3-2
post gr esVer si on: 15
i nst ances:
- name: i nstancel
replicas: 2
resour ces
limts:
cpu: 2.0
menory: 4G
dat aVol unmed ai nSpec
accesshMdes:
- ' ReadWi t eOnce'
resour ces
requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- nane: repol
vol une:
vol uned ai nSpec
accesshMdes:
- ' ReadWi t eOnce'
resour ces:
requests:
st orage: 20G

First, create a new instance that has the larger volume size. Call this instance i nst ance2. The manifest would look like
this:

api Ver si on: post gres-operator. crunchydat a. com vlbetal
ki nd: Post gresd ust er
nmet adat a
nane: hi ppo
spec:
i mage: regi stry. devel opers. crunchydat a. coni cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3-2
post gr esVer si on: 15
i nst ances:
- name: i nstancel
replicas: 2
resour ces
limts:
cpu: 2.0
menory: 4G
dat aVol unmed ai nSpec
accesshMdes:
- ' ReadWi t eOnce'
resour ces
requests:
st orage: 1G
- name: i nstance2
replicas: 2
resour ces
limts:
cpu: 2.0
menory: 4G
dat aVol unmed ai nSpec
accesshMdes:
- ' ReadWi t eOnce'

resour ces
requests:
st orage: 10G
backups:
pgbackr est :
i mage: regi stry. devel opers. crunchydat a. comf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- name: repol
vol une:
vol umed ai nmpec:
accesshMdes:
- ' ReadWi t eOnce'
resour ces:
requests:
st orage: 20G

Take note of the block that contains i nst ance2:

-nane: i nstance2

replicas: 2

resour ces:
limts:
cpu: 2.0
menory: 4G

dat aVol umed ai nfSpec:
accessMdes:
- 'ReadWiteOnce
resour ces
requests:

storage: 10G

This creates a second set of two Postgres instances, both of which come up as replicas, that have a larger PVC.

Once this new instance set is available and they are caught to the primary, you can then apply the following manifest:

api Ver si on: post gres- operat or. crunchydata. com vlbetal
ki nd: Post gresd ust er
net adat a
nane: hi ppo
spec:
i mage: regi stry. devel opers. crunchydat a. conif cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3-2
post gr esVer si on: 15
i nst ances:
- nane: i nstance2
replicas: 2
resour ces
limts:
cpu: 2.0
menory: 4G
dat aVol uned ai nSpec
accesshMdes:
- ' ReadWi t eOnce'
resour ces
requests:
st orage: 10G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. comf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- name: repol
vol une:

vol uned ai nSpec
accessModes:

- 'ReadWiteOnce'
resour ces:

request s:

st orage: 20G

This will promote one of the instances with the larger PVC to be the new primary and remove the instances with the smaller
PVCs!

This method can also be used to shrink PVCs to use a smaller amount.

Troubleshooting

Postgres Pod Can't Be Scheduled

There are many reasons why a PostgreSQL Pod may not be scheduled:

« Resources are unavailable. Ensure that you have a Kubernetes Node with enough resources to satisfy your memory
or CPU Request.

e PVC cannot be provisioned. Ensure that you request a PVC size that is available, or that your PVC storage class is
set up correctly.

PVCs Do Not Resize

Ensure that your storage class supports PVC resizing. You can check that by inspecting the al | owMol uneExpansi on
attribute:

kubect | get sc

If the storage class does not support PVC resizing, you can use the technique described above to resize PVCs using a
second instance set.

Next Steps

Now that we know how to resize our Postgres clusters, let's look at how PGO handles software updates!

Apply Software Updates

Did you know that Postgres releases bug fixes once every three months? Additionally, we periodically refresh the container

images to ensure the base images have the latest software that may fix some CVEs.

It's generally good practice to keep your software up-to-date for stability and security purposes, so let's learn how PGO
helps to you accept low risk, "patch” type updates.

