
ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking
and Partial Rollbacks Using
Write-Ahead Logging

C. MOHAN

IBM Almaden Research Center

and

DON HADERLE

IBM Santa Teresa Laboratory

and

BRUCE LINDSAY, HAMID PIRAHESH and PETER SCHWARZ

IBM Almaden Research Center

In this paper we present a simple and efficient method, called ARIES (Algorithm for Recouery

and Isolation Exploiting Semantics), which supports partial rollbacks of transactions, fine-
granularity (e. g., record) locking and recovery using write-ahead logging (WAL). We introduce

the paradigm of repeating history to redo all missing updates before performing the rollbacks of

the loser transactions during restart after a system failure. ARIES uses a log sequence number
in each page to correlate the state of a page with respect to logged updates of that page. All
updates of a transaction are logged, including those performed during rollbacks. By appropriate

chaining of the log records written during rollbacks to those written during forward progress, a

bounded amount of logging is ensured during rollbacks even in the face of repeated failures
during restart or of nested rollbacks We deal with a variety of features that are very Important
in building and operating an industrial-strength transaction processing system ARIES supports

fuzzy checkpoints, selective and deferred restart, fuzzy image copies, media recovery, and high

concurrency lock modes (e. g., increment /decrement) which exploit the semantics of the opera-
tions and require the ability to perform operation logging. ARIES is flexible with respect
to the kinds of buffer management policies that can be implemented. It supports objects of
varying length efficiently. By enabling parallelism during restart, page-oriented redo, and
logical undo, it enhances concurrency and performance. We show why some of the System R
paradigms for logging and recovery, which were based on the shadow page technique, need to be
changed in the context of WAL. We compare ARIES to the WAL-based recovery methods of

Authors’ addresses: C Mohan, Data Base Technology Institute, IBM Almaden Research Center,

San Jose, CA 95120; D. Haderle, Data Base Technology Institute, IBM Santa Teresa Labora-
tory, San Jose, CA 95150; B. Lindsay, H. Pirahesh, and P. Schwarz, IBM Almaden Research
Center, San Jose, CA 95120.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.

@ 1992 0362-5915/92/0300-0094 $1.50

ACM Transactions on Database Systems, Vol 17, No. 1, March 1992, Pages 94-162

ARIES: A Transaction Recovery Method . 95

DB2TM, IMS, and TandemTM systems. ARIES is applicable not only to database management

systems but also to persistent object-oriented languages, recoverable file systems and
transaction-based operating systems. ARIES has been implemented, to varying degrees, in

IBM’s OS/2TM Extended Edition Database Manager, DB2, Workstation Data Save Facility/VM,

Starburst and QuickSilver, and in the University of Wisconsin’s EXODUS and Gamma database
machine.

Categories and Subject Descriptors: D.4.5 [Operating Systems]: Reliability–backup proce-
dures, checkpoint/ restart, fault tolerance; E.5. [Data]: Files– backup/ recouery; H.2.2 [Database
Management]: Physical Design–reco~ery and restart; H.2.4 [Database Management]: Sys-
tems—concurrency, transaction processing; H.2.7 [Database Management]: Database Adminis-
tration—logging and recovery

General Terms: Algorithms, Designj Performance, Reliability

Additional Key Words and Phrases: Buffer management, latching, locking, space management,

write-ahead logging

1. INTRODUCTION

In this section, first we introduce some basic concepts relating to recov-

ery, concurrency control, and buffer management, and then we outline the

organization of the rest of the paper.

1.1 Logging, Failures, and Recovery Methods

The transaction concept, which is well understood by now, has been around

for a long time. It encapsulates the ACID (Atomicity, Consistency, Isolation

and Durability) properties [361. The application of the transaction concept is

not limited to the database area [6, 17, 22, 23, 30, 39, 40, 51, 74, 88, 90, 1011.

Guaranteeing the atomicity and durability of transactions, in the face of

concurrent execution of multiple transactions and various failures, is a very

important problem in transaction processing. While many methods have

been developed in the past to deal with this problem, the assumptions,

performance characteristics, and the complexity and ad hoc nature of such

methods have not always been acceptable. Solutions to this problem may be

judged using several metrics: degree of concurrency supported within a page

and across pages, complexity of the resulting logic, space overhead on non-

volatile storage and in memory for data and the log, overhead in terms of the

number of synchronous and asynchronous 1/0s required during restart recov-

ery and normal processing, kinds of functionality supported (partial transac-

tion rollbacks, etc.), amount of processing performed during restart recovery,

degree of concurrent processing supported during restart recovery, extent of

system-induced transaction rollbacks caused by deadlocks, restrictions placed

‘M AS/400, DB2, IBM, and 0S/2 are trademarks of the International Business Machines Corp.
Encompass, NonStop SQL and Tandem are trademarks of Tandem Computers, Inc. DEC, VAX
DBMS, VAX and Rdb/VMS are trademarks of Digital Equipment Corp. Informix is a registered
trademark of Informix Software, Inc.

ACM Transactions on Database Systems, Vol. 17, No 1, March 1992.

96 . C. Mohan et al

on stored data (e. g., requiring unique keys for all records, restricting maxi-

mum size of objects to the page size, etc.), ability to support novel lock modes

which allow the concurrent execution, based on commutativity and other

properties [2, 26, 38, 45, 88, 891, of operations like increment/decrement on

the same data by different transactions, and so on.

In this paper we introduce a new recovery method, called ARL?LSl

(Algorithm for Recovery and Isolation Exploiting Semantics), which fares

very well with respect to all these metrics. It also provides a great deal of

flexibility to take advantage of some special characteristics of a class

of applications for better performance (e. g., the kinds of applications that

IMS Fast Path [28, 421 supports efficiently).

To meet transaction and data recovery guarantees, ARIES records in a log

the progress of a transaction, and its actions which cause changes to recover-

able data objects. The log becomes the source for ensuring either that the

transaction’s committed actions are reflected in the database despite various

types of failures, or that its uncommitted actions are undone (i.e., rolled

back). When the logged actions reflect data object content, then those log

records also become the source for reconstruction of damaged or lost data

(i.e., media recovery). Conceptually, the log can be thought of as an ever

growing sequential file. In the actual implementation, multiple physical files

may be used in a serial fashion to ease the job of archiving log records [151.

Every log record is assigned a unique log sequence number (LSN) when that

record is appended to the log. The LSNS are assigned in ascending sequence.

Typically, they are the logical addresses of the corresponding log records. At

times, version numbers or timestamps are also used as LSNS [6’71. If more

than one log is used for storing the log records relating to different pieces of

data, then a form of two-phase commit protocol (e. g., the current industry-

standard Presumed Abort protocol [63, 641) must be used.

The nonvolatile version of the log is stored on what is generally called

stable storage. Stable storage means nonvolatile storage which remains intact

and available across system failures. Disk is an example of nonvolatile

storage and its stability is generally improved by maintaining synchronously

two identical copies of the log on different devices. We would expect the

online log records stored on direct access storage devices to be archived to a
cheaper and slower medium like tape at regular intervals. The archived log

records may be discarded once the appropriate image copies (archive dumps)

of the database have been produced and those log records are no longer

needed for media recovery.

Whenever log records are written, they are placed first only in the volatile

storage (i.e., virtual storage) buffers of the log file. Only at certain times
(e.g., at commit time) are the log records up to a certain point (LSN) written,

in log page sequence, to stable storage. This is called forcing the log up to

that LSN. Besides forces caused by transaction and buffer manager activi -

1The choice of the name ARIES, besides its use as an acronym that describes certain features of

our recovery method, is also supposed to convey the relationship of our work to the Starburst
project at IBM, since Aries is the name of a constellation.

ACM TransactIons on Database Systems, Vol. 17, No 1, March 1992

ARIES: A Transaction Recovery Method . 97

ties, a system process may, in the background, periodically force the log

buffers as they fill up.

For ease of exposition, we assume that each log record describes the update

performed to only a single page. This is not a requirement of ARIES. In fact,

in the Starburst [87] implementation of ARIES, sometimes a single log record

might be written to describe updates to two pages. The undo (respectively,

redo) portion of a log record provides information on how to undo (respec-

tively, redo) changes performed by the transaction. A log record which

contains both the undo and the redo information is called an undo-redo log

record. Sometimes, a log record may be written to contain only the redo

information or only the undo information. Such a record is called a redo-only

log record or an undo-only log record, respectively. Depending on the action

that is performed, the undo-redo information may be recorded physically

(e.g., before the update and after the update images or values of specific

fields within the object) or operationally (e.g., add 5 to field 3 of record 15,

subtract 3 from field 4 of record 10). Operation logging permits the use of

high concurrency lock modes, which exploit the semantics of the operations

performed on the data. For example, with certain operations, the same field

of a record could have uncommitted updates of many transactions. These

permit more concurrency than what is permitted by the strict executions

property of the model of [3], which essentially says that modified objects must

be locked exclusively (X mode) for commit duration.

