
Transaction Processing in PostgreSQL

Transaction Processing in PostgreSQL

Tom Lane
Great Bridge, LLC
tgl@sss.pgh.pa.us

Transaction Processing in PostgreSQL

Outline

Introduction

• What is a transaction?

User’s view

• Multi-version concurrency control

Implementation

• Tuple visibility

• Storage management

• Locks

2

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

PostgreSQL system overview

Interface
Library

Client
Application

Daemon
Process

Postmaster

Postgres
Server

(Backend)

DB Requests
and Results

via
Library API

Spawn
Server

Process

SQL Queries

Client

and Results

Server Processes

Initial
Connection

Request
and

Authentication

Client Processes

3

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

PostgreSQL system overview

Process

Postmaster

Postgres
Server

(Backend)

Spawn
Server

Process

Read/
Write

Shared Memory

Daemon Create

Server Processes Unix System

Disk
Buffers

Disk
Shared

Tables
Shared

Buffers

Kernel

Disk
Storage

• Database files are accessed through shared buffer pool

 • Hence, two backends can never see inconsistent views of a file

• Unix kernel usually provides additional buffering

4

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

What is a transaction, anyway?

Definition: a transaction is a group of SQL
commands whose results will be made

visible to the rest of the system as a
unit when the transaction commits --- or not

at all, if the transaction aborts.

Transactions are expected to be atomic, consistent,
isolated, and durable.

• Postgres does not support distributed transactions, so all commands
of a transaction

are executed by one backend.

• We don’t currently handle nested transactions, either.

5

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

The ACID test: atomic, consistent, isolated, durable

Atomic: results of a transaction are seen entirely or not at all within other transactions.

(A transaction need not appear atomic to itself.)

Consistent: system-defined consistency constraints are
enforced on the results of

transactions. (Not going to discuss constraint
checking today.)

Isolated: transactions are not affected by the behavior of
concurrently-running

transactions.

Stronger variant: serializable. If the final results
of a set of concurrent transactions

are the same as if we’d run the
transactions serially in some order (not necessarily

any predetermined order), then we say the behavior is serializable.

Durable: once a transaction commits, its results will not be
lost regardless of

subsequent failures.
6

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

But how can thousands of changes be made "atomically"?

• The actual tuple insertions/deletions/updates are all marked
as done by transaction N

as they are being made. Concurrently running backends ignore the changes

because they know transaction N is not committed yet. When the transaction
commits,

all those changes become logically visible at once.

• The control file pg_log contains 2 status bits per
transaction ID, with possible states

in progress, committed,
aborted. Setting those two bits to the
value committed is

the atomic action that marks a transaction committed.

• An aborting transaction will normally set its pg_log status
to aborted. But even if

the process crashes without having
done so, everything is safe. The next time some

backend checks the state of
that transaction, it will observe that the transaction is

marked in
progress but is not running on any backend, deduce that it crashed,
and

update the pg_log entry to aborted on its behalf.
No changes are needed

in any table data file during abort.

7

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

But is it really atomic and durable, even if the system crashes?

Well ... that depends on how much you trust your kernel and hard disk.

• Postgres transactions are only guaranteed atomic if a disk page write is
an atomic

action. On most modern hard drives that’s true if a page is a
physical sector, but most

people run with disk pages configured as 8K or so,
which makes it a little more dubious

whether a page write is all-or-nothing.

• pg_log is safe anyway since we’re only flipping bits in
it, and both bits of a

transaction’s status must be in the same sector.

• But when moving tuples around in a data page, there’s a potential for
data corruption

if a power failure should manage to abort the page write
partway through (perhaps only

some of the component sectors get written).
This is one reason to keep page sizes

small ... and to buy a UPS for your server!
8

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

Working through the Unix kernel costs us something, too

It’s critical that we force a transaction’s data page changes down to disk
before we write

pg_log. If the disk writes occur in the wrong
order, a power failure could leave us with a

transaction that’s
marked committed in pg_log but not all of
whose data changes are

reflected on disk --- thus failing the atomicity test.

• Unix kernels allow us to force the correct write order via fsync(2), but
the performance

penalty of fsync’ing many files is pretty high.

• We’re looking at ways to avoid needing so many fsync()s, but that’s a
different talk.

9

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

User’s view: multi-version concurrency control

A PostgreSQL application sees the following behavior of concurrent
transactions:

• Each transaction sees a snapshot (database version) as of its start
time,

no matter what other transactions are doing while it runs

• Readers do not block writers, writers do not block readers

• Writers only block each other when updating the same row

10

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

Concurrent updates are tricky

Consider this example: transaction A does

 UPDATE foo SET x = x + 1 WHERE rowid = 42

and before it commits,
transaction B comes along and wants to do the same thing

on the same row.

• B clearly
must wait to see if A commits or not.

• If A aborts then B can go ahead,
using the pre-existing value of x.

• But if A commits, what then?

• Using
the old value of x will yield a clearly unacceptable
result: x ends up

incremented by 1 not 2 after both transactions commit.

• But if B is allowed to increment the new value
of x, then B is reading data committed

since it began execution. This violates the basic principle of
transaction isolation.

11

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

Read committed vs. serializable transaction level

PostgreSQL offers two answers to the concurrent-update problem
(out of four

transaction isolation levels defined in the ISO SQL standard):

Read committed level: allow B to use new tuple as input
values (after checking

to ensure new tuple still satisfies query’s WHERE clause). Thus, B is
allowed to

see just this tuple of A’s results.

Serializable level: abort B with "not serializable" error.
Client application must redo

the whole transaction B, which will then be allowed
to see the new value of x under

strict serializable-behavior rules.

