
Concurrency and Recovery in Generalized Search Trees

Marcel Kornacker�

U. C. Berkeley
EECS Department

387 Soda Hall
Berkeley, CA 94720-1776
marcel@cs.berkeley.edu

C. Mohan
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099
mohan@almaden.ibm.com

Joseph M. Hellerstein
U. C. Berkeley

EECS Department
387 Soda Hall

Berkeley,CA 94720-1776
jmh@cs.berkeley.edu

Abstract
This paper presents general algorithms for concurrency control
in tree-based access methods as well as a recovery protocol and
a mechanism for ensuring repeatable read. The algorithms are
developed in the context of the Generalized Search Tree (GiST)
data structure, an index structure supporting an extensible set of
queries and data types. Although developed in a GiST context,
the algorithms are generally applicable to many tree-based access
methods. The concurrency control protocol is based on an
extension of the link technique originally developed for B-trees,
and completely avoids holding node locks during I/Os. Repeatable
read isolation is achieved with a novel combination of predicate
locks and two-phase locking of data records. To our knowledge,
this is the first time that isolation issues have been addressed outside
the context of B-trees. A discussion of the fundamental structural
differences between B-trees and more general tree structures like
GiSTs explains why the algorithms developed here deviate from
their B-tree counterparts. An implementation of GiSTs emulating
B-trees in DB2/Common Server is underway.

1 Introduction
The increasing popularity of object-relational features within
database systems—essentially, being able to store and access
non-traditional datatypes such as images, audio and video,
text, web pages, etc.—reflects the growing importance of
having traditional database retrieval functionality for non-
traditional applications. A key feature of these systems is
fast, index-based access to the data as well as support for
datatype-specific operations along with the standard features
of multiuser access, transactional isolation and recoverability.

The research community has already developed a number
of index structures for many kinds of non-traditional
datatypes. Unfortunately, close to none of these are available
in today’s database systems. The reason is not that these new
access methods have no performance benefits, but that access
methods are hard to implement and integrate into DBMSs.
In order for an access method to be useful in a DBMS,
performance constraints often require it to handle concurrent

� Part of this work was done while Kornacker was working at the IBM
Almaden Research Center. Kornacker and Hellerstein were supported by
NASA grant 1996-MTPE-00099.

access. Furthermore, the access method also should support
the degrees of transactional isolation offered by the query
language of the DBMS. Finally, the access method must fit
in with the recovery mechanism that guarantees the integrity
of the DBMS’s data. Most research on novel access methods
completely ignores these issues, and algorithms for their
support are scarce. In addition, experience with B-tree
implementations has shown that these features cause much
of the complexity of actual implementations and account for
a major fraction of the code. It appears, that the performance
benefits of any particular access method other than B-trees
do not outweigh the substantial implementation effort.

To solve the problem of making innovative access methods
easier to integrate into DBMSs, [HNP95] developed a
Generalized Search Tree (GiST), a “template” index structure
supporting an extensible set of queries and datatypes. A
GiST can be specialized to any particular tree-based access
method by letting the implementor provide a small number
of extension methods which customize the behavior of
the tree with respect to the data type and query, thereby
substantially reducing the amount of code required for a new
access method. Examples of access methods, that can be
reformulated as GiST specializations are: R-tree ([Gut84])
and its variants, TV-tree ([LJF94]), P-tree ([Jag90]) and Ch-
tree ([KKAD89]). Although the GiST structure considerably
reduces the effort involved in implementing a new access
method from scratch, [HNP95] still does not address the areas
of concurrent access, transactional isolation or recovery.

In this paper we describe general algorithms for concur-
rency control, recovery and repeatable read isolation that can
be applied to a very broad class of access methods. These al-
gorithms are presented in the context of the GiST, but can also
be applied individually to any particular access method that
complies with the GiST structure. This is not a very restric-
tive requirement, because it only excludes access methods
that are either not proper trees (e.g., the hB-tree, as de-
scribed in [LS90]) or that have other structural peculiarity
(for instance, R+-trees, described in [SRF87], replicate leaf
entries). Although the GiST structure is similar to that of
a B-tree, it generalizes the B-tree structure in a way which

1



makes most of the extensively researched concurrency con-
trol techniques for B-trees inapplicable in the less restricted
context of the GiST structure.

Our concurrency control protocol is based on an extension
of the link technique initially developed for B-trees and
completely avoids holding tree node locks during I/Os.
Repeatable read isolation is achieved with an efficient hybrid
locking mechanism, which combines traditional two-phase
locking of data records with predicate locking. We show
how the structure of an access method affects the available
choices of concurrency control techniques and explain why
existing B-tree techniques cannot be directly applied to more
general tree structures. We also address practical issues such
as support for unique indices and savepoints. In conjunction
with these algorithms, the GiST can be the basis for access
method extensibility in a commercial DBMS, allowing the
addition of new access methods by providing a few hundred
lines of extension code without having to deal with recovery
or concurrency.

The rest of this paper is organized as follows. Section 2
contains a brief description of the basic GiST structure
and section 3 extends this structure for concurrent access.
Section 4 outlines our design of the hybrid locking
mechanism. After these preliminaries, the subsequent
four sections explain the algorithms for index lookup,
key insertion into non-unique and unique indices and key
deletion. Logging and recovery are described in section 9;
section 10 discusses a variety of implementation issues.
Section 11 discusses some of the implications of the structure
of an access method for concurrency control techniques and
explains why most of the prior work on B-trees cannot be
directly applied in the GiST context. Section 12 concludes
this paper with a summary.

2 Basic GiST Structure

A GiST is a balanced tree which provides “template”
algorithms for navigating the tree structure and modifying
the tree structure through node splits and deletes. Like all
other (secondary) index trees, the GiST stores (key, RID)
pairs in the leaves; the RIDs (record identifiers) point to
the corresponding records on the data pages. Internal nodes
contain (predicate, child page pointer) pairs; the predicate
evaluates to true for any of the keys contained in or reachable
from the associated child page. This captures the essence
of a tree-based index structure: a hierarchy of predicates, in
which each predicate holds true for all keys stored under
it in the hierarchy. A B-tree is a well known example
with those properties: the entries in internal nodes represent
ranges which bound values of keys in the leaves of the
respective subtrees. Another example is the R-tree, which
contains bounding rectangles as predicates in the internal
nodes. The predicates in the internal nodes of a search tree
will subsequently be referred to as bounding predicates (BPs).

Apart from these structural requirements, a GiST does
not impose any restrictions on the key data stored within
the tree or their organization within and across nodes. In
particular, the key space need not be ordered, thereby
allowing multidimensional data. Moreover, the nodes of
a single level need not partition or even cover the entire key
space, meaning that (a) overlapping BPs of entries at the same
tree level are allowed and (b) the union of all BPs can have
“holes” when compared to the entire key space. The leaves,
however, partition the set of stored RIDs, so that exactly one
GiST leaf entry points to a given data record.1

A GiST supports the standard index operations: SEARCH,
which takes a predicate and returns all leaf entries satisfying
that predicate; INSERT, which adds a (key, RID) pair to the
tree; and DELETE, which removes such a pair from the tree.
It implements these operations with the help of a set of
extension methods supplied by the access method developer.
The GiST can be specialized to one of a number of particular
access methods by providing a set of extension methods
specific to that access method; these extension methods
encapsulate the exact behavior of the search operation as
well as the organization of keys within the tree.