The good news: you do not need to update PGO itself to apply component updates: you can update each Postgres cluster
whenever you want to apply the update! This lets you choose when you want to apply updates to each of your Postgres

https://kubernetes.io/docs/concepts/architecture/nodes/
https://www.postgresql.org/developer/roadmap/

clusters, so you can update it on your own schedule. If you have a high availability Postgres cluster, PGO uses a rolling
update to minimize or eliminate any downtime for your application.

Applying Minor Postgres Updates

The Postgres image is referenced using the spec. i mage and looks similar to the below:

spec:
i mage: regi stry. devel opers. crunchydat a. coni cr unchydat a/ crunchy- post gr es: ubi 8-14. 2-0

Diving into the tag a bit further, you will notice the 14. 2- 0 portion. This represents the Postgres minor version (14. 2) and
the patch number of the release 0. If the patch number is incremented (e.g. 14. 2- 1), this means that the container is
rebuilt, but there are no changes to the Postgres version. If the minor version is incremented (e.g. 14. 3- 0), this means
that there is a newer bug fix release of Postgres within the container.

To update the image, you just need to modify the spec. i mage field with the new image reference, e.g.

spec:
i mage: regi stry. devel opers. crunchydat a. conf cr unchydat a/ crunchy- post gres: ubi 8-14. 2-1

You can apply the changes using kubect | appl y. Similar to the rolling update example when we resized the cluster, the
update is first applied to the Postgres replicas, then a controlled switchover occurs, and the final instance is updated.

For the hi ppo cluster, you can see the status of the rollout by running the command below:

kubect | - n post gres-oper at or get pods \

--sel ect or =post gr es- oper at or. crunchydat a. con cl ust er =hi ppo, post gr es- oper at or. cr unchyda-
ta.com i nst ance\

-o=j sonpat h=' {range .itens[*] }{. netadat a. nane}{"\t"}{. net adat a. | abel s. post gr es- oper a-
tor\.crunchydata\.comrol e} {"\t"}{.status. phase}{"\t"}{.spec.containers[].im
age}{"\n"}{end}"

or by running a watch:

wat ch " kubect| - n post gres-operat or get pods \

--sel ect or =post gr es- oper at or. crunchydat a. con cl ust er =hi ppo, post gr es- oper at or. cr unchyda-
ta. com i nstance\

-o=j sonpat h=' {range .itens[*]}{. netadat a. nane}{\"\t\"}{. net adat a. | abel s. post gr es- oper a-
tor\.crunchydata\.comrol e} {\"\t\"}{.status. phase}{\"\t\"}{.spec.containers[].im
age}{\"\n\"}{end}""

Rolling Back Minor Postgres Updates

This methodology also allows you to rollback changes from minor Postgres updates. You can change the spec. i mage
field to your desired container image. PGO will then ensure each Postgres instance in the cluster rolls back to the desired
image.

Applying Other Component Updates

There are other components that go into a PGO Postgres cluster. These include pgBackRest, PgBouncer and others.
Each one of these components has its own image: for example, you can find a reference to the pgBackRest image in the
spec. backups. pgbackr est . i nage attribute.

Applying software updates for the other components in a Postgres cluster works similarly to the above. As pgBackRest
and PgBouncer are Kubernetes Deployments, Kubernetes will help manage the rolling update to minimize disruption.

Guides

This section contains guides on handling various scenarios when managing Postgres clusters using PGO, the Postgres
Operator. These include step-by-step instructions for situations such as migrating data to a PGO managed Postgres cluster
or upgrading from an older version of PGO.

These guides are in no particular order: choose the guide that is most applicable to your situation.

If you are looking for how to manage most day-to-day Postgres scenarios, we recommend first going through the Tutorial.

Logical Replication

Logical replication is a Postgres feature that provides a convenient way for moving data between databases, particularly
Postgres clusters that are in an active state. To apply logical replication, we'll first enable the feature in our cluster, then we'll

create a publication in one cluster and a subscription to that publication in another cluster. With this pub-sub relationship
established, we'll observe data created in one cluster flowing into another.