• Serializable level is logically cleaner but requires more code in
application, so by

default we run in read-committed level which usually produces the desired
behavior.

• In either case a pure SELECT transaction only sees data committed before
it started.

It’s just updates and deletes that are interesting.

12

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

How it’s implemented

"O say, can you see that tuple?"

The most fundamental implementation concept is tuple
visibility: which versions

of which table rows are seen by which transactions.

Ignoring tuples you’re not supposed to be able to see is the key to
making

transactions appear atomic.

Definition: a tuple is a specific stored object in
a table,
representing one version

of some logical table row. A row may exist in
multiple versions simultaneously.

13

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

Non-overwriting storage management

We must store multiple versions of every row. A tuple can be removed only
after

it’s been committed as deleted for long enough that no active
transaction

can see it anymore.

Fortunately, PostgreSQL has always practiced "non overwriting" storage

management: updated tuples are appended to the table, and older versions
are

removed sometime later.

Currently, removal of long-dead tuples is handled by
a VACUUM maintenance

command that must be issued
periodically. We are looking at ways to reduce

need for VACUUM by recycling dead tuples on-the-fly.

14

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

Per-tuple status information

Tuple headers contain:

• xmin: transaction ID of inserting transaction

• xmax: transaction ID of replacing/deleting transaction (initially NULL)

• forward link: link to newer version of same logical row, if any

Basic idea: tuple is visible if xmin is valid and xmax is not. "Valid"
means

"either committed or the current transaction".

If we plan to update rather than delete, we first add new version of row
to table,

then set xmax and forward link in old tuple. Forward link will
be needed by

concurrent updaters (but not by readers).

To avoid repeated consultation of pg_log, there are also
some status
bits that indicate

"known committed" or "known aborted" for xmin and xmax.
These are set by the first

backend that inspects xmin or xmax after the
referenced transaction commits/aborts.

15

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

"Snapshots" filter away active transactions

If Transaction A commits while Transaction B is running, we don’t want B
to

suddenly start seeing A’s updates partway through.

• Hence, we make a list
at transaction start of which transactions are currently being

run by other backends.
(Cheap shared-memory communication is essential here: we

just look in a
shared-memory table, in which each backend records its current

transaction
number.)

• These transaction IDs will never be considered valid
by the current transaction,

even if they are shown to be committed in pg_log or on-row status bits.

• Nor will a transaction with ID higher than the current transaction’s
ever be

considered valid.

• These rules ensure that no transaction committing after the current
transaction’s

start will be considered committed.

• Validity is in the eye of the beholder.
16

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

Table-level locks: still gotta have ’em for some things

Even though readers and writers don’t block each other under MVCC, we still
need

table-level locking.

This exists mainly to prevent the entire table from
being altered or deleted

out from under readers or writers.

We also offer various lock levels for application use (mainly for
porting applications

that take a traditional lock-based approach to
concurrency).

17

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

Types of locks

Lock type Acquired by system for Conflicts with

1 AccessShareLock SELECT 7
2 RowShareLock SELECT FOR UPDATE 6,7
3 RowExclusiveLock UPDATE, INSERT, DELETE 4,5,6,7
4 ShareLock CREATE INDEX 3,5,6,7
5 ShareRowExclusiveLock 3,4,5,6,7
6 ExclusiveLock 2,3,4,5,6,7
7 AccessExclusiveLock DROP TABLE, ALTER TABLE, VACUUM all

All lock types can be obtained by user LOCK TABLE commands.

Locks are held till end of transaction: you can grab a lock, but you can’t
release it

except by ending your transaction.

18

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

Lock implementation

Locks are recorded in a shared-memory hash table keyed by kind and ID of
object

being locked. Each item shows the types and numbers of locks held or
pending on

its object. Would-be lockers who have a conflict with an existing
lock must wait.

Waiting is handled by waiting on a per-process IPC semaphore, which will
be

signaled when another process releases the wanted lock. Note we need
only one

semaphore per concurrent backend, not one per potentially lockable
object.

19

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

Deadlock detection

Deadlock is possible if two transactions try to grab conflicting locks
in different orders.

If a would-be locker sleeps for more than a second without getting the
desired lock,

it runs a deadlock-check algorithm that searches the
lock hash table for circular

lock dependencies. If it finds any, then
obtaining the lock will be impossible, so it

gives up and reports an
error. Else it goes back to sleep and waits till granted the

lock (or
till client application gives up and requests transaction cancel).

• The delay before running the deadlock check algorithm can be
tuned to match the

typical transaction time in a particular server’s
workload. In this way, unnecessary

deadlock checks are seldom
performed, but real deadlocks are detected reasonably

quickly.

20

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

Short-term locks

Short-term locks protect datastructures in shared memory, such as the lock

hashtable described above.

These locks should only be held for long enough to
examine and/or update a

shared item --- in particular a backend should never
block while holding one.

Implementation: spin locks based on platform-specific
atomic test-and-set

instructions. This allows the lock code to fall through extremely quickly
in the

common case where there is no contention for the lock. If the test-and-set
fails,

we sleep for a short period (using select(2)) and
try again. No deadlock detection

as such, but we give up and report error
if fail too many times.

21

30 Oct 2000 Tom Lane

Transaction Processing in PostgreSQL

Summary

PostgreSQL offers true ACID semantics for transactions, given some
reasonable

assumptions about the behavior of the underlying Unix kernel
and hardware.

Multi-version concurrency control allows concurrent reading
and writing of tables,

blocking only for concurrent updates of same row.

MVCC is practical because of non-overwriting storage manager that we
inherited

from the Berkeley POSTQUEL project. Traditional
row-overwriting storage

management would have a much harder time.

22

30 Oct 2000 Tom Lane