We now provide a sketch of the implementation of the
operations and how they use the extension methods. For
a more detailed description, together with examples of B-
tree and R-tree extension methods, see the original paper
([HNP95]).

SEARCH In order to find all leaf entries satisfying the search
predicate, we recursively descend all subtrees for which
the parent entry’s predicate is consistent with the search
predicate (employing the user-supplied extension method
consistent()).

INSERT Given a new (key, RID) pair, we must find a leaf to
insert it on. Note that because GiSTs allow overlapping
BPs, there may be more than a single leaf where the
key could be inserted. A user-supplied extension method
penalty() compares a key and predicate and computes a
domain-specific penalty for inserting the key within the
subtree whose bounds are given by the predicate. The
penalty typically reflects how much the predicate has to
be expanded to accommodate the new key. Using this
extension method, we traverse a single path from root to
leaf, followingbranches with the lowest insertionpenalty.

Extension code also manages the organization of keys
within the tree. If the leaf overflows and must be split,
a extension method pickSplit() is invoked to determine
how to distribute the keys between two leaves. If, as a
result, the parent also overflows, the splitting is carried
out recursively, from bottom to top.

1This structural requirement excludes R+-trees ([SRF87]) from con-
forming to the GiST structure.

2



If the leaf’s ancestors’ predicates do not include the new
key, they must be expanded, so that the path from the root
to the leaf reflects the new key. The update is done with
a extension method union(), which takes two predicates,
one of which is the new key, and returns their union. Like
node splitting, expansion of predicates in parent entries
is carried out bottom-up until we find an ancestor node
whose predicate does not require expansion.

DELETE In order to find the leaf which holds the key we
want to delete, we again traverse multiple subtrees as in
SEARCH. Once the leaf is located and the key is found on
it, we remove the (key, RID) pair and, if possible, shrink
the ancestors’ BPs.

To avoid having to check all entries in a node sequentially
when traversing it, either for search, insert or delete
operations, a GiST implementation should provide an
interface to specialize the intra-node layout of entries. This
way, the nodes can store and compress predicates in any
way that is efficient for the particular key domain and set of
supported queries. For example, a GiST implementation of
a B-tree would use an ordered sequence in order to be able
to do binary search.

3 GiST Extension for Concurrency
When multiple operations are carried out on a GiST in
parallel, their interactions may be interleaved in a way that
leads to incorrect results. An example for a B-tree is shown
in Figure 1, where a node split changes the location of some
keys, which causes a concurrently executing search operation
to miss them.

In order to avoid such situations, we apply the B-link
tree strategy ([LY81]) of adding a link between a node and
its split-off right sibling. All the nodes at each level are
chained together via links to their right siblings; the addition
of this rightlink allows operations traversing this node to
compensate for missed splits by following the rightlink. Of
course, rightlinks cannot be followed blindly every time a
node is traversed, or parts of the tree would be scanned
multiple times. For the link strategy to work, a traversing
operation must be able to (1) detect a node split and (2)
determine when to stop following rightlinks (a node can have
split multiple times, in which case the traversing operation
must follow as many rightlinks as there were node splits).

For B-trees, both of these questions can be answered by
examining the keys in the node, since the key domain is
ordered and the keys are partitioned across the leaves. In
particular, a comparison of the search key and the highest
key on the node will tell a traversing operation if a node has
split and if a right sibling might contain entries intersecting
the search range. GiSTs do not impose these restrictions
on the key domain, which means that the B-link strategy
by itself is insufficient. [KB95] adapts the link strategy to

4
 7


1
 4
 6
 7
 8


A
 B
 B'

D


A
 B

I


1
 4
 6
 7


4


D


An insert operation of key 8 and a delete operation

of key 7 are executing concurrently in the tree. The

insert operation reaches leaf B, which is full and

must be split. the delete operation examines the

parent and discovers that it must also examine leaf

B (arrows indicate scan positions).


The delete operation reaches leaf B after it was

split and incorrectly concludes that key 7 does not

exist.


Figure 1: Incorrect Interleaving of Key Search and Node
Split

R-trees by assigning sequence numbers to the nodes and
incrementing these during node splits. The sequence number
is also recorded in the parent entry, which allows traversing
operations to reconstruct the “lineage” of a node after it was
split. In contrast to B-link trees, this strategy does not rely
on the semantics of the keys in a node but extends the tree
structure in order to make node splits visible. The drawback
of this design is that it requires a sequence number in each
entry of an internal node, turning the (predicate, pointer) pair
into a (predicate, pointer, sequence number) triple and thus
reducing node fanout.

The concurrency protocol for GiSTs also extends every
node with a node sequence number (NSN) and a rightlink
and uses these to detect splits; it improves on the R-link tree
design by eliminating the space overhead in internal index
entries. The NSN is taken from a tree-global, monotonically
increasing counter variable.2 During a node split, this counter
is incremented and its new value assigned to the original node;

2Management of the global counter variable is discussed in section 10.

3



4


A
 B


1
 2
 4
 6
 7


5


6


D


I


The example B-tree GiST of Figure 1 has been extended

with NSNs and rightlinks. Again, an insertion of key 8 and a

deletion of key 7 are executing concurrently. The insertion

is about to split leaf B. The delete operation records the

value of the global counter (5) before it goes to B.


The insertion splits B, increments the global counter value

from 5 to 6 and assigns the new value to B. The new sibling

receives the old NSN and rightlink of B. When the delete

operation reaches leaf B, it determines that B must have

split, because the recorded global value (then 5) is less than

the current NSN (6) of B. Likewise, when it follows the

rightlink to B', it can determine that this is the end of the

"split chain" it has to traverse, because the NSN of B' (1) is

less than or equal to the recorded global counter value (5).


4
 6
 7
 8


4
 7


1
 2


A
 B
 B'

D


2
 1


3


3


6
2
 1


Figure 2: Example of Extended Tree Structure

the new sibling node receives the original node’s prior NSN
and rightlink. Figure 2 illustrates the extended tree structure
and shows how a traversing operation can take advantage
of the NSNs and the counter variable to detect splits and
determine how many times a node was split. In general, a
traversing operation can now detect a split by memorizing
the global counter value when reading the parent entry and
comparing it with the NSN of the current node. If the latter
is higher, the node must have been split and the operation
follows rightlinks until it sees a node with an NSN less than
or equal to the one originally memorized. A node with an
NSN less than or equal to the memorized one cannot have
been split after the parent has been visited and therefore its
rightlink need not be traversed; since nodes are always split
to the right, this node must demarcate the end of the rightlink
sequence that the traversing operation has to follow.

4 Repeatable Read Consistency
The highest degree of transactional isolation is defined as
Degree 3 consistency or repeatable read isolation ([Gra78]).
It implies that if a search operation is run twice within the
same transaction it must return the exact same result (even if
that result set is empty). This section presents an overview
of the mechanism that allows repeatable read isolation for
search operations in GiSTs; it is a synthesis of two-phase
data record locking and predicate locking.