Before getting started, you may want to create the post gr es- oper at or nhamespace if you haven't already, kubect | cre-
at e ns post gr es- oper at or Just as we did in the Quickstart and Tutorials, we're going to create a Postgres cluster
named hi ppo. You may want to delete the existing hi ppo cluster, if you have one left over. Finally, you'll need a running
installation of Crunchy Postgres for Kubernetes.

Enable Logical Replication

This example creates two separate Postgres clusters named hi ppo and r hi no.We will logically replicate data from r hi no
to hi ppo.We can create these two Postgres clusters by creating a file called r epl i cati on- exanpl e. yan and pasting
in the manifests below:

api Ver si on: post gres- operat or. crunchydat a. com vlbetal
ki nd: Post gresd ust er
net adat a
nane: hi ppo
nanespace: post gres- oper at or
spec:
i mage: regi stry. devel opers. crunchydat a. coni cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3-2
post gr esVer si on: 15
i nst ances:
- dat aVol umed ai nSpec:
accessMdes:
- "ReadWit eOnce"
resour ces
requests:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://www.postgresql.org/docs/current/logical-replication.html

storage: 1G
backups:
pgbackr est :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- name: repol
vol une:
vol umed ai nmSpec:
accesshMdes:
- "ReadWit eOnce"
resour ces:
requests:
storage: 1G
api Ver si on: post gr es- oper at or. crunchydat a. com vlbet al
ki nd: Post gresd ust er
net adat a
nane: r hi no
namespace: post gres-oper at or
spec:
i mage: regi stry. devel opers. crunchydat a. conf cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3-2
post gr esVer si on: 15
i nst ances:
- dat aVol uned ai nSpec
accesshMdes:
- "ReadWit eOnce"
resour ces
requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- pgbackr est : ubi 8- 2. 45- 2
r epos:
- nanme: repol
vol une:
vol umedl ai npec
accesshMdes:
- "ReadWit eOnce"
resour ces:
requests:
storage: 1G
users:
- name: |l ogic
dat abases:
- z0o
options: "REPLI CATI ON'

The key difference between the two Postgres clusters is this section in the r hi no manifest:

users:
- nanme: | ogi c
dat abases:
- 200

options: "REPLI CATI ON'

This creates a database called zoo and a user named | ogi ¢ with REPLI CATI ON privileges. This will allow for replicating
data logically to the hi ppo Postgres cluster.

Create these two Postgres clusters with the command kubect | apply -f repli cati on- exanpl e. yani

Create a Publication

For convenience, you can use the kubect | execmethod to log into the zoo database in r hi no:

kubect | exec -it - npost gres-operator -c dat abase\
$(kubect| get pods - n post gres-operator --sel ect or=" post gres-operator. crunchydat a. coni cl us-
t er =r hi no, post gr es- oper at or. crunchydat a. com r ol e=master' -onane) -- psql zoo

Let's create a simple table called abc that contains just integer data. We will also populate this table:

CREATE TABLE abc (i d i nt PRI MARY KEY) ;
| NSERT | NTOabc SELECT * FROMgener at e_seri es(1, 10);

We need to grant SELECT privileges to the | ogi ¢ user in order for it to perform an initial data synchronization during logical
replication. You can do so with the following command:

GRANT SELECT ONabc TOI ogi c;
Finally, create a publication that allows for the replication of data from abc:
CREATE PUBLI CATI ONzoo FORALL TABLES;

Quit out of the r hi no Postgres cluster with \ g.

Create a Subscription

For the next step, you will need to get the connection information for how to connection as the | ogi ¢ user to the r hi no
Postgres database. You can get the key information from the following commands, which return the hostname, username,
and password:

kubect| - n post gres- oper at or get secretsrhino-pguser-1|ogic-ojsonpath={.data. host} | base64-d
kubect | - n post gres-operat or get secretsrhino-pguser-Ilogic-ojsonpath={.data.user} | base64-d
kubect | - n post gres-operat or get secretsrhino-pguser-I|ogic-ojsonpath={.data. pass-

wor d} | base64 -d

The host will be something like r hi no- pri mary. post gr es- oper at or . svc and the user will be | ogi c. Further down,
the guide references the password as <LOGd C- PASSWORD>. You can substitute the actual password there.