ARIES uses the widely accepted write ahead logging (WAL) protocol. Some

of the commercial and prototype systems based on WAL are IBM’s AS/400TM

[9, 211, CMU’S Camelot [23, 901, IBM’s DB2TM [1, 10,11,12,13,14,15,19, 35,
961, Unisys’s DMS/1100 [271, Tandem’s EncompassTM [4, 371, IBM’s IMS [42,

43, 53, 76, 80, 941, Informix’s Informix-Turbo m [161, Honeywell’s MRDS [911,
‘M [95], MCC’S ORION [29], IBM’s 0S/2 ExtendedTandem’s NonStop SQL

EditionTM Database Manager [71, IBM’s QuickSilver [40], IBM’s Starburst

[871, SYNAPSE [781, IBM’s System/38 [99], and DEC’S VAX DBMSTM and

VAX Rdb/VMSTM [811. In WAL-based systems, an updated page is written

back to the same nonvolatile storage location from where it was read. That

is, in-place updating is performed on nonvolatile storage. Contrast this with

what happens in the shadow page technique which is used in systems such as

System R [311 and SQL/DS [51 and which is illustrated in Figure 1. There the

updated version of the page is written to a different location on nonvolatile

storage and the previous version of the page is used for performing database

recovery if the system were to fail before the next checkpoint.

The WAL protocol asserts that the log records representing changes to

some data must already be on stable storage before the changed data is

allowed to replace the previous version of that data on nonvolatile storage.

That is, the system is not allowed to write an updated page to the nonvolatile

storage version of the database until at least the undo portions of the log

records which describe the updates to the page have been written to stable
storage. To enable the enforcement of this protocol, systems using the WAL

method of recovery store in every page the LSN of the log record that

describes the most recent update performed on that page. The reader is

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

98 . C Mohan et al.

Fig. 1. Shadow page technique.

Page Map

~

Logical page LPI IS read from physical page PI and after
modlflcat!on IS wr!tten to physical page PI’ P1’ IS the current
vers!on and PI IS the shadow version During a checkpoint,

the shadow version IS d]scarded and the current version

becomes the shadow verson also On a failure, data base

recovety IS performed us!ng the log and the shadow version

of the data base

referred to [31, 971 for discussions about why the WAL technique is consid-

ered to be better than the shadow page technique. [16, 781 discuss methods in

which shadowing is performed using a separate log. While these avoid some

of the problems of the original shadow page approach, they still retain

some of the important drawbacks and they introduce some new ones. Similar

comments apply to the methods suggested in [82, 881. Later, in Section 10, we

show why some of the recovery paradigms of System R, which were based on

the shadow page technique, are inappropriate in the WAL context, when we

need support for high levels of concurrency and various other features that

are described in Section 2.

Transaction status is also stored in the log and no transaction can be

considered complete until its committed status and all its log data are safely

recorded on stable storage by forcing the log up to the transaction’s commit

log record’s LSN. This allows a restart recovery procedure to recover any

transactions that completed successfully but whose updated pages were not

physically written to nonvolatile storage before the failure of the system.

This means that a transaction is not permitted to complete its commit

processing (see [63, 64]) until the redo portions of all log records of that

transaction have been written to stable storage.

We deal with three types of failures: transaction or process, system, and

media or device. When a transaction or process failure occurs, typically the

transaction would be in such a state that its updates would have to be

undone. It is possible that the transaction had corrupted some pages in the

buffer pool if it was in the middle of performing some updates when
the process disappeared. When a system failure occurs, typically the virtual

storage contents would be lost and the transaction system would have to be

restarted and recovery performed using the nonvolatile storage versions of

the database and the log. When a media or device failure occurs, typically the

contents of that media would be lost and the lost data would have to be

recovered using an image copy (archive dump) version of the lost data and

the log.

Forward processing refers to the updates performed when the system is in

normal (i. e., not restart recovery) processing and the transaction is updating

ACM TransactIons on Database Systems, Vol 17, No. 1, March 1992.

ARIES: A Transaction Recovery Method . 99

the database because of the data manipulation (e.g., SQL) calls issued by the

user or the application program. That is, the transaction is not rolling back

and using the log to generate the (undo) update calls. Partial rollback refers

to the ability to set up savepoints during the execution of a transaction and

later in the transaction request the rolling back of the changes performed by

the transaction since the establishment of a previous savepoint [1, 31]. This is

to be contrasted with total rollback in which all updates of the transaction

are undone and the transaction is terminated. Whether or not the savepoint

concept is exposed at the application level is immaterial to us since this paper

deals only with database recovery. A nested rollback is said to have taken

place if a partial rollback were to be later followed by a total rollback or

another partial rollback whose point of termination is an earlier point in the

transaction than the point of termination of the first rollback. Normal undo

refers to total or partial transaction rollback when the system is in normal

operation. A normal undo may be caused by a transaction request to rollback

or it may be system initiated because of deadlocks or errors (e. g., integrity

constraint violations). Restart undo refers to transaction rollback during

restart recovery after a system failure. To make partial or total rollback

efficient and also to make debugging easier, all the log records written by a

transaction are linked via the PreuLSN field of the log records in reverse

chronological order. That is, the most recently written log record of the

transaction would point to the previous most recent log record written by

that transaction, if there is such a log record.2 In many WAL-based systems,

the updates performed during a rollback are logged using what are called

compensation log records (CLRS) [151. Whether a CLR’S update is undone,

should that CLR be encountered during a rollback, depends on the particular

system. As we will see later, in ARIES, a CLR’S update is never undone and

hence CLRS are viewed as redo-only log records.

Page-oriented redo is said to occur if the log record whose update is being

redone describes which page of the database was originally modified during

normal processing and if the same page is modified during the redo process-

ing. No internal descriptors of tables or indexes need to be accessed to redo

the update. That is, no other page of the database needs to be examined. This

is to be contrasted with logical redo which is required in System R, SQL/DS

and AS/400 for indexes [21, 621. In those systems, since index changes are

not logged separately but are redone using the log records for the data pages,

performing a redo requires accessing several descriptors and pages of the

database. The index tree would have to be retraversed to determine

the page(s) to be modified and, sometimes, the index page(s) modified because

of this redo operation may be different from the index page(s) originally

modified during normal processing. Being able to perform page-oriented redo

allows the system to provide recovery independence amongst objects. That is,

the recovery of one page’s contents does not require accesses to any other

2 The AS/400, Encompass and NonStop SQL do not explicitly link all the log records written by

a transaction. This makes undo inefficient since a sequential backward scan of the log must be
performed to retrieve all the desired log records of a transaction.

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992

100 . C. Mohan et al

(data or catalog) pages of the database. As we will describe later, this makes
media recovery very simple.

In a similar fashion, we can define page-oriented undo and logical undo.

Being able to perform logical undos allows the system to provide higher

levels of concurrency than what would be possible if the system were to be

restricted only to page-oriented undos. This is because the former, with

appropriate concurrency control protocols, would permit uncommitted updates

of one transaction to be moved to a different page by another transaction. If

one were restricted to only page-oriented undos, then the latter transaction

would have had to wait for the former to commit. Page-oriented redo and

page-oriented undo permit faster recovery since pages of the database other

than the pages mentioned in the log records are not accessed. In the interest

of efficiency, ARIES supports page-oriented redo and its supports, in the

interest of high concurrency, logical undos. In [62], we introduce the

ARIES/IM method for concurrency control and recovery in B ‘-tree indexes

and show the advantages of being able to perform logical undos by comparing

ARIES/IM with other index methods.

1.2 Latches and Locks

Normally latches and locks are used to control access to shared information.

Locking has been discussed to a great extent in the literature. Latches, on

the other hand, have not been discussed that much. Latches are like

semaphores. Usually, latches are used to guarantee physical consistency of

data, while locks are used to assure logical consistency of data. We need to

worry about physical consistency since we need to support a multiprocessor

environment. Latches are usually held for a much shorter period than are

locks. Also, the deadlock detector is not informed about latch waits. Latches

are requested in such a manner so as to avoid deadlocks involving latches

alone, or involving latches and locks.

Acquiring and releasing a latch is much cheaper than acquiring and

releasing a lock. In the no-conflict case, the overhead amounts to 10s of

instructions for the former versus 100s of instructions for the latter. Latches

are cheaper because the latch control information is always in virtual mem-

ory in a fixed place, and direct addressability to the latch information is

possible given the latch name. As the protocols presented later in this paper

and those in [57, 621 show, each transaction holds at most two or three

latches simultaneously. As a result, the latch request blocks can be perman-

ently allocated to each transaction and initialized with transaction ID, etc.

right at the start of that transaction. On the other hand, typically, storage for

individual locks has to be acquired, formatted and released dynamically,

causing more instructions to be executed to acquire and release locks. This is

advisable because, in most systems, the number of lockable objects is many

orders of magnitude greater than the number of latchable objects. Typically,

all information relating to locks currently held or requested by all the

transactions is stored in a single, central hash table. Addressability to a

particular lock’s information is gained by first hashing the lock name to get

the address of the hash anchor and then, possibly, following a chain of

pointers. Usually, in the process of trying to locate the lock control block,

ACM Transactions on Database Systems, Vol 17, No 1, March 1992

ARIES: A Transaction Recovery Method . 101

because multiple transactions may be simultaneously reading and modifying

the contents of the lock table, one or more latches will be acquired and

released—one latch on the hash anchor and, possibly, one on the specific

lock’s chain of holders and waiters.

Locks may be obtained in different modes such as S (Shared), X (exclusive),

IX (Intention exclusive), IS (Intention Shared) and SIX (Shared Intention

exclusive), and at different granularities such as record (tuple), table (rela-

tion), and file (tablespace) [321. The S and X locks are the most common ones.