The simplest solution would be to lock all involved tables
for the duration of the entire transaction. Unfortunately,
this leads to an unacceptably low degree of concurrency.
DBMSs try to avoid this by accessing the tables through index
structures and explicitly locking only as much as needed to
guarantee repeatable read. One part of what is locked is the
set of data records returned by the search; this will prevent
modification or deletion of the data records in the result set.
This is not sufficient, because it is also necessary to protect
those regions of the search range for which no data records
were returned; this will prevent subsequent insertions into
the search range. These insertions are known as phantom
insertions ([EGLT76]) and can result either from new data
records or rolling-back deletions of data records.

4.1 A B-Tree Solution: Key-Range Locking
One solution to the phantom problem in an ordered key
domain is a technique called key-range locking,3 which
works as follows. Each data item with key ki is treated
as a surrogate lock name for the key range (ki�1; ki]. For
a scan with a given search range, we retrieve and two-phase
lock all the data records4 within the range and we also lock
the first data record past the right end of the range; this is
typically done with the help of a B-tree index. As a result,
all the key ranges (ki�1; ki] intersecting the search range
are locked. Before a leaf entry insertion, we check the data
record to the right of the insertion point for existing locks,
thereby making sure that the “gap” we are inserting into is
not locked by any scan.

Essentially, key-range locking requires the ordering
property of the key domain and the correspondence between
logical key order and physical order of (key,RID) pairs within
and across nodes. This allows conflicting search and insert
operations to agree on a sequence of physical data records as
a surrogate for a logical search range. This strategy is very
efficient for two reasons: (1) the surrogate lock names are
easy to compute (they are either the returned data records or
the data record right next to the last one in the sequence);
(2) a logical lock range has been transfered into a sequence
of purely physical locks, which can be set and checked very
efficiently. 5

3Other terms are key-value locking ([Moh90a]), or next-key locking
([GR93]).

4As in the data-only locking approach of ARIES/IM ([ML92]).
5A drawback is that the next key lock might cover a substantially wider

4



4.2 Predicate Locking

Key-range locking is not applicable to GiSTs, because we
cannot assume an ordered key domain and therefore cannot
count on finding a physically contiguous sequence of leaf
entries as a surrogate for the possibly multi-dimensional
search range. An alternative technique, predicate locking
([EGLT76]), circumvents this problem. Instead of two-
phase locking of data records, the search operation operations
register their search predicates in a tree-global table, so
that insert and delete operations can check for conflicting
concurrent search operations. Symmetrically, insert and
delete operations register their keys as predicates in a tree-
global table, which is checked by search operations for
conflicts with the search predicate. An operation can only
set its own predicate lock and start traversing the tree after it
verified that there are no conflicting predicates. This single
predicate lock is sufficient for a search operation to protect
its entire search range, including the existing data records, so
that no locks have to be placed on data records. Compared to
individual locks on data records, predicate locking has two
disadvantages:

� Predicate locks are less efficient to set and check. Because
the GiST has no information about the nature of the
predicates, it cannot arrange them in an in-memory search
data structure for efficient lookup such as a hash table
when checking for conflicts. Instead, every check must go
through the entire tree-global list of existing predicates,
which can be very time-consuming.

� A search operation must set its predicate lock before
the index is accessed and any data records are retrieved.
Unlike key-range locking, the locked key range is not
expanded gradually, which can be very detrimental to
concurrency, if the search is done as part of an interactive
cursor.6

4.3 A Hybrid Mechanism

Instead of resorting to pure predicate locking, we use an
efficient hybrid mechanism, which synthesizes two-phase
locking of data records with predicate locking. We describe
its general features here; the details are presented in the
following three sections. The underlying idea is to use
two-phase locking for existing data records and augment
that technique with a restricted, more efficient version of
predicate locking for phantom avoidance. In the hybrid
mechanism, data records that are scanned, inserted or deleted
are still protected by the two-phase locking protocol. In
addition, search operations set predicate locks to prevent

range than is necessary,depending on the key value. See [Moh90b], [Lom93]
and [Moh95] for some techniques to address this problem.

6The key range can be expanded gradually, but this would become
relatively costly. For gradual predicate expansion, the insert and delete
predicates would have to be re-checked every time the search predicate was
expanded.

phantom insertions. Furthermore, these predicate locks are
not registered in a tree-global list before the search operation
starts traversing the tree; instead, they are directly attached
to the nodes. Predicate attachments are performed so that the
following invariant is true at all times:7 if a search operation’s
predicate is consistent with a node’s BP, the predicate must
be attached to the node. An insert operation can therefore
limit itself to checking only the predicates attached to its
target leaf. A delete operation must be carried out as a
logical delete, meaning that the respective leaf entry is not
physically deleted but is only marked as deleted ([Moh90b]).
The physical presence of the leaf entry and the lock on the
corresponding data record ensure that search operations will
block on the deleted entry until it is committed.

To ensure that search predicates are attached to the nodes
they apply to, search operations attach their predicates to
the nodes as they are visited. The predicates and their node
attachments are only removed when the owner transaction
terminates. Since the tree structure changes dynamically
as nodes split and BPs are expanded during key insertions,
the predicate attachments have to adapt to the structural
changes. We distinguish two cases that require existing
predicate attachments to be replicated at other nodes. The
first case is a node split, which creates a new node whose BP
might be consistent with some of the predicates attached to
the original node. The invariant is maintained by attaching
those predicates to the new node. The second case involves
the expansion of a node’s BP, causing it to become consistent
with additional search predicates. Again, those predicates
have to be attached to the node; they are found in the ancestor
nodes accessed during the BP update phase of the insertion
operation, and they are “percolated” to all the child nodes
whose expanded BP is consistent with the predicate.

The advantage of this hybrid approach over pure predicate
locking is that two-phase locking of data records is still used
as much as possible, eliminating the need for search and
delete operations to check for conflicting predicates. Only
insert operations check for search predicates; furthermore,
they only check the set of predicates attached to their target
leaves, which are typically substantially smaller than the tree-
global set of predicates.

A drawback that the hybrid mechanism retains from
predicate locking is that the lock range is not expanded
gradually. The reason is that predicates have to be attached
to the visited nodes top-down, starting with the root. This
can block an insertion into the search range, even if the leaf
where the insertion takes place has not been visited by the
search operation. Even in this respect, the hybrid mechanism
is an improvement over pure predicate locking, because the
insertion will only be blocked if it requires BP updates in
ancestor nodes where the search predicate is already attached.

We proceed to present the details of the search, insert and

7Management of predicates and their attachments is discussed in
Section 10.3.

5



delete algorithms.

5 Key Search

The search operation returns the set of leaf entries satisfying
the search predicate; it does this by traversing nodes whose
bounding predicates are consistent with the search predicate.
An internal node can contain many consistent entries, so a
stack is used during traversal to memorize the nodes with
consistent BPs that have yet to be visited. The search
operation starts by pushing the root pointer on the stack.
It then repeatedly pops an entry off the stack, visits the
corresponding node and pushes all entries with consistent
predicates back on the stack. This results in a depth-first
traversal of the tree and is repeated until the stack is empty.

While examining a node for consistent entries, we hold it
latched8 to prevent concurrent modifications. The latch is
released as soon as we are done with the node and before
going to the next node, avoiding latch-coupling across I/Os.