Log into the hi ppo Postgres cluster. Note that we are logging into the post gr es database within the hi ppo cluster:

kubect | exec -it - npost gres-operator -c dat abase\
$(kubect| get pods - n post gres- oper at or - - sel ect or =' post gr es- oper at or. crunchydat a. cont cl us-
t er =hi ppo, post gr es- oper at or. crunchydat a. com r ol e=master' -o nane) -- psql

Create a table called abc that is identical to the table in the r hi no database:
CREATE TABLE abc (i di nt PRI MARY KEY) ;

Finally, create a subscription that will manage the data replication from r hi no into hi ppo:

https://www.postgresql.org/docs/current/logical-replication-publication.html
https://www.postgresql.org/docs/current/logical-replication-subscription.html

CREATE SUBSCRI PTI ONzoo

CONNECTI ON' host =r hi no- pri mary. post gr es- oper at or. svc user =l ogi ¢ dbname=zoo0 passwor d=<LOG
| C- PASSWORD>'

PUBLI CATI ONz0o;

In a few moments, you should see the data replicated into your table:
TABLE abc;
which yields:

id

O©CoOO~NOOOUTRA,WNPEF

10
(10 rows)

You can further test that logical replication is working by modifying the data on r hi no in the abc table, and the verifying
that it is replicated into hi ppo.

Postgres Major Version Upgrade

You can perform a PostgreSQL major version upgrade declaratively using Crunchy Postgres for Kubernetes! The below
guide will show you how you can upgrade Postgres to a newer major version. For minor updates, i.e. applying a bug fix
release, you can follow the applying software updates guide in the tutorial.

Note that major version upgrades are permanent: you cannot roll back a major version upgrade through declarative
management at this time. If this is an issue, we recommend keeping a copy of your Postgres cluster running your previous
version of Postgres.

/N Warning
Please note the following prior to performing a PostgreSQL major version upgrade:

* Any Postgres cluster being upgraded must be in a healthy state in order for the
upgrade to complete successfully. If the cluster is experiencing issues such as
Pods that are not running properly, or any other similar problems, those issues
must be addressed before proceeding.

e Major PostgreSQL version upgrades of PostGIS clusters are not currently supported.

The following guide assumes that you have a running installation of Crunchy Postgres for Kubernetes as well as a
running Postgres cluster with Postgres version 14 deployed. For tips on installation, see the Basic Setup Tutorial. To

install Postgres 14, follow the steps in Create a Postgres Cluster, being sure to change post gr esVer si on: 15to
post gr esVer si on: 14

Step 1. Take a Full Backup

Before starting your major upgrade, you should take a new full backup of your data. This adds another layer of protection
in cases where the upgrade process does not complete as expected.

At this point, your running cluster is ready for the major upgrade.

Step 2: Configure the Upgrade Parameters through a PGUp-
grade object

The next step is to create a PGUpgr ade resource. This is the resource that tells the PGO-Upgrade controller which cluster
to upgrade, what version to upgrade from, and what version to upgrade to. There are other optional fields to fill in as well,
such as Resour ces and Tol er at i ons; to learn more about these optional fields, check out the Upgrade CRD API.

For instance, if you have a Postgres cluster named hi ppo running PG 14 but want to upgrade it to PG 15, the corresponding
PGUpgr ade manifest would look like this:

api Ver si on: post gres-operator. crunchydat a. com vlibetal

ki nd: PGUpgr ade

net adat a:

nane: hi ppo- upgr ade
spec:

i mage: regi stry. devel opers. crunchydat a. coni cr unchydat a/ cr unchy- upgr ade: ubi 8-5. 4. 0-0
post gr esC ust er Nane: hi ppo

f r onPost gr esVer si on: 14

t oPost gr esVer si on: 15

The post gr esd ust er Nane gives the name of the target Postgres cluster to upgrade and t oPost gr esVer si on gives
the version to update to. It may seem unnecessary to include the f r onPPost gr esVer si on, but that is one of the safety
checks we have built into the upgrade process: in order to successfully upgrade a Postgres cluster, you have to know what
version you mean to be upgrading from.