S provides the read privilege and X provides the read and write privileges.

Locks on a given object can be held simultaneously by different transactions

only if those locks’ modes are compatible. The compatibility relationships

amongst the above modes of locking are shown in Figure 2. A check mark

(’<) indicates that the corresponding modes are compatible. With hierarchi-
cal locking, the intention locks (IX, IS, and SIX) are generally obtained on

the higher levels of the hierarchy (e.g., table), and the S and X locks are

obtained on the lower levels (e. g., record). The nonintention mode locks (S

and X), when obtained on an object at a certain level of the hierarchy,

implicitly grant locks of the corresponding mode on the lower level objects of

that higher level object. The intention mode locks, on the other hand, only

give the privilege of requesting the corresponding intention or nonintention

mode locks on the lower level objects. For example, SIX on a table implicitly

grants S on all the records of that table, and it allows X to be requested

explicitly on the records. Additional, semantically rich lock modes have been

defined in the literature [2, 38, 45, 551 and ARIES can accommodate them.

Lock requests may be made with the conditional or the unconditional

option. A conditional request means that the requestor is not willing to wait

if, when the request is processed, the lock is not grantable immediately. An

unconditional request means that the requestor is willing to wait until the
lock becomes grantable. Locks may be held for different durations. An

unconditional request for an instant duration lock means that the lock is not

to be actually granted, but the lock manager has to delay returning the lock

call with the success status until the lock becomes grantable. Manual

duration locks are released some time after they are acquired and, typically,

long before transaction termination. Commit duration locks are released only

when the transaction terminates, i.e., after commit or rollback is completed.

The above discussions concerning conditional requests, different modes, and

durations, except for commit duration, apply to latches also.

1.3 Fine-Granularity Locking

Fine-granularity (e.g., record) locking has been supported by nonrelational
database systems (e.g., IMS [53, 76, 801) for a long time. Surprisingly, only a

few of the commercially available relational systems provide fine-granularity

locking, even though IBM’s System R [321, S/38 [991 and SQL/DS [51, and

Tandem’s Encompass [37] supported record and/or key locking from

the beginning. 3 Although many interesting problems relating to providing

3 Encompass and S/38 had only X locks for records and no locks were acquired automatically by
these systems for reads.

ACM Transactions on Database SyStanS, Vol. 17, No 1, March 1992

102 . C. Mohan et al.

Fig. 2. Lock mode comparability
matrix m

lx + .’

Slx 4

fine-granularity locking in the context of WAL remain to be solved, the

research community has not been paying enough attention to this area [3, 75,

88]. Some of the System R solutions worked only because of the use of the

shadow page recovery technique in combination with locking (see Section

10). Supporting fine-granularity locking and variable length records in a

flexible fashion requires addressing some interesting storage management

issues which have never really been discussed in the database literature.

Unfortunately, some of the interesting techniques that were developed for

System R and which are now part of SQL/DS did not get documented in the

literature. At the expense of making this paper long, we will be discussing

here some of those problems and their solutions.

As supporting high concurrency gains importance (see [79] for the descrip-

tion of an application requiring very high concurrency) and as object-oriented

systems gain in popularity, it becomes necessary to invent concurrency

control and recovery methods that take advantage of the semantics of the

operations on the data [2, 26, 38, 88, 891, and that support fine-granularity

locking efficiently. Object-oriented systems may tend to encourage users to

define a large number of small objects and users may expect object instances

to be the appropriate granularity of locking. In the object-oriented logical

view of the database, the concept of a page, with its physical orientation as

the container of objects, becomes unnatural to think about as the unit of

locking during object accesses and modifications. Also, object-oriented system

users may tend to have many terminal interactions during the course of a

transaction, thereby increasing the lock hold times. If the unit of locking
were to be a page, lock wait times and deadlock possibilities will be aggra-

vated. Other discussions concerning transaction management in an object-

oriented environment can be found in [22, 29].

As more and more customers adopt relational systems for production

applications, it becomes ever more important to handle hot-spots [28, 34, 68,

77, 79, 83] and storage management without requiring too much tuning by
the system users or administrators. Since relational systems have been

welcomed to a great extent because of their ease of use, it is important that

we pay greater attention to this area than what has been done in the context

of the nonrelational systems. Apart from the need for high concurrency for

user data, the ease with which online data definition operations can be

performed in relational systems by even ordinary users requires the support
for high concurrency of access to, at least, the catalog data. Since a leaf page

in an index typically describes data in hundreds of data pages, page-level

locking of index data is just not acceptable. A flexible recovery method that

ACM TransactIons on Database Systems, Vol 17, No. 1, March 1992.

ARIES: A Transaction Recovery Method . 103

allows the support of high levels of concurrency during index accesses is

needed.

The above facts argue for supporting semantically rich modes of locking

such as increment/decrement which allow multiple transactions to concur-

rently modify even the same piece of data. In funds-transfer applications,

increment and decrement operations are frequently performed on the branch

and teller balances by numerous transactions. If those transactions are forced

to use only X locks, then they will be serialized, even though their operations

commute.

1.4 Buffer Management

The buffer manager (BM) is the component of the transaction system that

manages the buffer pool and does 1/0s to read/write pages from/to the

nonvolatile storage version of the database. The fix primitive of the BM may

be used to request the buffer address of a logical page in the database. If

the requested page is not in the buffer pool, BM allocates a buffer slot and

reads the p~ge in. There may be instances (e. g., during a B ‘-tree page split,

when the new page is allocated) where the current contents of a page on

nonvolatile storage are not of interest. In such a case, the fix– new primitive

may be used to make the BM allocate a ji-ee slot and return the address of

that slot, if BM does not find the page in the buffer pool. The fix-new invoker

will then format the page as desired. Once a page is fixed in the buffer pool,

the corresponding buffer slot is not available for page replacement until the

unfix primitive is issued by the data manipulative component. Actually, for

each page, BM keeps a fix count which is incremented by one during every

fix operation and which is decremented by one during every unfix operation.

A page in the buffer pool is said to be dirty if the buffer version of the page

has some updates which are not yet reflected in the nonvolatile storage

version of the same page. The fix primitive is also used to communicate the

intention to modify the page. Dirty pages can be written back to nonvolatile

storage when no fix with the modification intention is held, thus allowing

read accesses to the page while it is being written out. [96] discusses the role

of BM in writing in the background, on a continuous basis, dirty pages to

nonvolatile storage to reduce the amount of redo work that would be needed

if a system failure were to occur and also to keep a certain percentage of the

buffer pool pages in the nondirty state so that they may be replaced with

other pages without synchronous write 1/0s having to be performed at the

time of replacement. While performing those writes, BM ensures that the

WAL protocol is obeyed. As a consequence, BM may have to force the log up

to the LSN of the dirty page before writing the page to nonvolatile storage.

Given the large buffer pools that are common today, we would expect a force

of this nature to be very rare and most log forces to occur because of

transactions committing or entering the prepare state.

BM also implements the support for latching pages. To provide direct
addressability to page latches and to reduce the storage associated with those

latches, the latch on a logical page is actually the latch on the corresponding

buffer slot. This means that a logical page can be latched only after it is fixed

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

104 . C. Mohan et al

in the buffer pool and the latch has to be released before the page is unfixed.

These are highly acceptable conditions. The latch control information is

stored in the buffer control block (BCB) for the corresponding buffer slot. The

BCB also contains the identity of the logical page, what the fix count is, the

dirty status of the page, etc.

Buffer management policies differ among the many systems in existence

(see Section 11, “Other WAL-Based Methods”). If a page modified by a

transaction is allowed to be written to the permanent database on nonvolatile

storage before that transaction commits, then the steal policy is said to be

followed by the buffer manager (see [361 for such terminologies). Otherwise, a

no-steal policy is said to be in effect. Steal implies that during normal or

restart rollback, some undo work might have to be performed on the non-

volatile storage version of the database. If a transaction is not allowed to

commit until all pages modified by it are written to the permanent version of

the database, then a force policy is said to be in effect. Otherwise, a no-force

policy is said to be in effect. With a force policy, during restart recovery, no

redo work will be necessary for committed transactions. Deferred updating is

said to occur if, even in the virtual storage database buffers, the updates are

not performed in-place when the transaction issues the corresponding

database calls. The updates are kept in a pending list elsewhere and are

performed in-place, using the pending list information, only after it is deter-

mined that the transaction is definitely committing. If the transaction needs

to be rolled back, then the pending list is discarded or ignored. The deferred

updating policy has implications on whether a transaction can “see” its

own updates or not, and on whether partial rollbacks are possible or not.

For more discussions concerning buffer management, see [8, 15, 24, 961.

1.5 Organization

The rest of the paper is organized as follows. After stating our goals in

Section 2 and giving an overview of the new recovery method ARIES

in Section 3, we present, in Section 4, the important data structures used by

ARIES during normal and restart recovery processing. Next, in Section 5, the

protocols followed during normal processing are presented followed, in Section

6, by the description of the processing performed during restart recovery. The
latter section also presents ways to exploit parallelism during recovery and

methods for performing recovery selectively or postponing the recovery of

some of the data. Then, in Section 7, algorithms are described for taking

checkpoints during the different log passes of restart recovery to reduce the
impact of failures during recovery. This is followed, in Section 8, by the

description of how fuzzy image copying and media recovery are supported.