To recognize node splits, we timestamp every page pointer
stored on the stack with the value of the global counter as of
the time the page pointer was read. When the stack entry is
used to visit a node, the recorded counter value is compared
with the node’s NSN. If the latter is higher, the node has
been split, and we also push the rightlink pointer of the node
together with the originally recorded counter value on the
stack. This guarantees that the right siblings split off the
original node will also be examined later on.

While traversing the tree, the search operation also attaches
its predicate in a top-down fashion to every node that it
visits. In addition, the RIDs of retrieved leaf entries are
also locked as part of the hybrid locking protocol. The
function search(), shown in Figure 3, implements the
search operation as described in this section. It returns
the set of leaf entries consistent with the search predicate.
To simplify the presentation, the latches are not released
when blocking on the lock on a data record lock, creating an
opportunity for a deadlock between the latch-holder and the
owner of the conflicting lock (either an inserting or deleting
transaction). To deal with this situation, the latches have
to be released at first and then reacquired when the search
operation is unblocked. Since the latched leaf can be split in
the meantime, we might have to traverse rightlinks, guided
by the node’s original NSN.9

8Latches differ from locks in two aspects: (1) latches, like mutexes,
are addressed physically and can therefore be set and checked much more
efficiently than locks, which are usually organized into a hash table; (2)
existing latches are not checked for deadlock by the DBMS, which requires
the latch holders to make sure their usage pattern is deadlock-free. Latches
are commonlyused to synchronizeaccess to physical“objects” of the DBMS
such as buffer pool frames. Also, latches do not interact with locks, so that
it is possible to latch the buffer pool frame holding a particular node while
some other transaction holds a lock on the node. See [MHL+92] for more
details.

9When revisiting a leaf, we have to make sure that leaf entries are not
included in the result set multiple times, even if the leaf has been modified or

search(search-pred)
nsn = global NSN;
push(stack, [root, nsn]);
while (stack is not empty)

[c, c-NSN] = pop(stack);
latch(c, S-mode);
if (c-NSN < NSN(c))

push(stack, [rightlink(c), c-NSN]);
end
if (c is leaf)

for each leaf entry [key, RID]:
if (consistent(key, search-pred))

lock(RID, S-mode);
add entry to search result set;

end
else

nsn = global NSN;
for each node entry [pred, ptr]:

if (consistent(pred, search-pred))
push(stack, [ptr, nsn]);

end
end
attach search predicate to c;
unlatch(c);

end

Figure 3: The Search Algorithm

6 Key Insertion
Key insertion is carried out in several phases:

1. the new data record (stored elsewhere in the database) is
X-locked before the tree insertion is initiated;

2. the insertion operation begins by traversing the tree along
a single path from the root to a leaf, following branches
with the lowest insert penalty;

3. if the chosen leaf would overflow as a result of the key
insertion, it has to be split beforehand, which in turn
might cause recursive splitting of ancestor nodes; during
recursive splitting, we attach to every new node all of
the original node’s predicates that are consistent with the
new node’s BP;

4. if the insertion of the new leaf entry will change the leaf’s
BP, the new BP is propagated to the parent entries by
backing up the tree, until an ancestor node is encountered
whose BP does not need to expand; during this phase, we
also “percolate” search predicates from ancestor to child
nodes, if the ancestors’ predicates are consistent with the
child’s updated BP;

split in the meantime. We can keep track of which entries of a particular leaf
have already been processed by including their data RIDs (not the entries’
RIDs themselves) in a list. Note that this is only possible with leaf entries,
not with entries of internal nodes; the discussion in Section 7.2 will make
this clear.

6



5. the new (key, RID) pair is inserted on the leaf;

6. we then check the list of predicates attached to the
leaf and block on the conflicting ones until their owner
transactions commit;

Note that in contrast to B-trees, an insertion operation may
back up the tree for two reasons: splitting a node requires the
installation of a new parent entry and expanding a leaf’s BP
requires the adjustment of parent entries. The latter step is
missing in B-trees.

When traversing the tree to find an appropriate leaf, we
do not employ lock coupling, and compensate for missed
splits by following rightlinks, in the same manner as a search
operation. That is, we memorize the global counter value
when reading the parent entry and pointer and compare it to
the NSN found in the node. If the memorized counter value
is higher, we must examine some number of right siblings in
addition to the current node. Eventually, after a sequence of
down- and rightlink traversals, we arrive at the target leaf.

When backing up the tree to update parent entries, either
because of a split or to expand their predicates, it can also
become necessary to recognize splits of ancestor nodes that
have taken place since the nodes were initially traversed on
the way down to the leaf. In this instance, it is not even
necessary to compare NSNs. If a parent node does not contain
the child’s pointer anymore, it must have been split and the
search for the child’s pointer is continued in the right sibling.

To make the new entry visible in the tree, we expand the
leaf’s BP to include the new key and propagate this up the
tree. The ancestor nodes involved are latched by backing up
the tree to the lowest ancestor node n (or the root) whose
BP does not need to be expanded. Unlike recursive splitting,
BP update propagation is then performed top-down starting
at node n; this facilitates logging and is discussed in greater
detail in Section 9. While updating a parent entry and the
corresponding child’s BP, we also add to the child node the
parent’s predicates that are consistent with the child’s new
BP.

After inserting the new key on the leaf, we check the
leaf’s list of search predicates for conflicts. If there are any,
the insert operation must be suspended until the conflicting
search transactions are terminated. When resuming the
insertion, the leaf originally located might have been split.
This again is recognized by comparing the memorized NSN
with the leaf’s current NSN, followed by zero or more
rightlink traversals.

The implementation of the insertion algorithm is shown in
Figure 4. Note that the function consistent(), which
is used to detect conflicting predicates, is the same user-
supplied function that is also used by the search operation
to navigate within the tree. The function pickSplit()
was introduced in Section 2 as an extension method that
determines the distribution of keys between two leaves. For
brevity, we omit a detailed discussion of root splits.

7 Key Deletion
In order to delete a key from a tree, it is first necessary to
locate the key on a leaf, which is equivalent to a search
operation with an equality predicate. The item on the leaf
will not be physically deleted but only marked deleted, i.e.,
a logical deletion will be performed. The physical presence
of this deleted key is necessary for compliance with the two-
phase locking protocol; it ensures, that Degree 3 isolated
search operations have an opportunity to be suspended when
they encounter such a key.10 For the same reason, the delete
operation must not shrink parent entries after the key has been
marked, because this would remove the path to the key and
make the key inaccessible for concurrent search operations.

7.1 Garbage Collection of Deleted Leaf Entries

The key may only be physically removed and the parent
entries shrunk after the deleting transaction has been
committed. The physical update operations are then
performed as garbage collection by other operations which
happen to pass through the affected nodes. A node
reorganization removes all those entries from a leaf which
have been marked deleted and for which the initiating
transactions have committed.11 As a result of a node
reorganization, the BP of that node may have shrunk, which
can then be propagated to the parent nodes.