One very important thing to note: upgrade objects should be made in the same namespace as the Postgres cluster that
you mean to upgrade. For security, the PGO-Upgrade controller does not allow for cross-namespace processes.

If you look at the status of the PGUpgr ade object at this point, you should see a condition saying this:

type: "progressing",

status: "fal se",

reason: " PGO ust er Not Shut down",

nmessage: "Post gresC uster i nstances still running",

What that means is that the upgrade process is blocked because the cluster is not yet shutdown. We are stuck
("progressing" is false) until we shutdown the cluster. So let's go ahead and do that now.

Step 3: Shutdown and Annotate the Cluster

In order to kick off the upgrade process, you need to shutdown the cluster and add an annotation to the cluster signalling
which PGUpgrade to run.

Why do we need to add an annotation to the cluster if the PGUpgrade already has the cluster's name? This is another
security mechanism--think of it as a two-key nuclear system: the PGUpgr ade has to know which Postgres cluster to
upgrade; and the Postgres cluster has to allow this upgrade to work on it.

The annotation to add is post gr es- oper at or . cr unchydat a. conf al | ow upgr ade, with the name of the PGUp-
gr ade object as the value. So for our example above with a Postgres cluster named hi ppo and a PGUpgr ade object
named hi ppo- upgr ade, we could annotate the cluster with the command

kubect | - n post gres-oper at or annot at e post gr escl ust er hi ppo post gr es- oper at or. crunchyda-
ta. com al | ow upgr ade="hi ppo- upgr ade"

To shutdown the cluster, edit the spec. shut down field to true and reapply the spec with kubect | . For example, if you
used the tutorial to create your Postgres cluster, you would run the following command:

kubect | - n post gres-operat or appl y - k kust oni ze/ post gr es

(Note: you could also change the annotation at the same time as you shutdown the cluster; the purpose of demonstrating
how to annotate was primarily to show what the label would look like.)

Step 4: Watch and wait

When the last Postgres Pod is terminated, the PGO-Upgrade process will kick into action, upgrading the primary database
and preparing the replicas. If you are watching the namespace, you will see the PGUpgrade controller start Pods for each
of those actions. But you don't have to watch the namespace to keep track of the upgrade process.

To keep track of the process and see when it finishes, you can look at the st at us. condi t i ons field of the PGUpgr ade
object. If the upgrade process encounters any blockers preventing it from finishing, the st at us. condi t i ons field will
report on those blockers. When it finishes upgrading the cluster, it will show the status conditions:

type: "Progressing"
status: "fal se"
reason: " PGUpgr adeConpl et ed"”

type: "Succeeded" status: "true"
reason: " PGUpgr adeSucceeded"

You can also check the Postgres cluster itself to see when the upgrade has completed. When the upgrade is complete, the
cluster will show the new version in its st at us. post gr esVer si on field.

If the process encounters any errors, the upgrade process will stop to prevent further data loss; and the PGUpgr ade object
will report the failure in its status. For more specifics about the failure, you can check the logs of the individual Pods that
were doing the upgrade jobs.

Step 5: Restart your Postgres cluster with the new version

Once the upgrade process is complete, you can erase the PGUpgr ade object, which will clean up any Jobs and Pods that
were created during the upgrade. But as long as the process completed successfully, that PGUpgr ade object will remain
inert. If you find yourself needing to upgrade the cluster again, you will not be able to edit the existing PGUpgr ade object
with the new versions, but will have to create a new PGUpgr ade object. Again, this is a safety mechanism to make sure
that any PGUpgrade can only be run once.

Likewise, you may remove the annotation on the Postgres cluster as part of the cleanup. While not necessary, it is
recommended to leave your cluster without unnecessary annotations.