Section 9 introduces the significant notion of nested top actions and presents

a method for implementing them efficiently. Section 10 describes and cri-

tiques some of the existing recovery paradigms which originated in the

context of the shadow page technique and System R. We discuss the problems

caused by using those paradigms in the WAL context. Section 11 describes in

detail the characteristics of many of the WAL-based recovery methods in use

in different systems such as IMS, DB2, Encompass and NonStop SQL.

ACM Transactions on Database Systems, Vol 17, No. 1, March 1992

ARIES: A Transaction Recovery Method . 105

Section 12 outlines the many different properties of ARIES. We conclude by

summarizing, in Section 13, the features of ARIES which provide flexibility

and efficiency, and by describing the extensions and the current status of the

implementations of ARIES.

Besides presenting a new recovery method, by way of motivation for our

work, we also describe some previously unpublished aspects of recovery in

System R. For comparison purposes, we also do a survey of the recovery

methods used by other WAL-based systems and collect information appearing

in several publications, many of which are not widely available. One of our

aims in this paper is to show the intricate and unobvious interactions

resulting from the different choices made for the recovery technique, the

granularity of locking and the storage management scheme. One cannot

make arbitrarily independent choices for these and still expect the combina-

tion to function together correctly and efficiently. This point needs to be

emphasized as it is not always dealt with adequately in most papers and

books on concurrency control and recovery. In this paper, we have tried to

cover, as much as possible, all the interesting recovery-related problems that

one encounters in building and operating an industrial-strength transaction

processing system.

2. GOALS

This section lists the goals of our work and outlines the difficulties involved

in designing a recovery method that supports the features that we aimed for.

The goals relate to the metrics for comparison of recovery methods that we

discussed earlier, in Section 1.1.

Simplicity. Concurrency and recovery are complex subjects to think about

and program for, compared with other aspects of data management. The

algorithms are bound to be error-prone, if they are complex. Hence, we

strived for a simple, yet powerful and flexible, algorithm. Although this

paper is long because of its comprehensive discussion of numerous problems

that are mostly ignored in the literature, the main algorithm itself is quite

simple. Hopefully, the overview presented in Section 3 gives the reader that

feeling.

Operation logging. The recovery method had to permit operation logging

(and value logging) so that semantically rich lock modes could be supported.

This would let one transaction modify the same data that was modified

earlier by another transaction which has not yet committed, when the two

transaction:’ actions are semantically compatible (e.g., increment/decrement

operations; see [2, 26, 45, 881). As should be clear, recovery methods which

always perform value or state logging (i. e., logging before-images and after-

images of modified data), cannot support operation logging. This includes

systems that do very physical —byte-oriented— logging of all changes to a

page [6, 76, 811. The difficulty in supporting operation logging is that we need
to track precisely, using a concept like the LSN, the exact state of a page

with respect to logged actions relating to that page. An undo or a redo of an

update should not be performed without being sure that the original update

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992

106 . C. Mohan et al

is present or is not present, respectively. This also means that, if one or more

transactions that had previously modified a page start rolling back, then we

need to know precisely how the page has been affected during the rollbacks

and how much of each of the rollbacks had been accomplished so far. This

requires that updates performed during rollbacks also be logged via the

so-called compensation log records (CLRS). The LSN concept lets us avoid

attempting to redo an operation when the operation’s effect is already

present in the page. It also lets us avoid attempting to undo an operation

when the operation’s effect is not present in the page. Operation logging lets

us perform, if found desirable, logical logging, which means that not every-

thing that was changed on a page needs to be logged explicitly, thereby

saving log space. For example, changes of control information, like the

amount of free space on the page, need not be logged. The redo and the undo

operations can be performed logically. For a good discussion of operation and

value logging, see [881.

Flexible storage management. Efficient support for the storage and manip-

ulation of varying length data is important. In contrast to systems like

IMS, the intent here is to be able to avoid the need for off-line reorganization

of the data to garbage collect any space that might have been freed up

because of deletions and updates that caused data shrinkage. It is desir-

able that the recovery method and the concurrency control method be such

that the logging and locking is logical in nature so that movements of

the data within a page for garbage collection reasons do not cause the

moved data to be locked or the movements to be logged. For an index,

this also means that one transaction must be able to split a leaf page even if

that page currently has some uncommitted data inserted by another transac-

tion. This may lead to problems in performing page-oriented undos using the

log; logical undos may be necessary. Further, we would like to be able to let

a transaction that has freed up some space be able to use, if necessary, that

space during its later insert activity [50]. System R, for example, does not

permit this in data pages.

Partial rollbacks. It was essential that the new recovery method sup-

port the concept of savepoints and rollbacks to savepoints (i.e., partial

rollbacks). This is crucial for handling, in a user-friendly fashion (i. e.,

without requiring a total rollback of the transaction), integrity constraint

violations (see [1, 311), and problems arising from using obsolete cached

information (see [49]).

Flexible buffer management. The recovery method should make the least

number of restrictive assumptions about the buffer management policies

(steal, force, etc.) in effect. At the same time, the method must be able to

take advantage of the characteristics of any specific policy that is in effect

(e.g., with a force policy there is no need to perform any redos for committed

transactions.) This flexibility could result in increased concurrency, decreased

1/0s and efficient usage of buffer storage. Depending on the policies, the

work that needs to be performed during restart recovery after a system

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992

ARIES: A Transaction Recovery Method . 107

failure or during media recovery maybe more or less complex. Even with

large main memories, it must be noted that a steal policy is still very

desirable. This is because, with a no-steal policy, a page may never get

written to nonvolatile storage if the page always contains uncommitted

updates due to fine-~anularity locking and overlapping transactions’ updates

to that page. The situation would be further aggravated if there are long-

running transactions. Under those conditions, either the system would have

to frequently reduce concurrency by quiescing all activities on the page (i.e.,

by locking all the objects on the page) and then writing the page to non-

volatile storage, or by doing nothing special and then paying a huge restart

redo recovery cost if the system were to fail. Also, a no-steal policy incurs

additional bookkeeping overhead to track whether a page contains any

uncommitted updates. We believe that, given our goal of supporting semanti-
cally rich lock modes, partial rollbacks and varying length objects efficiently,

in the general case, we need to perform undo logging and in-place updating.

Hence, methods like the transaction workspace model of AIM [46] are not

general enough for our purposes. Other problems relating to no-steal are

discussed in Section 11 with reference to IMS Fast Path.

Recovery independence. It should be possible to image copy (archive dump),

and perform media recovery or restart recovery at different granularities,

rather than only at the entire database level. The recovery of one object

should not force the concurrent or lock-step recovery of another object.

Contrast this with what happens in the shadow page technique as imple-

mented in System R, where index and space management information are

recovered lock-step with user and catalog table (relation) data by starting

from an internally consistent state of the whole database and redoing changes

to all the related objects of the database simultaneously, as in normal

processing. Recovery independence means that, during the restart recovery of

some object, catalog information in the database cannot be accessed for

descriptors of that object and its related objects, since that information itself

may be undergoing recovery in parallel with the object being recovered and

the two may be out of synchronization [141. During restart recovery, it should

be possible to do selective recovery and defer recovery of some objects to a

later point in time to speed up restart and also to accommodate some offline

devices. Page-oriented recovery means that even if one page in the database

is corrupted because of a process failure or a media problem, it should be
possible to recover that page alone. To be able to do this efficiently, we need

to log every page’s change individually, even if the object being updated

spans multiple pages and the update affects more than one page. This, in

conjunction with the writing of CLRS for updates performed during rollbacks,

will make media recovery very simple (see Section 8). This will also permit

image copying of different objects to be performed independently and at

different frequencies.

Logical undo. This relates to the ability, during undo, to affect a page

that is different from the one modified during forward processing, as is

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

108 . C. Mohan et al.

needed in the earlier-mentioned context of the split by one transaction of an

index page containing uncommitted data of another transaction. Being able

to perform logical undos allows higher levels of concurrency to be supported,

especially in search structures [57, 59, 621. If logging is not performed during

rollback processing, logical undos would be very difficult to support, if we

also desired recovery independence and page-oriented recovery. System

R and SQL/DS support logical undos, but at the expense of recovery

independence.

Parallelism and fast recovery. With multiprocessors becoming very com-

mon and greater data availability becoming increasingly important, the

recovery method has to be able to exploit parallelism during the different

stages of restart recovery and during media recovery. It is also important

that the recovery method be such that recovery can be very fast, if in fact a

hot-standby approach is going to be used (a la IBM’s IMS/VS XRF [431 and

Tandem’s NonStop [4, 371). This means that redo processing and, whenever

possible, undo processing should be page-oriented (cf. always logical redos

and undos in System R and SQL/DS for indexes and space management). It

should also be possible to let the backup system start processing new transac-

tions, even before the undo processing for the interrupted transactions com-

pletes. This is necessary because undo processing may take a long time if

there were long update transactions.

Minimal overhead. Our goal is to have good performance both during

normal and restart recovery processing. The overhead (log data volume,

storage consumption, etc.) imposed by the recovery method in virtual and

nonvolatile storages for accomplishing the above goals should be minimal.

Contrast this with the space overhead caused by the shadow page technique.