7.2 Node Deletion

A node reorganization may also leave a node completely
empty, in which case it should be removed from the tree so
that it can be reused for later node splits. Unfortunately, it
becomes impossible to simply remove the node’s parent entry
and retire the node, because ongoing tree operations might
still have pointers to the node on their stacks. There are two
alternatives to deal with this problem: either a tree operation
visitinga reallocated node detects this and recovers from it by
repositioning itself within the tree (as in ARIES/IM [ML92]);
or we avoid incorrect pointers altogether by delaying a node
deletion until there can be no more active tree operations with
pointers to it (introduced in [KL80] as the “drain technique”).

The first alternative, recovery from incorrect pointers, is
impossible for a variety of reasons. If the node has been
split before it is deleted, a tree operation visiting it after
the deletion may still need to traverse its rightlink. This
is impossible, because the node might have been reused, in
which case the original node content, including the rightlink

10In B-trees, the delete operation could physically remove the key, but
would have to leave a lock on the next key. This is not applicable to GiSTs
for the reasons already mentioned in section 4. Even in B-trees, logical
deletion is preferable if increased concurrency is important (see [Moh90b]
for further discussions of logical deletions). In fact, the new index manager
of DB2/MVS V4 has adopted it for that reason.

11[Moh90b] shows how this can be done cheaply in a WAL environment.
Essentially, if the page’s LSN is less than the LSN of the oldest active
transaction, then all entries must belong to committed transactions and no
additional locks have to be tested.

7



insert([new key, RID])
leaf = locateLeaf(&stack, new key);
if (not enough space on leaf)

splitNode(leaf, stack);
release all latches at ancestor levels;

end
updateBP(leaf, union(BP(leaf), new key), stack);
insert [new key, RID] on leaf;
if (consistent(predicates on leaf, key of new item))

block until predicate-owning transactions terminate;
end
unlatch(leaf);

locateLeaf(stack, new key)
p = root;
p-NSN = global NSN;
loop

if (p is leaf)
latchmode = X-mode;

else
latchmode = S-mode;

end
latch(p, latchmode);
if (p-NSN < NSN(p))

p = node with smallest insert penalty in rightlink chain
delimited by p-NSN;

end
if (p is not leaf)

push(stack, [p, NSN(p)]);
find entry [pred, child-ptr] on p with smallest insert

penalty for new key;
p-NSN = global NSN;
unlatch(p);
p = child-ptr;

else
return p;

end
end

splitNode(p, stack)
latch(parent(p, stack), X-mode);
if (NSN(parent) changed since first visited)

parent = node in rightlink chain starting with parent,
holding entry for p;

latch correct parent;
end
create new node p’;
latch(p’, X-mode);
pickSplit(p, p’);
NSN(p’) = NSN(p);
global NSN = global NSN + 1;
NSN(p) = global NSN;
if (not enough space on parent)

splitNode(parent, stack);
end
insert entry for p’ on parent;
update pred for p on parent;
for each predicate attached to p:

if (consistent(pred, BP(p’))
attach pred to p’;

end

updateBP(p, union-BP, stack)
if (union-BP != BP(p))

latch(parent(p, stack), X-mode);
if (NSN(parent) changed since first visited)

parent = node in rightlink chain starting with parent,
holding entry for p;

latch correct parent;
end
updateBP(parent, union(BP(parent), union-BP), stack);
for each predicate attached to parent:

if (consistent(pred, union-BP) and
not(consistent(pred, BP(p)))
replicate pred on p;

end
end
BP(p) = union-BP;
update pred in parent entry of p with union-BP;
unlatch(parent);

end

Figure 4: The Insert Algorithm

and NSN, would be lost. Repositioning within the tree by
revisiting the parent is also not possible, because the parent
itself might have been split or simply changed (see Figure 5
for an example). When that happens, it is impossible to
determine which nodes have been split off the deleted one.

It is clear for these reasons that a node cannot be deleted
while active tree operations still hold direct or indirect
pointers to it. A direct pointer is a node pointer recorded in
some operation’s stack. A node pointer indirectly references
some of that node’s right siblings, if the stack entry also
contains an NSN which would lead the operation to cross
rightlinks to them. To make node deletion operations aware

of existing direct pointers, an operation must place a signaling
lock on a node if it pushes a pointer to that node onto the
stack. The signaling lock can be implemented as a regular
S-mode lock on the node, so that other insert and delete
operations are not prevented from physically accessing and
modifying that node (a lock on a node, unlike a latch, does
not restrict physical access to the buffer pool frame holding
that node). A node deletion checks for signaling locks by
trying to acquire an X-mode lock on the respective node.
To extend the deletion protection to those nodes which have
been split off and are therefore referenced indirectly, a node-
splitting transaction copies the list of signaling locks placed

8



[4;10]
 [6;12]
 [5;19]


4
 10
 6
 7
 12
 5
 13
 19


A
 B
A'
 B'


[4;12]
 [5;13]


4
 7
 10
 12
 5
 8
 11
 13


A
 B


[4;6)
 [6;12)
 [12;20)


4
 5
 6
 7
 8
 12
 13
 19


A
 A'
 B
 B'


[4;10)
 [10;20)


4
 5
 7
 8
 10
 11
 12
 13


A
 B


A regular B-tree, where entries in internal nodes are

shown as intervals for clarity, although they would only be

stored with their left or right boundary. A scan of the key

range [5; 20] starts in leaf A.


A fictive non-partitioning B-tree, where the key space is

not partitioned across the leaves and as a result internal

entries have overlapping intervals. A scan of the key range

[5; 20] again starts in leaf A.


After the scan is done with leaf A, leaf A and B are split as

a result of inserting keys 6 and 19; additionally, keys 10

and 11 are deleted and as a result, leaf B is also deleted.

The scan notices this and repositions itself in the parent

node, remembering that it already covered range [5; 10)

(by having scanned former leaf A). The next leaves to visit

are A' and B'. Leaf A' does not contain any items contained

in the remained scan range ([10; 12]), and the scan moves

on to leaf B'.


After the scan is done with leaf A, leaves A and B are split

as a result of inserting keys 6 and 19. Keys 8 and 11 are

deleted, resulting in the removal of leaf B. The scan

notices this, and, in order to continue correctly, would

have to go to leaf B' and ignore A'. Notice that it is

impossible to determine this by repositioning in the parent

node: (1) although the scan has already covered former

leaf A with the interval [4; 12], it would be incorrect to go

to leaf B' and ignore entry 5; (2) for that same reason, if

the scan would go to leaf A', it would incorrectly repeat

scanning of entries 7 and 12.


Figure 5: Why Repositioning Requires Partitioning

on the original node to the new right sibling. A signaling
lock is released as soon as the operation that set it visits that
node. The only exception to that rule is the signaling lock set
on the target leaf of an insert operation. The lock has to be
retained until the end of the inserting transaction for recovery
purposes, otherwise recovery-relevant parts of the link chain
would be interrupted (details are given in Section 9).

8 Key Insertion into Unique Indices

When inserting a duplicate into a unique index, database
semantics require that the insertion operation return with
an error message. Moreover, this error message must be
reproducible if the inserting transaction runs with repeatable
read isolation. To insert into a unique index, we therefore
combine the steps of a search operation with those of an
insert operation. The search operation preceding the insertion
verifies that no duplicates will be introduced. If it finds the
new value in the tree, it returns an error condition. To make
this error repeatable, it adheres to the two-phase locking
protocol and requests an S-mode lock on the corresponding
data record. Note that in this case no predicate locks need to

be left behind by the search operation; the lock on the data
record alone is sufficient to ensure repeatability of the error
condition.