To restart your newly upgraded Postgres cluster, you will have to update the spec. post gr esVer si on to the new version.
You may also have to update the spec. i nage value to reflect the image you plan to use if that field is already filled in.
Turn spec. shut down to false, and PGO will restart your cluster:

spec:
shut down: fal se

i mage: regi stry. devel opers. crunchydat a. coni cr unchydat a/ crunchy- post gr es: ubi 8- 15. 3-2
post gr esVer si on: 15

N\ Warning

Setting and applying the post gr esVer si on or i nage values before the upgrade
will result in the upgrade process being rejected.

Step 6: Complete the Post-Upgrade Tasks

After the upgrade Job has completed, there will be some amount of post-upgrade processing that needs to be done.
During the upgrade process, the upgrade Job, via pg_upar ade, will issue warnings and possibly create scripts to perform
post-upgrade tasks. You can see the full output of the upgrade Job by running a command similar to this:

kubect | - n post gres-operat or | ogs hi ppo- pgupgr ade- abcd

While the scripts are placed on the Postgres data PVC, you may not have access to them. The below information describes
what each script does and how you can execute them.

In Postgres 13 and older, pg_upgr ade creates a script called anal yze_new _cl ust er. sh to perform a post-upgrade
analyze using vacuundb on the database.

The script provides two ways of doing so:

vacuundb --al | --anal yze-in-stages
or
vacuundb --al | --anal yze-only

Note that these commands need to be run as a Postgres superuser (e.g. post gr es). For more information on the difference
between the options, please see the documentation for vacuuntdb.

If you are unable to exec into the Pod, you can run ANALYZE directly on each of your databases.

https://www.postgresql.org/docs/current/pgupgrade.html
https://www.postgresql.org/docs/current/app-vacuumdb.html
https://www.postgresql.org/docs/current/app-vacuumdb.html

pg_upgr ade may also create a script called del et e_ol d_cl ust er . sh, which contains the equivalent of
rm-rf '/pgdatal pgl4

When you are satisfied with the upgrade, you can execute this command to remove the old data directory. Do so at your
discretion.

Note that the del et e_ol d_cl ust er . sh script does not delete the old WAL files. These are typically found in / pgda-
ta/ pgld wal , although they can be stored elsewhere. If you would like to delete these files, this must be done manually.

If you have extensions installed you may need to upgrade those as well. For example, for the pgaudi t extension we
recommend running the following to upgrade:

DROP EXTENSI ON pgaudi t ;
CREATE EXTENSI ONpgaudi t ;

pg_upgr ade may also create a file called updat e_ext ensi ons. sql to facilitate extension upgrades. Be aware some
of the recommended ways to upgrade may be outdated.

Please carefully review the updat e_ext ensi ons. sql file before you run it, and if you want to upgrade pgaudi t via
this file, update the file with the above commands for pgaudi t prior to execution. We recommend verifying all extension
updates from this file with the appropriate extension documentation and their recommendation for upgrading the extension
prior to execution. After you update the file, you can execute this script using kubect | exec e.g.

$kubect | - n post gres-operator exec-it -c database\

$(kubect| - npost gres-operator get pods --sel ect or=" post gres-operator. crunchydat a. coni cl us-
t er =hi ppo, post gr es- oper at or. crunchydat a. com r ol e=master' -onane) -- psql -f / pgdat a/ up-
dat e_ext ensi ons. sql

If you cannot exec into your Pod, you can also manually run these commands as a Postgres superuser.
Ensure the execution of this and any other SQL scripts completes successfully, otherwise your data may be unavailable.

Once this is done, your major upgrade is complete! Enjoy using your newer version of Postgres!

Migrate Data Volumes to New Clusters

There are certain cases where you may want to migrate existing volumes to a new cluster. If so, read on for an in depth
look at the steps required.