This goal also implied that we should minimize the number of pages that are

modified (dirtied) during restart. The idea is to reduce the number of pages

that have to be written back to nonvolatile storage and also to reduce CPU

overhead. This rules out methods which, during restart recovery, first undo

some committed changes that had already reached the nonvolatile storage
before the failure and then redo them (see, e.g., [16, 21, 72, 78, 881). It also

rules out methods in which updates that are not present in a page on

nonvolatile storage are undone unnecessarily (see, e.g., [41, 71, 881). The

method should not cause deadlocks involving transactions that are already

rolling back. Further, the writing of CLRS should not result in an unbounded

number of log records having to be written for a transaction because of the
undoing of CLRS, if there were nested rollbacks or repeated system failures

during rollbacks. It should also be possible to take checkpoints and image

copies without quiescing significant activities in the system. The impact of

these operations on other activities should be minimal. To contrast, check-

pointing and image copying in System R cause major perturbations in the

rest of the system [31].

As the reader will have realized by now, some of these goals are contradic-

tory. Based on our knowledge of different developers’ existing systems’

features, experiences with IBM’s existing transaction systems and contacts

ACM Transactions on Database Systems, Vol 17, No 1, March 1992

ARIES: A TransactIon Recovery Method . 109

with customers, we made the necessary tradeoffs. We were keen on learning

from the past successes and mistakes involving many prototypes and products.

3. OVERVIEW OF ARIES

The aim of this section is to provide a brief overview of the new recovery

method ARIES, which satisfies quite reasonably the goals that we set forth in

Section 2. Issues like deferred and selective restart, parallelism during

restart recovery, and so on will be discussed in the later sections of the paper.

ARIES guarantees the atomicity and durability properties of transactions

in the fact of process, transaction, system and media failures. For this

purpose, ARIES keeps track of the changes made to the database by using a

log and it does write-ahead logging (WAL). Besides logging, on a per-

affected-page basis, update activities performed during forward processing of

transactions, ARIES also logs, typically using compensation log records

(CLRS), updates performed during partial or total rollbacks of transactions

during both normal and restart processing. Figure 3 gives an example of a

partial rollback in which a transaction, after performing three updates, rolls

back two of them and then starts going forward again. Because of the undo of

the two updates, two CLRS are written. In ARIES, CLRS have the property

that they are redo-only log records. By appropriate chaining of the CLRS to

log records written during forward processing, a bounded amount of logging

is ensured during rollbacks, even in the face of repeated failures during

restart or of nested rollbacks. This is to be contrasted with what happens in

IMS, which may undo the same non-CLR multiple times, and in AS/400, DB2

and NonStop SQL, which, besides undoing the same non-CLR multiple times,

may also undo CLRS one or more times (see Figure 4). These have caused

severe problems in real-life customer situations.

In ARIES, as Figure 5 shows, when the undo of a log record causes a CLR

to be written, the CLR, besides containing a description of the compensating

action for redo purposes, is made to contain the UndoNxtLSN pointer which

points to the predecessor of the just undone log record. The predecessor

information is readily available since every log record, including a CLR,

contains the PreuLSN pointer which points to the most recent preceding log

record written by the same transaction. The UndoNxtLSN pointer allows us

to determine precisely how much of the transaction has not been undone so

far. In Figure 5, log record 3’, which is the CLR for log record 3, points to log

record 2, which is the predecessor of log record 3. Thus, during rollback, the

UndoNxtLSN field of the most recently written CLR keeps track of the

progress of rollback. It tells the system from whereto continue the rollback of

the transaction, if a system failure were to interrupt the completion of the

rollback or if a nested rollback were to be performed. It lets the system

bypass those log records that had already been undone. Since CLRS are

available to describe what actions are actually ~erformed during the undo of
an original action, the undo action need not be, in terms of which page(s) is

affected, the exact inverse of the original action. That is, logical undo which

allows very high concurrency to be supported is made possible. For example,

ACM Transactions on Database Systems, Vol 17, No. 1, March 1992.

110 . C. Mohan et al.

w
Fig. 3. Partial rollback example.

Log 12 33’2’4 !3j
>

After performing 3 actions, the transaction performs a patilal

rollback by undoing actions 3 and 2, wrlt!ng the compensation

log records 3 and 2, and then starts go[ng forward aga!n

and performs act~ons 4 and 5

I Before Failure

Log 1

,
During Restart

DB2, s/38,
Encompass ---------------------------

2’” 3“ 3’ ~ 1;
>

AS/400

lMS
3’ 2’ 1’

)

I’ is the CLR for I and I“ is the CLR for I’

Fig. 4 Problem of compensating compensations or duplicate compensations, or both

a key inserted on page 10 of a B ‘-tree by one transaction may be moved to

page 20 by another transaction before the key insertion is committed. Later,

if the first transaction were to roll back, then the key will be located on page

20 by retraversing the tree and deleted from there. A CLR will be written to

describe the key deletion on page 20. This permits page-oriented redo which

is very efficient. [59, 621 describe ARIES/LHS and ARIES/IM which exploit

this logical undo feature.

ARIES uses a single LSN on each page to track the page’s state. Whenever

a page is updated and a log record is written, the LSN of the log record is

placed in the page-LSN field of the updated page. This tagging of the page

with the LSN allows ARIES to precisely track, for restart- and media-

recovery purposes, the state of the page with respect to logged updates for

that page. It allows ARIES to support novel lock modes! using which, before
an update performed on a record’s field by one transaction is committed,

another transaction may be permitted to modify the same data for specified

operations.

Periodically during normal processing, ARIES takes checkpoints. The

checkpoint log records identify the transactions that are active, their states,

and the LSNS of their most recently written log records, and also the

modified data (dirty data) that is in the buffer pool. The latter information is

needed to determine from where the redo pass of restart recovery should

begin its processing.

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

ARIES: A Transaction Recovery Method . 111

Before Failure

12
Log

3 3’ 2’ 1!
‘,; -.? F)/ i-

\ % /\ -=---- /
-% /

------ ---

During Restart ,,

I --+1

I’ is the Compensation Log Record for I
I’ points to the predecessor, if any, of I

Fig. 5. ARIES’ technique for avoiding compensating compensation and duplicate

compensations.

During restart recovery (see Figure 6), ARIES first scans the log, starting

from the first record of the last checkpoint, up to the end of the log. During

this analysis pass, information about dirty pages and transactions that were

in progress at the time of the checkpoint is brought up to date as of the end of

the log. The analysis pass uses the dirty pages information to determine the

starting point (li!edoLSIV) for the log scan of the immediately following redo

pass. The analysis pass also determines the list of transactions that are to be

rolled back in the undo pass. For each in-progress transaction, the LSN of the

most recently written log record will also be determined. Then, during

the redo pass, ARIES repeats history, with respect to those updates logged on

stable storage, but whose effects on the database pages did not get reflected

on nonvolatile storage before the failure of the system. This is done for the

updates of all transactions, including the updates of those transactions that

had neither committed nor reached the in-doubt state of two-phase commit by

the time of the system failure (i.e., even the missing updates of the so-called

loser transactions are redone). This essentially reestablishes the state of

the database as of the time of the system failure. A log record’s update is

redone if the affected page’s page-LSN is less than the log record’s LSN. No

logging is performed when updates are redone. The redo pass obtains the

locks needed to protect the uncommitted updates of those distributed transac-

tions that will remain in the in-doubt (prepared) state [63, 64] at the end of

restart recovery.

The next log pass is the undo pass during which all loser transactions’

updates are rolled back, in reverse chronological order, in a single sweep of

the log. This is done by continually taking the maximum of the LSNS of the

next log record to be processed for each of the yet-to-be-completely-undone

loser transactions, until no transaction remains to be undone. Unlike during
the redo pass, performing undos is not a conditional operation during the

undo pass (and during normal undo). That is, ARIES does not compare

the page.LSN of the affected page to the LSN of the log record to decide

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

112 . C. Mohan et al

Log m

@ Checkpoint
i

Follure
r’

DB2

System R

IMS

ARIES

Fig. 6,

I
Analysis

/ Undo Losers “––-––––––X*
*————— ——.

Redo Nonlosers—— — ————,&

Redo Nonlosers (FP Updates) & Analysis
. ------

Undo Losers (NonFP Updates)..:--------

1-------
.-:” ---------

Redo ALL

Undo Losers
I

Restart processing in different methods.

whether or not to undo the update. When a non-CLR is encountered for a

transaction during the undo pass, if it is an undo-redo or undo-only log

record, then its update is undone. In any case, the next record to process for

that transaction is determined by looking at the PrevLSN of that non-CLR.

Since CLRS are never undone (i.e., CLRS are not compensated– see Figure

5), when a CLR is encountered during undo, it is used just to determine the

next log record to process by looking at the UndoNxtLSN field of the CLR.
For those transactions which were already rolling back at the time of the

system failure, ARIES will rollback only those actions that had not already

been undone. This is possible since history is repeated for such transactions

and since the last CLR written for each transaction points (directly or

indirectly) to the next non-CLR record that is to be undone, The net result is

that, if only page-oriented undos are involved or logical undos generate only

CLRS, then, for rolled back transactions, the number of CLRS written will be

exactly equal to the number of undoable) log records written during forward

processing of those transactions. This will be the case even if there are

repeated failures during restart or if there are nested rollbacks.

4. DATA STRUCTURES

This section describes the major data structures that are used by

4.1 Log Records

ARIES.