If the inserted value is not found in the tree, the phases of
the regular insert operation are carried out: the leaf is located
and after key insertion the parents’ entries are updated, if
necessary. To avoid a race between two insertion operations
of the same value, the search phase of the insertion operation
leaves behind predicates of the form “= key” on every visited
node. If two insert operations happen to be interleaved in
a way that they both miss the other operation’s new key
during their search phases, the predicates will ensure that
each operation blocks on the other’s predicate. This will
result in a deadlock, which can be resolved in a standard
manner by the lock manager. Once the insert operation is
finished, the predicates left behind from the search phase can
be released.

9 Logging and Recovery

The goal of recovery is twofold. First, it ensures that
the tree only reflects insertions and deletions of committed

9



transactions and none of those of uncommitted transactions.
Second, the tree structure must be brought back into a
consistent state after a system crash or failure of a single
update operation. As an example of an inconsistent state,
consider a node split that was interrupted by a system crash
before a parent entry could be installed for the new child.
Since the global counter value has been incremented, a
subsequent traversal operation will not recognize the “missed
split” and the tree structure will remain corrupted. The
followingGiST recovery protocol is targeted at a write-ahead
logging environment with page-oriented redo and logical
undo (for example, as in ARIES [MHL+92]).

9.1 Structure Modifications
In order to obtain high concurrency, a logging protocol must
separate update operations into their content-changing (key
insertion and logical deletion at the leaf level) and structure-
modifying parts (node splits, parent entry updates, node
deletions). This allows us to ascribe the content-changing
operations to the initiating transactions, whereas structure
modifications are carried out separately from any transactions
as individually committed atomic units of work.12 The
advantage of this approach is that a structure modification
can be “committed” as soon as it finishes and the latches on
the involved nodes can be released immediately (within an
atomic unit of work, we employ two-phase latching: once
acquired, a latch is only released when the atomic unit of
work finishes). As an example of what would happen without
atomic units of work, consider how a parent entry update
would be carried out if it were to execute as part of the same
transaction that initiated the preceding key insertion. In this
case, the updated parent entry would have to be locked until
the end of the insert transaction, otherwise another update
to the same parent entry by a different transaction would be
incorrectly rolled back if the insert transaction were aborted.
Locking the parent entry, however, would serialize all key
insertions that happen to propagate through the same parent
entry.

Apart from key insertion and logical deletion on leaf nodes,
sections 6 and 7 used as the building blocks of insert and
delete operations the following atomically executed structure
modifications: (1) node split, which is carried out recursively
and includes splitting of all necessary ancestor nodes and
installation of the parent entries for the new nodes; (2) parent
entry update on a single ancestor node; (3) deletion of a
node, including the deletion of the parent entry; (4) garbage
collection of a node. The types of log records as well
as the corresponding redo and undo actions are shown in

12These atomic units of work have also been called “atomic actions”
([LS92]) or “nested top actions” ([MHL+92]) in the research literature.
A technique for executing a sequence of page updates as individually
committed atomic units of work is described in [MHL+92]. Essentially,
the log records written for these page updates are separated from those of
the surrounding transaction by appropriate setting of the backchain pointers
in the log record headers.

Table 1. Note that no additional user-supplied extension
code is required to write the log records, so that logging can
be handled independently by the core DBMS component.

9.2 Undo Recovery
All of the structure modification atomic actions are undone
in a page-oriented fashion, i.e., they only involve visiting and
modifying those pages recorded in the log record. On the
other hand, key insertion and logical deletion at the leaf level
have to be undone logically, i.e., by revisiting the leaf holding
the key, which may require rightlink traversal. The reason
why in the latter case rightlink traversal may be necessary
is that between the time the index operation was performed
and the time the transaction is aborted, the tree structure
could have changed (for the same reason, logical undo
is also employed in ARIES/IM [ML92] and ARIES/KVL
[Moh90a]). If a split takes place in the meantime, the relevant
entries may be moved rightward onto other leaves.

When performing undo recovery after a system crash, all
node latches acquired prior to the crash are lost. Since there
might still be unfinished structure modifications in the tree,
which are unprotected as a result of the crash, the undo
recovery phase must not execute any structure modifications
as part of a logical undo of a leaf entry insertion or deletion.
The GiST logging protocol fulfills this requirement, because
(a) undoing a leaf entry deletion only involves unmarking the
entry, not updating the parent entries; (b) undoing a leaf entry
insertion only involves physical deletion of the entry; even if
the node becomes empty, no node deletion is performed.

10 Implementation Issues
The previous sections describe the algorithms for concurrent
operations in a GiST, but omit the implementation of some
important details. This section discusses some of the issues
that arise during the implementation of a high-concurrency
GiST, namely: sequence number generation, savepoints and
partial rollback as well as predicate management.

10.1 Node Sequence Numbers
A key ingredient of the concurrency protocol for GiSTs is the
tree-global counter used to generate node sequence numbers.
This counter is incremented during splits and has to be made
recoverable in order for split detection to work after a crash.
In a write-ahead logging environment, this can be achieved
easily without having to write additional log records, using
the existing infrastructure.

First, instead of maintaining a separate counter for each
index in a database, it is possible to use a single database-
wide counter. WAL-based recovery systems often have
log sequence numbers (LSNs) associated with their log
records, which are reflected in the page they were generated
for and facilitate restart (for a description of logging and
restart in WAL environments, see [GR93] and [MHL+92]).
These LSNs are guaranteed to be monotonically increasing,

10



Log Record Fields Redo Action Undo Action
Parent-Entry-Update new BP, child page ID,

parent page ID
update BP in child and corre-
sponding slot in parent

none (redo-only log record)

Split1 original page ID, new page
ID, list of keys for new
page, newly inserted key
and which page it belongs
on

orig. page: delete keys in
logrec, recompute and reset BP
new page: insert keys in log
record, recompute and reset BP

orig. page: insert keys in log
record, recompute and rset BP
new page: no action necessary

Garbage-Collection page ID, RID list of
garbage-collected entries

remove entries from leaf none (redo-only log record)

Internal-Entry-Add1 page ID, new key insert entry on page remove entry from page
Internal-Entry-Update1 page ID, new BP, old BP set BP in entry to new BP set BP in entry to old BP
Internal-Entry-Delete2 page ID, entry remove entry from page insert entry on page
Add-Leaf-Entry page ID, NSN, new entry add entry to page Logical Undo: locate leaf and

remove the entry; do immediate
garbage collection (shrink BP of
page and update ancestor BPs) if
not in restart recovery

Mark-Leaf-Entry page ID, NSN, old entry mark entry on page as “deleted” Logical Undo: locate leaf and
unmark entry

Get-Page1 page ID mark page as “unavailable” mark page as “available”
Free-Page2 page ID mark page as “available” mark page as “unavailable”

1 written during recursive split
2 written during node deletion

Table 1: Log Records and Their Redo and Undo Actions

which makes the LSN of the last log record written an
ideal candidate for the global counter value. During a
split atomic action, a log record has to be written for the
splitting of the original node, which implicitly increments
the global counter. Furthermore, this counter is automatically
recoverable without having to write any log records.