Configure your PostgresCluster CRD

In order to use existing pgData, pg_wal or pgBackRest repo volumes in a new PostgresCluster, you will need to configure
the spec. dat aSour ce. vol unes section of your PostgresCluster CRD. As shown below, there are three possible
volumes you may configure, pgDat aVol une, pgWALVol unme and pgBackRest Vol une. Under each, you must define the
PVC name to use in the new cluster. A directory may also be defined, as needed, for cases where the existing directory
name does not match the v5 directory.

To help explain how these fields are used, we will consider a pgcl ust er from PGO v4, ol dhi ppo. We will assume that
the pgcl ust er has been deleted and only the PVCs have been left in place.

Please note that any differences in configuration or other datasources will alter this procedure significantly and
that certain storage options require additional steps (see Considerations below)!

In a standard PGO v4.7 cluster, a primary database pod with a separate pg_wal PVC will mount its pgData PVC,
named "oldhippo”, at / pgdat a and its pg_wal PVC, named "oldhippo-wal", at / pgwal within the pod's file system.

In this pod, the standard pgData directory will be / pgdat a/ ol dhi ppo and the standard pg_wal directory will be

/ pgwal / ol dhi ppo-wal . The pgBackRest repo pod will mount its PVC at / backr est r epo and the repo directory will
be / backr est r epo/ ol dhi ppo- backr est - shar ed- r epo.

With the above in mind, we need to reference the three PVCs we wish to migrate in the dat aSour ce. vol unes portion
of the PostgresCluster spec. Additionally, to accommodate the PGO v5 file structure, we must also reference the pgData
and pgBackRest repo directories. Note that the pg_wal directory does not need to be moved when migrating from v4 to
v5!

Now, we just need to populate our CRD with the information described above:

spec:
dat aSour ce:
vol unes:
pgDat aVol une:
pvcNane: ol dhi ppo
di rectory: ol dhi ppo
pgWALVol une:
pvcNane: ol dhi ppo- wal
pgBackRest Vol une:
pvcNane: ol dhi ppo- pgbr-repo
di rectory: ol dhi ppo- backr est - shar ed-repo

Lastly, it is very important that the PostgreSQL version and storage configuration in your PostgresCluster match exactly
the existing volumes being used.

If the volumes were used with PostgreSQL 13, the spec. post gr esVer si on value should be 13 and the associated
spec. i mage value should refer to a PostgreSQL 13 image.

Similarly, the configured data volume definitions in your PostgresCluster spec should match your existing volumes. For
example, if the existing pgData PVC has a RWO access mode and is 1 Gigabyte, the relevant dat aVol uned ai nmSpec
should be configured as

dat aVol uneC ai nSpec:
accessMdes:
- "ReadW it eOnce”
r esour ces:
requests:
storage: 1G

With the above configuration in place, your existing PVC will be used when creating your PostgresCluster. They will be
given appropriate Labels and ownership references, and the necessary directory updates will be made so that your cluster
is able to find the existing directories.

Considerations

Removing PGO v4 labels

When migrating data volumes from v4 to v5, PGO relabels all volumes for PGO v5, but will not remove existing PGO v4
labels. This results in PVCs that are labeled for both PGO v4 and v5, which can lead to unintended behavior.

To avoid that, you must manually remove the pg- cl ust er and vendor labels, which you can do with a kubect | com-
mand. For instance, given a cluster named hi ppo with a dedicated pgBackRest repo, the PVC will be hi ppo- pgbr - r epo,
and the PGO v4 labels can be removed with the below command:

kubect | | abel pvc hi ppo- pgbr-repo\
pg-cl uster-\
vendor -

Proper file permissions for certain storage options

Additional steps are required to set proper file permissions when using certain storage options, such as NFS and HostPath
storage due to a known issue with how fsGroups are applied.

When migrating from PGO v4, this will require the user to manually set the group value of the pgBackRest repo directory,
and all subdirectories, to 26 to match the post gr es group used in PGO v5. Please see here for more information.

Additional Considerations

< An existing pg_wal volume is not required when the pg_wal directory is located on the same PVC as the pgData directory.

* When using existing pg_wal volumes, an existing pgData volume must also be defined to ensure consistent naming and
proper