Below, we describe the important fields that may be present in different

types of log records.

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992,

ARIES: A Transaction Recovery Method . 113

LSN. Address of the first byte of the log record in the ever-growing log

address space. This is a monotonically increasing value. This is shown here

as a field only to make it easier to describe ARIES. The LSN need not

actually be stored in the record.

Type. Indicates whether this is a compensation record (’compensation’), a

regular update record (’update’), a commit protocol-related record (e. g., ‘pre-

pare’), or a nontransaction-related record (e.g., ‘OSfile_return’).

TransID. Identifier of the transaction, if any, that wrote the log record.

PrevLSN. LSN of the preceding log record written by the same transac-

tion. This field has a value of zero in nontransaction-related records and in

the first log record of a transaction, thus avoiding the need for an explicit

begin transaction log record.

PageID. Present only in records of type ‘update’ or ‘compensation’. The
identifier of the page to which the updates of this record were applied. This

PageID will normally consist of two parts: an objectID (e.g., tablespaceID),

and a page number within that object. ARIES can deal with a log record that

contains updates for multiple pages. For ease of exposition, we assume that

only one page is involved.

UndoNxtLSN. Present only in CLRS. It is the LSN of the next log record

of this transaction that is to be processed during rollback. That is,

UndoNxtLSN is the value of PrevLSN of the log record that the current log

record is compensating. If there are no more log records to be undone, then

this field contains a zero.

Data. This is the redo and/or undo data that describes the update that

was performed. CLRS contain only redo information since they are never

undone. Updates can be logged in a logical fashion. Changes to some fields

(e.g., amount of free space) of that page need not be logged since they can be

easily derived. The undo information and the redo information for the entire

object need not be logged. It suffices if the changed fields alone are logged.

For increment or decrement types of operations, before and after-images of

the field are not needed. Information about the type of operation and the

decrement or increment amount is enough. The information here would also

be used to determine the appropriate action routine to be used to perform the

redo and/or undo of this log record.

4.2 Page Structure

One of the fields in every page of the database is the page-LSN field. It

contains the LSN of the log record that describes the latest update to the

page. This record may be a regular update record or a CLR. ARIES expects

the buffer manager to enforce the WAL protocol. Except for this, ARIES does

not place any restrictions on the buffer page replacement policy. The steal

buffer management policy may be used. In-place updating is performed on

nonvolatile storage. Updates are applied immediately and directly to the

ACM Transactions on Database Systems, Vol. 17, No, 1, March 1992.

114 . C. Mohan et al.

buffer version of the page containing the object. That is, no deferred updating

as in INGRES [861 is performed. If it is found desirable, deferred updat-

ing and, consequently, deferred logging can be implemented. ARIES is

flexible enough not to preclude those policies from being implemented.

4.3 Transaction Table

A table called the transaction table is used during restart recovery to track

the state of active transactions. The table is initialized during the analysis

pass from the most recent checkpoint’s record(s) and is modified during the

analysis of the log records written after the beginning of that checkpoint.

During the undo pass, the entries of the table are also modified. If a

checkpoint is taken during restart recovery, then the contents of the table

will be included in the checkpoint record(s). The same table is also used

during normal processing by the transaction manager. A description of the

important fields of the transaction table follows:

TransID. Transaction ID.

State. Commit state of the transaction: prepared (’P’ –also called in-doubt)

or unprepared (’U’).

LastLSN. The LSN of the latest log record written by the transaction.

UndoNxtLSN. The LSN of the next record to be processed during roll-

back. If the most recent log record written or seen for this transaction is an

undoable non-CLR log record, then this field’s value will be set to LastLSN.

If that most recent log record is a CLR, then this field’s value is set to the

UndoNxtLSN value from that CLR.

4.4 Dirty_ Pages Table

A table called the dirty .pages table is used to represent information about

dirty buffer pages during normal processing. This table is also used during

restart recovery. The actual implementation of this table may be done using

hashing or via the deferred-writes queue mechanism of [961. Each entry in

the table consists of two fields: PageID and RecLSN (recovery LSN). During

normal processing, when a nondirty page is being fixed in the buffers with

the intention to modify, the buffer manager records in the buffer pool (BP)

dirty .pages table, as RecLSN, the current end-of-log LSN, which will be the
LSN of the next log record to be written. The value of RecLSN indicates from

what point in the log there may be updates which are, possibly, not yet in the

nonvolatile storage version of the page. Whenever pages are written back

to nonvolatile storage, the corresponding entries in the BP dirty _pages table

are removed. The contents of this table are included in the checkpoint
record(s) that is written during normal processing. The restart dirty –pages

table is initialized from the latest checkpoint’s record(s) and is modified

during the analysis of the other records during the analysis pass. The

ACM Transactions on Database Systems, Vol 17, No 1, March 1992

minimum RecLSN

pass during restart

ARIES: A Transaction Recovery Method . 115

value in the table gives the starting point for the redo

recovery.

5. NORMAL PROCESSING

This section discusses the actions that are performed as part of normal

transaction processing. Section 6 discusses the actions that are performed as

part of recovering from a system failure.

5.1 Updates

During normal processing, transactions may be in forward processing, partial

rollback or total rollback. The rollbacks may be system- or application-ini-

tiated. The causes of rollbacks may be deadlocks, error conditions, integrity

constraint violations, unexpected database state, etc.

If the granularity of locking is a record, then, when an update is to be

performed on a record in a page, after the record is locked, that page is fixed

in the buffer and latched in the X mode, the update is performed, a log record

is appended to the log, the LSN of the log record is placed in the page .LSN

field of the page and in the transaction table, and the page is unlatched and

unfixed. The page latch is held during the call to the logger. This is done to

ensure that the order of logging of updates of a page is the same as the order

in which those updates are performed on the page. This is very important if

some of the redo information is going to be logged physically (e.g., the

amount of free space in the page) and repetition of history has to be

guaranteed for the physical redo to work correctly. The page latch must

be held during read and update operations to ensure physical consistency of

the page contents. This is necessary because inserters and updaters of records

might move records around within a page to do garbage collection. When

such garbage collection is going on, no other transaction should be allowed to

look at the page since they might get confused. Readers of pages latch in the

S mode and modifiers latch in the X mode.

The data page latch is not held while any necessary index operations are

performed. At most two page latches are held simultaneously (also see

[57, 621). This means that two transactions, T1 and T2, that are modi-
fying different pieces of data may modify a particular data page in one order

(Tl, T2) and a particular index page in another order (T2, T1).4 This scenario
is impossible in System R and SQL/DS since in those systems, locks, instead

of latches are used for providing physical consistency. Typically, all the

(physical) page locks are released only at the end of the RSS (data manager)
call. A single RSS call deals with modifying the data and all relevant

indexes. This may involve waiting for many 1/0s and locks. This means that

deadlocks involving (physical) page locks alone or (physical) page locks and

4 The situation gets very complicated if operations like increment/decrement are supported with

high concurrency lock modes and indexes are allowed to be defined on fields on which such
operations are supported. We are currently studying those situations.

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

116 . C. Mohan et al

(logical) record/key locks are possible. They have been a major problem in

System R and SQL/DS.

Figure 7 depicts a situation at the time of a system failure which followed

the commit of two transactions. The dotted lines show how up to date the

states of pages PI and P2 are on nonvolatile storage with respect to logged

updates of those pages. During restart recovery, it must be realized that the

most recent log record written for PI, which was written by a transaction

which later committed, needs to be redone, and that there is nothing to be

redone for P2. This situation points to the need for having the LSN to relate

the state of a page on nonvolatile storage to a particular position in the log

and the need for knowing where restart redo pass should begin by noting

some information in the checkpoint record (see Section 5.4). For the example

scenario, the restart redo log scan should begin at least from the log record

representing the most recent update of PI by T2, since that update needs to

be redone.

It is not assumed that a single log record can always accommodate all the

information needed to redo or undo the update operation. There may be

instances when more than one record needs to be written for this purpose.

For example, one record may be written with the undo information and

another one with the redo information. In such cases, (1) the undo-only log

record should be written before the redo-only log record is written, and (2) it

is the LSN of the redo-only log record that should be placed in the page.LSN

field. The first condition is enforced to make sure that we do not have a

situation in which the redo-only record and not the undo-only record gets

written to stable storage before a failure, and that during restart recovery,

the redo of that redo-only log record is performed (because of the repeating

history feature) only to realize later that there isn’t an undo-only record to

undo the effect of that operation. Given that the undo-only record is written

before the redo-only record, the second condition ensures that we do not have

a situation in which even though the page in nonvolatile storage already

contains the update of the redo-only record, that same update gets redone

unnecessarily during restart recovery because the page contained the L SN of

the undo-only record instead of that of the redo-only record. This unnecessary

redo could cause integrity problems if operation logging is being performed.

There may be some log records written during forward processing that

cannot or should not be undone (prepare, free space inventory update, etc.

records). These are identified as redo-only log records. See Section 10.3 for a

discussion of this kind of situation for free space inventory updates.
Sometimes, the identity of the (data) record to be modified or read may not

be known before a (data) page is examined. For example, during an insert,
the record ID is not determined until the page is examined to find an empty

slot. In such cases, the record lock must be obtained after the page is latched.