Using LSNs to generate NSNs gives us an opportunity
for a second optimization. When a descending operation
examines a node, it has to memorize the global counter
value along with all the qualifying subtree pointers. This
could be a problem, because reading the most recently
generated LSN requires synchronization within the log
manager, which in turn could cause the global counter to
become a bottleneck. To alleviate the traffic on this high-
frequency counter, descending operations can memorize the
node’s LSN instead. This is possible, because the LSN and
the NSN of a page come from the same source, which implies
that the parent LSN will always be greater than any of the
child LSNs, except for those whose recent splits are not
reflected in the parent. if the parent entries reflect all of
the child nodes (no yet-to-be installed entries from recent
splits).13

13The underlying assumption is that the update of the parent node
subsequent to the splitting of a child will generate a log record, the LSN of
which will be recorded in the parent page. Hence the parent node will have
a higher LSN when the child’s split is propagated upward.

10.2 Savepoints and Partial Rollback

Some commercial DBMSs support the concept of savepoints.
These allow a user to establish alternate targets of rollback
within a transaction apart from the transaction start. A
rollback to a savepoint restores the database to its state as of
the time the transaction established the savepoint; in addition,
since the transaction is still active at that time, the positions
of open cursors must also be restored. In order to record
the position of a GiST search operation when establishing a
savepoint, it is necessary to record the then-current stack. The
search operation traverses the tree in a depth-first fashion, so
that the amount of storage required for a copy of the stack
(and the stack itself) is proportional to the page capacity times
the height of the tree.

In Section 7.2 we noted that in order to prevent nodes from
being deleted, a search operation sets signaling locks on the
nodes it records on the stack. These are be released as soon as
the node is visited and the corresponding entry removed from
the stack. With the establishment of savepoints, this behavior
must be modified slightly. We have to make sure that the
signaling locks that exist when the savepoint is established
are not released later on.

10.3 Predicate Management

Predicate locking is one of the twocenterpieces for repeatable
read isolation and plays a crucial role in the algorithms

11



for the search and insert operations. A predicate manager
component can be used in conjunction with the regular lock
manager to offer the required functionality efficiently.

The predicate management functions required by the
search and insert operations are: (1) attaching search
predicates to nodes; (2) removing search predicates from
nodes; (3) checking all of the predicates attached to a node
for conflicts with the new key of an insert operation; (4)
replicating predicate attachments at child nodes during the BP
update and percolation phase of an insertion; (5) replicating
predicate attachments at sibling nodes when doing a node
split. These functions are best realized by a predicate
manager component, which can be implemented along the
lines of a lock manager within a DBMS (see [GR93] for
an example). The major data structures within a predicate
manager would be:

� a list of predicates per transaction;

� a list of node attachments for each predicate;

� a list of the predicates attached to each node.

With the help of the standard lock manager, an operation can
block “on a predicate” by blocking on the owner transaction
of the predicate. This is easily achieved by constructing a
lock name from the owner transaction ID and requesting an
S-mode lock on that name, assuming that every transaction
acquires an X-mode lock on its own ID when it starts up.

The alert reader will have noticed that insert operations as
described in Chapter 6 are susceptible to starvation if they
block on a predicate when checking their target leaf’s list
for conflicts. The reason is that while the insert operation
is blocked, new scan operations are allowed to set additional
predicates on the leaf. These could force the insert operation
to block again as soon as it is unblocked, which can be carried
on indefinitely. The solution is to require insertion operations
to add their key as an insert predicate to the leaf, allowing
subsequent scans to block on it. The predicate management
component can then enforce fair locking behavior by ordering
predicates (which are lock requests) attached to a particular
leaf in a FIFO list and checking each new predicate against
those ahead of it in the list for conflicts.

Analogous to the replication of predicate attachments as a
consequence of node splits, it is also necessary to replicate
the signaling locks set on a node. This requires an extension
of the standard lock manager functionality.

11 Related Work
In this section, we will compare our approach to concurrency
and recovery wih the prior work in this area, which has mostly
been restricted to B-trees ([BS77, LY81, Sag86, SG88,
Moh90a, ML92]). The comparison will show that structural
differences between B-trees and the class of trees represented
by GiSTs make most of the concurrency techniques develped

so far for B-trees inapplicable in the GiST context and hence
in the context of structures such as R-trees, TV-trees and so
forth.

The link technique, on which GiST concurrency is based,
was first introduced in ([LY81]) as the B-link tree, and
has been the basis of many subsequent papers on B-
tree concurrency (for example [Sag86]). Its superiority
over subtree-locking concurrency protocols, as described in
[BS77], has been confirmed by two performance studies
([SC91, JS93]).

A different approach than node linking was taken in
ARIES/IM ([ML92]), which employs a conventional non-
link tree structure and allows latch-coupling during tree
descent, but is still able to propagate splits bottom-up
without having to lock subtrees. Instead of following
rightlinks, the traversing operations recognize an ongoing
split and compensate for it by repositioning themselves in an
ancestor node and retraversing the tree from there. Since
repositioning a search operation within an ancestor node
requires partitioning of the key space (see Figure 5 for an
example), this technique is, like the original B-link tree
technique, also not applicable in a GiST context.

Another implication of a main difference between B-trees
and GiSTs—partitioning vs. non-partitioning of the key
space—is the effectiveness of latch-coupling for avoiding
incorrect pointers caused by node deletions. A search
operation in a GiST might have to traverse multiple subtrees
and would have to—if it wanted to use latch-coupling—
start the traversal of a particular subtree from the respective
parent node. In other words, the search operation would
have to reposition itself within a parent node before it started
traversing the next subtree, which is impossible as explained
in Section 7.2. Hence, latch-coupling is impossible in any
non-partitioning tree structure and the method for avoiding
incorrect pointers introduced in Section 7.2 appears to be the
only efficient solution.

Another general tree structure for which concurrency
algorithms were developed is the (so-called) �-tree ([LS92]),
which was designed for multidimensional point data, and
partitions its key space at each level of the tree. It deviates
from GiSTs in that it is not a proper tree but a DAG: two index
entries on different parent nodes can point to the same child
node. The �-tree also employs the link technique to allow
traversing operations to recover from missed splits. Because
each tree level partitions the key space, it can rely on BPs to
detect splits. Although it is not mentioned in the �-tree paper,
search operations may have to descend multiple subtrees.
Node deletion is possible by latch-coupling during descent
and repositioning in an ancestor node for each traversal of a
subtree—the latter aspect is not mentioned in the paper. No
algorithms for transactional isolation were developed for the
�-tree, but a slight modification of the the method described
in Sections 4 to 6 is also applicable to them.

The fundamental ideas for access method recovery—

12



essentially, the requirement for separate atomic units of work
to carry out structure modifications—have been recognized
early on and have been published in a number of articles
([ML92, Moh90a, GR93, LS92]). The GiST logging and
recovery protocol as presented in Section 9 directly builds on
that prior work.

