JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.
@inproceedings{latina:hb2023-wea3c1, author = {A. Latina}, title = {{The Tracking Code RF-Track and Its Application}}, % booktitle = {Proc. HB'23}, booktitle = {Proc. 68th Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams (HB'23)}, eventdate = {2023-10-09/2023-10-13}, pages = {245--248}, paper = {WEA3C1}, language = {english}, keywords = {electron, simulation, linac, positron, space-charge}, venue = {Geneva, Switzerland}, series = {ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams}, number = {68}, publisher = {JACoW Publishing, Geneva, Switzerland}, month = {04}, year = {2024}, issn = {2673-5571}, isbn = {978-3-95450-253-0}, doi = {10.18429/JACoW-HB2023-WEA3C1}, url = {https://jacow.org/hb2023/papers/wea3c1.pdf}, abstract = {{RF-Track is a CERN-developed particle tracking code that can simulate the generation, acceleration, and tracking of beams of any species through an entire accelerator, both in realistic field maps and conventional elements. RF-Track includes a large set of single-particle and collective effects: space-charge, beam-beam, beam loading in standing and travelling wave structures, short- and long-range wakefield effects, synchrotron radiation emission, multiple Coulomb scattering in materials, and particle lifetime. These effects make it the ideal tool for the simulation of high-intensity machines. RF-Track has been used for the simulation of electron linacs for medical applications, inverse-Compton-scattering sources, positron sources, protons in Linac4, and the cooling channel of a future muon collider. An overview of the code is presented, along with some significant results.}}, }