To avoid waiting for a lock while holding a latch, which could lead to an

undetected deadlock, the lock is requested conditionally, and if it is not

granted, then the latch is released and the lock is requested unconditionally.

Once the unconditionally requested lock is granted, the page is latched again,
and any previously verified conditions are rechecked. This rechecking is

ACM Transactions on Database Systems, Vol 17, No. 1, March 1992.

ARIES: A Transaction Recovery Method . 117

/ElP
#“ PI

/’
/’ ‘!,’

/’ ‘!

Log
j;:’ LZN’”S ‘“O ‘:\,;

PI pi PI Commit
w

P2 Commit

o T1

/

Failure @ Checkpoint

a T2

Fig. 7. Database state as a failure.

required because, after the page was unlatched, the conditions could have

changed. The page_LSN value at the time of unlatching could be remem-

bered to detect quickly, on rematching, if any changes could have possibly

occurred. If the conditions are still found to be satisfied for performing the

update, it is performed as described above. Otherwise, corrective actions are

taken. If the conditionally requested lock is granted immediately, then the

update can proceed as before.

If the granularity of locking is a page or something coarser than a

page, then there is no need to latch the page since the lock on the page will

be sufficient to isolate the executing transaction. Except for this change, the

actions taken are the same as in the record-locking case. But, if the system is

to support unlocked or dirty reads, then, even with page locking, a transac-

tion that is updating a page should be made to hold the X latch on the page

so that readers who are not acquiring locks are assured physical consistency

if they hold an S latch while reading the page. Unlocked reads may also be

performed by the image copy utility in the interest of causing the least

amount of interference to normal transaction processing.

Applicability of ARIES is not restricted to only those systems in which

locking is used as the concurrency control mechanism. Even other concur-

rency control schemes that are similar to locking, like the ones in [2], could

be used with ARIES.

5.2 Total or Partial Rollbacks

To provide flexibility in limiting the extent of transaction rollbacks, the

notion of a sauepoint is supported [1, 31]. At any point during the execution

of a transaction, a savepoint can be established. Any number of savepoints

could be outstanding at a point in time. Typically, in a system like I)B2, a

savepoint is established before every SQL data manipulation command that

might perform updates to the data. This is needed to support SQL statement-

level atomicity. After executing for a while, the transaction or the system can

request the undoing of all the updates performed after the establishment of a

still outstanding savepoint. After such a partial rollback, the transaction can

ACM Transactions on Database Systems, Vol 17, No. 1, March 1992.

118 . C. Mohan et al.

continue execution and start going forward again (see Figure 3). A particu-

lar savepoint is no longer outstanding if a rollback has been performed to

that savepoint or to a preceding one. When a savepoint is established, the

LSN of the latest log record written by the transaction, called SaueLSN, is

remembered in virtual storage. If the savepoint is being established at the

beginning of the transaction (i.e., when it has not yet written a log record)

SaveLSN is set to zero. When the transaction desires to roll back to a

savepoint, it supplies the remembered SaveLSN. If the savepoint concept

were to be exposed at the user level, then we would expect the system not to

expose the SaveLSNs to the user but use some symbolic values or sequence

numbers and do the mapping to LSNS internally, as is done in IMS [42] and

INGRES [181.

Figure 8 describes the routine ROLLBACK which is used for rolling back

to a savepoint. The input to the routine is the SaveLSN and the TransID. No

locks are acquired during rollback, even though a latch is acquired during

undo activity on a page. Since we have always ensured that latches do not

get involved in deadlocks, a rolling back transaction cannot get involved in a

deadlock, as in System R and R* [31, 641 and in the algorithms of [1001.

During the rollback, the log records are undone in reverse chronological

order and, for each log record that is undone, a CLR is written. For ease of

exposition, assume that all the information about the undo action will fit in a

single CLR. It is easy to extend ARIES to the case where multiple CLRS need

to be written. It is possible that, when a logical undo is performed, some

non-CLRs are sometimes written, as described in [59, 62]. As mentioned

before, when a CLR is written, its UndoNxtLSN field is made to contain the

PrevLSN value in the log record whose undo caused this CLR to be written.

Since CLRS will never be undone, they don’t have to contain undo informa-

tion (e.g., before-images). Redo-only log records are ignored during rollback.

When a non-CLR is encountered, after it is processed, the next record to

process is determined by looking up its PrevLSN field. When a CLR is

encountered during rollback, the UndoNxtLSN field of that record is looked

up to determine the next log record to be processed. Thus, the UndoNxtLSN

pointer helps us skip over already undone log records. This means that if a

nested rollback were to occur, then, because of the UndoNxtLSN in CLRS,

during the second rollback none of the log records that were undone during

the first rollback would be processed again. Even though Figures 4, 5, and 13

describe partial rollback scenarios in conjunction with restart undos in the

various recovery methods, it should be easy to see how nested rollbacks are

handled efficiently by ARIES.

Being able to describe, via CLRS, the actions performed during undo gives

us the flexibility of not having to force the undo actions to be the exact

inverses of the original actions. In particular, the undo action could affect a

page which was not involved in the original action. Such logical undo

situations are possible in, for example, index management [621 and space

management (see Section 10.3).

ARIES’ guarantee of a bounded amount of logging during undo allows us to

deal safely with small computer systems situations in which a circular online

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992

ARIES: A Transaction Recovery Method . 119

*** \
u

,0
m

w

dF
m

m
~

<0
v
al
s-

0

m
c
m
L . .

Q

..
..
z
-J

x

m“.
nc.1

WE
%’ :

CIA
. . . .

>
!’. : !!

..!

00

Fl
I

..
5
-_l

z
&

‘n ..!

.

n“
WI-’-l

wM.-s
mztn

CL. ulc
-am

UWL
aJ-.J l..-

Crfu
u! It
0 ..2

.-l
=%
ql-

;E
%’2

al-

al

!!

ACM Transactions on Database Systems, Vol. 17, No 1, March 1992.

120 . C. Mohan et al

log might be used and log space is at a premium. Knowing the bound, we can

keep in reserve enough log space to be able to roll back all currently running

transactions under critical conditions (e. g., log space shortage). The imple-

mentation of ARIES in the 0S/2 Extended Edition Database Manager takes

advantage of this.

When a transaction rolls back, the locks obtained after the establishment

of the savepoint which is the target of the rollback may be released after the

partial or total rollback is completed. In fact, systems like DB2 do not and

cannot release any of the locks after a partial rollback because, after such a

lock release, a later rollback may still cause the same updates to be undone

again, thereby causing data inconsistencies. System R does release locks

after a partial rollback completes. But, because ARIES never undoes CLRS

nor ever undoes a particular non-CLR more than once, because of the

chaining of the CLRS using the UndoNxtLSN field, during a (partial) roll-

back, when the transaction’s very first update to a particular object is undone

and a CLR is written for it, the system can release the lock on that object.

This makes it possible to consider resolving deadlocks using partial rollbacks

rather than always resorting to total rollbacks.

5.3 Transaction Termination

Assume that some form of two-phase commit protocol (e. g., Presumed Abort

or Presumed Commit (see [63, 64])) is used to terminate transactions and that

the prepare record which is synchronously written to the log as part of the

protocol includes the list of update-type locks (IX, X, SIX, etc.) held by the

transaction. The logging of the locks is done to ensure that if a system failure

were to occur after a transaction enters the in-doubt state, then those locks

could be reacquired, during restart recovery, to protect the uncommitted

updates of the in-doubt transaction. 5 When the prepare record is written, the

read locks (e.g., S and IS) could be released, if no new locks would be

acquired later as part of getting into the prepare state in some other part of

the distributed transaction (at the same site or a different site). To deal with

actions (such as the dropping of objects) which may cause files to be erased,

for the sake of avoiding the logging of such objects’ complete contents, we

postpone performing actions like erasing files until we are sure that the

transaction is definitely committing [191. We need to log these pending

actions in the prepare record.

Once a transaction enters the in-doubt state, it is committed by writing an

end record and releasing its locks. Once the end record is written, if there are

any pending actions, they they must be performed. For each pending action

which involves erasing or returning a file to the operating system, we write

an OSfile. return redo-only log record. For ease of exposition, we assume that

this log record is not associated with any particular transaction and that this

action does not take place when a checkpoint is in progress.

5Another possibility is not to log the locks, but to regenerate the lock names during restart

recovery by examining all the log records written by the in-doubt transaction— see Sections 6.1
and 64, and item 18 (Section 12) for further ramifications of this approach

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

ARIES: A Transaction Recovery Method . 121

A transaction in the in-doubt state is rolled back by writing a rollback

record, rolling back the transaction to its beginning, discarding the pending

actions list, releasing its locks, and then writing the end record. Whether or

not the rollback and end records are synchronously written to stable storage

will depend on the type of two-phase commit protocol used. Also, the writing

of the prepare record may be avoided if the transaction is not a distributed

one or is read-only.