The basic GiST structure itself is described in [HNP95].
The paper also gives three examples of implementations of
specific trees within the GiST structure and tries to analyze
the GiST performance in a general way. The basis of the GiST
concurrency protocol was developed in [KB95] in the context
of R-trees, which have the same structural properties as GiSTs
(non-partitioning, non-linear keys). The paper does not
sufficiently address the problems of transactional isolation,
recovery and node deletion. The data-only locking approach
and logical deletion have been adopted from [ML92, Moh95]
and [Moh90b].

12 Conclusion

This paper presents algorithms for concurrency, recovery
and transactional isolation for a broad class of search trees.
The algorithms are presented in the context of the GiST,
an abstract hierarchical index structure, which is designed
to support an extensible set of data types and queries, and
which can be specialized to any particular access method
that complies with its overall structure. In conjunction with
the algorithms developed in this paper, the GiST structure can
serve as the basis of truly extensible indexing in commercial-
strength database systems. The core DBMS plus GiST can
be extended with a new access method simply by supplying
it with a set of pre-specified methods, which specialize
the abstract GiST structure into the desired access method.
Details such as concurrency and recovery—which usually
account for a major fraction of the complexity of the code,
are error-prone and hard to debug—can be ignored by the
extension code; these are handled by the GiST structure
extended with the mechanisms presented in this paper.

The key features of the GiST concurrency protocol is that
it does not hold any latches during I/Os and is deadlock free,
resulting in a degree of concurrency that should match that
of the best B-tree concurrency protocols. The basic idea is
derived from the link technique pioneered for B-trees, which
allows compensating for unexpected splits by moving across
rightlinks. To make this work for a broader class of tree
structures, it is necessary to add sequence numbers to the
nodes in order to make node splits visible without reference
to the stored keys.

In order to ensure repeatable read transactional isolation,
which guarantees the absence of “phantoms” across search
operations, we propose a hybrid locking mechanism, which
combines two-phase locking of data records with predicate
locking. Predicate locking is responsible for avoiding
phantoms, whereas more efficient data record locking is used

for retrieved index entries. This division of responsibilities
is necessary, because data record locking alone cannot
reasonably solve the phantom problem in a key space without
linear order; it is efficient because it relies as much as possible
on data record locks, which can be checked and set more
cheaply than predicate locks.

These algorithms are general enough to work for all
tree-based access methods with a “traditional” B-tree-
like structure, because structural elements, not semantic
knowledge about the data, are exploited. We are currently
implementing GiSTs emulating B-trees in DB2/Common
Server.

Acknowledgement
We would like to thank Paul Aoki and Bernhard Seeger for
their comments on this paper.

References
[BS77] R. Bayer and M. Schkolnick. Concurrency of

Operations on B-Trees. Acta Informatica, 9:1–
21, 1977.

[EGLT76] K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L.
Traiger. The notion of consistency and predicate
locks in database systems. Communications of
the ACM, 19(11):624–633, November 1976.

[GR93] J. Gray and A. Reuter. Transaction Processing
– Concepts and Techniques. Morgan Kaufmann
Publishers, 1993.

[Gra78] J. Gray. Notes on Database Operating Systems.
In Operating Systems – An Advanced Course,
volume 60 of Lecture Notes in Computer
Science. Springer-Verlag, 1978.

[Gut84] A. Guttman. R-Trees: A Dynamic Index
Structure for Spatial Searching. In Proc. ACM
SIGMOD Conf., pages 47–57, June 1984.

[HNP95] J. Hellerstein, J. Naughton, and A. Pfeffer.
Generalized Search Trees for Database Systems.
In Proc. 21st Int’l Conference on Very Large
Databases (VLDB), pages 562–573, September
1995.

[Jag90] H. V. Jagadish. Spatial Search with Polyhedra.
In Proc. 6th IEEE Int’l Conf. on Data Engin.,
1990.

[JS93] T. Johnson and D. Shasha. The Performance of
Current B-Tree Algorithms. ACM TODS, 18(1),
March 1993.

[KB95] M. Kornacker and D. Banks. High-Concurrency
Locking in R-Trees. In Proc. 21st Int’l

13



Conference on Very Large Databases (VLDB),
pages 134–145, September 1995.

[KKAD89] W. Kim, K.-C. Kim, and A. A. Dale. Object-
Oriented Concepts, Databases and Applica-
tions, chapter Indexing Techniques for Object-
Oriented Databases. ACM Press and Addison-
Wesley Publishing Co., 1989.

[KL80] H. T. Kung and P. L. Lehman. Concurrent
Manipulation of Binary Search Trees. ACM
TODS, 5(3), 1980.

[LJF94] K. Lin, H. Jagadish, and C. Faloutsos. The TV-
Tree: An Index Structure for High-Dimensional
Data. VLDB Journal, 3, October 1994.

[Lom93] D. Lomet. Key Range Locking Strategies for
Improved Concurrency. In Proc. 19th Int’l Conf.
on Very Large Databases (VLDB), August 1993.

[LS90] D. Lomet and B. Salzberg. The hB-Tree: A Mul-
tiattribute Indexing Method with Good Guaran-
teed Performance. ACM TODS, 15(4):625–685,
December 1990.

[LS92] D. Lomet and B. Salzberg. Access Method
Concurrency with Recovery. In Proc. ACM
SIGMOD Conf., pages 351–360, 1992.

[LY81] P.L. Lehmann and S.B. Yao. Efficient Locking
for Concurrent Operations on B-Trees. ACM
TODS, 6(4):650–670, December 1981.

[MHL+92] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh,
and P. Schwarz. ARIES: A Transaction
Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-
Ahead Logging. ACM TODS, 17(1), March
1992.

[ML92] C. Mohan and F. Levine. ARIES/IM: An Effi-
cient and High Concurrency Index Management
Method Using Write-Ahead Logging. In Proc.
ACM SIGMOD Conf., June 1992.

[Moh90a] C. Mohan. ARIES/KVL: A Key-Value Locking
Method for Concurrency Control of Multiaction
Transactions Operating on B-Tree Indexes. In
Proc. 16th Int’l Conference on Very Large
Databases (VLDB), August 1990.

[Moh90b] C. Mohan. Commit LSN: A Novel and Simple
Method for Reducing Locking and Latching
in Transaction Processing Systems. In Proc.
16th Int’l Conference on Very Large Databases
(VLDB), August 1990.

[Moh95] C. Mohan. Performance of Concurrency Control
Mechanisms in Centralized Database Systems,
chapter Concurrency Control and Recovery
Methods for B+-Tree Indexes: ARIES/KVL
and ARIES/IM. Prentice Hall, Englewood
Cliffs, New Jersey, 1995.

[Sag86] Y. Sagiv. Concurrent Operations on B*-Trees
with Overtaking. Journal of Computer and
System Sciences, 33(2):275–296, 1986.

[SC91] V. Srinivasan and M. Carey. Performance of B-
Tree Concurrency Control Algorithms. In Proc.
ACM SIGMOD Conf., pages 416–425, 1991.

[SG88] D. Shasha and N. Goodman. Concurrent Search
Structure Algorithms. ACM TODS, 13(1),
March 1988.

[SRF87] T. Sellis, N. Roussopoulos, and C. Faloutsos.
The R+-Tree: A Dynamic Index for Multidi-
mensional Objects. In Proc. 13th Int’l Confer-
ence on Very Large Databases (VLDB), pages
507–518, September 1987.

14