5.4 Checkpoints

Periodically, checkpoints are taken to reduce the amount of work that needs

to be performed during restart recovery. The work may relate to the extent of

the log that needs to be examined, the number of data pages that have to be

read from nonvolatile storage, etc. Checkpoints can be taken asynchronously

(i.e., while transaction processing, including updates, is going on). Such a

fuzzy checkpoint is initiated by writing a begin-chkpt record. Then the

end– chkpt record is constructed by including in it the contents of the normal

transaction table, the BP dirty-pages table, and any file mapping informa-

tion for the objects (like tablespace, indexspace, etc.) that are “open” (i.e., for

which BP dirty–pages table has entries). Only for simplicity of exposition, we

assume that all the information can be accommodated in a single end- chkpt

record. It is easy to deal with the case where multiple records are needed to

log this information. Once the end-chkpt record is constructed, it is written

to the log. Once that record reaches stable storage, the LSN of the begin-chkpt

record is stored in the master record which is in a well-known place on stable

storage. If a failure were to occur before the end–chkpt record migrates to

stable storage, but after the begin _chkpt record migrates to stable storage,

then that checkpoint is considered an incomplete checkpoint. Between the

begin--chkpt and end. chkpt log records, transactions might have written

other log records. If one or more transactions are likely to remain in the

in-doubt state for a long time because of prolonged loss of contact with

the commit coordinator, then it is a good idea to include in the end-chkpt

record information about the update-type locks (e.g., X, IX and SIX) held by

those transactions. This way, if a failure were to occur, then, during restart

recovery, those locks could be reacquired without having to access the

prepare records of those transactions.

Since latches may need to be acquired to read the dirty _pages table

correctly while gathering the needed information, it is a good idea to gather

the information a little at a time to reduce contention on the tables. For

example, if the dirty _pages table has 1000 rows, during each latch acquisi-

tion 100 entries can be examined. If the already examined entries change

before the end of the checkpoint, the recovery algorithms remain correct (see

Figure 10). This is because, in computing the restart redo point, besides

taking into account the minimum of the RecLSNs of the dirty pages included
in the end_chkpt record, ARIES also takes into account the log records that

were written by transactions since the beginning of the checkpoint. This is

important because the effect of some of the updates that were performed since

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

122 . C. Mohan et al.

the initiation of the checkpoint might not be reflected in the dirty page list

that is recorded as part of the checkpoint.

ARIES does not require that any dirty pages be forced to nonvolatile

storage during a checkpoint. The assumption is that the buffer manager is,

on a continuous basis, writing out dirty pages in the background using

system processes. The buffer manager can batch the writes and write multi -

ple pages in one 1/0 operation. [961 gives details about how DB2 manages its

buffer pools in this fashion. Even if there are some hot-spot pages which are

frequently modified, the buffer manager has to ensure that those pages are

written to nonvolatile storage reasonably often to reduce restart redo work,

just in case a system failure were to occur. To avoid the prevention of updates

to such hot-spot pages during an 1/0 operation, the buffer manager could

make a copy of each of those pages and perform the 1/0 from the copy. This

minimizes the data unavailability time for writes.

6. RESTART PROCESSING

When the transaction system restarts after a failure, recovery needs to be

performed to bring the data to a consistent state and ensure the atomicity

and durability properties of transactions. Figure 9 describes the RESTART

routine that gets invoked at the beginning of the restart of a failed system.

The input to this routine is the LSN of the master record which contains the

pointer to the begin .chkpt record of the last complete checkpoint taken

before site failure or shutdown. This routine invokes the routines for the

analysis pass, the redo pass and the undo pass, in that order. The buffer pool

dirty _pages table is updated appropriately. At the end of restart recovery, a

checkpoint is taken.

For high availability, the duration of restart processing must be as short as

possible. One way of accomplishing this is by exploiting parallelism during

the redo and undo passes. Only if parallelism is going to be employed is it

necessary to latch pages before they are modified during restart recovery.

Ideas for improving data availability by allowing new transaction processing

during recovery are explored in [601.

6.1 Analysis Pass

The first pass of the log that is made during restart recovery is the analysis

pass. Figure 10 describes the RESTART_ ANALYSIS routine that imple-

ments the analysis pass actions. The input to this routine is the LSN of the

master record. The outputs of this routine are the transaction table, which

contains the list of transactions which were in the in-doubt or unprepared

state at the time of system failure or shutdown; the dirty–pages table, which

contains the list of pages that were potentially dirty in the buffers when the

system failed or was shut down; and the RedoLSN, which is the location on

the log from which the redo pass must start processing the log. The only log

records that may be written by this routine are end records for transactions

that had totally rolled back before system failure, but for whom end records

are missing.

ACM ‘llansactlons on Database Systems, Vol. 17, No. 1, March 1992.

ARIES: ATransaction Recovery Method . 123

RE.STAR7(Master Addr);

Restart_Analys~ s(Master_Addr, Trans_Table, Dlrty_Pages, RedoLSN);

Restart_ Redo(RedoLSN, Trans_Table, Dlrty_Pages);

buffer pool Dirty_Pages table := Dirty_ Pages;

remove entries for non-buffer-resident pages from the buffer pool Dirty_ Pages table;

Restart_ Undo (Trans_Tabl e);

reacquire locks for prepared transactions;

checkpoint;

RETURN;

Fig.9. Pseudocode for restart.

During this pass, if a log record is encountered for a page whose identity

does not already appear in the dirty _pages table, then an entry is made in

the table with the current log record’s LSN as the page’s RecLSN. The

transaction table is modified to track the state changes of transactions and

also to note the LSN of the most recent log record that would need to be

undone if it were determined ultimately that the transaction had to be rolled

back. If an OSfile.return log record is encountered, then any pages belonging

to that file which are in the dirty-pages table are removed from the latter in

order to make sure that no page belonging to that version of that file is

accessed during the redo pass. The same file may be recreated and updated

later, once the original operation causing the file erasure is committed. In

that case, some pages of the recreated file will reappear in the dirty-pages

table later with RecLSN values greater than the end-of-log LSN when the

file was erased. The RedoLSN is the minimum RecLSN from the dirty-pages

table at the end of the analysis pass. The redo pass can be skipped if there

are no pages in the dirty _pages table.

It is not necessary that there be a separate analysis pass and, in fact, in the

ARIES implementation in the 0S/2 Extended Edition Database Manager

there is no analysis pass. This is especially because, as we mentioned before

(see also Section 6.2), in the redo pass, ARIES unconditionally redoes all

missing updates. That is, it redoes them irrespective of whether they were

logged by loser or nonloser transactions, unlike System R, SQL/DS and DB2.

Hence, redo does not need to know the loser or nonloser status of a transac-

tion. That information is, strictly speaking, needed only for the undo pass.

This would not be true for a system (like DB2) in which for in-doubt

transactions their update locks are reacquired by inferring the lock names

from the log records of the in-doubt transactions, as they are encountered

during the redo pass. This technique for reacquiring locks forces the RedoLSN

computation to consider the Begin _LSNs of in-doubt transactions which in

turn requires that we know, before the start of the redo pass, the identities of

the in-doubt transactions.

Without the analysis pass, the transaction table could be constructed from

the checkpoint record and the log records encountered during the redo pass.
The RedoLSN would have to be the minimum(minimum(RecLSN from the

dirty-pages table in the end.chkpt record), LSN(begin-chkpt record)). Sup-

pression of the analysis pass would also require that other methods be used to

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992

124 0 C. Mohan et al.

#~START_ANALYSIS(Mast er_Addr, Trans_’able, D1rty_pages, RedoLSN) ;

ln]tiallze the tables Trans_Table arm D1rty_Pages to empty;

Master_Rec := Read_Dl sk(Master_Addr) ;

Open_Log_ Scan (Master_Rec .Chkpt LSN) ; /’ open log scan at Beg)n_Chkpt record ‘/

LogRec := Next_ Logo; /* read)n the Begln_Chkpt record ‘/

LogRec := Next_ Logo; /* read log record followlng Begln_Chkpt */

WHILE NOT(End_of_Log) 00;

IF trans related record & LogRec.7ransi3 ‘/C- ;n Trans Table THEN /* not chkpt/OSflle ret Urn*/

Insert (Log Rec. Trans ID, ’U’ ,Log Rec. LSN, Log Rec. Frev LSN) l!,:o Trans Table; /* log ~ecord */

SELECT(LogRec. Type)
WHEN(’update’ I ‘compensation’) DO;

Trans_Tabl e[LogRec. Trans ID] .Last LSN := LogRt-:. LSN;

IF LogRec. Type = ‘update’ THEN

IF LogRec 1s undoable THEN Trans_Tahl e[.ogRec. TransIO] .UndoNxt LSN := LogRec. LSN;

ELSE Trans_Tabl e[LogRec. Trans IDU.UndoNxt LSN := LogRec. UndoNxt LSN;

/’ next record to undo 1s the one pointed to by this CLR */
IF LogRec is redoable & LogRec. ~age ID NOT IN DTrty_Pages THEN

insert (LogRec. Page ID, Log Rec. LSN) Into Llrty_Pages;

END; /’ WHEN(‘update’ I ‘compensation’) */
WHEN(‘Begln_Chkpt ‘) ; /* found an Incomplete checkpoint’s Begln_Chkpt record. ignore It */

WHEN(‘End_ Chkpt’) DO;

FOR each entry in LogRec. Tran_Table 00;

IF Trans ID NOT IN Trans_Table THEN 00;
Insert entry (Trans ID, State, Last LSN,UndoNxt LSN) In Trans Table;

ENO;

END; /* FOR ‘/

FOR each entry in LogRec.Dirty PagLst 00;

IF Pagel Ll NOT IN Olrty_Pages-THEN lrsert entry (Page IO, RecLSN) In Olrty_Pages;

ELSE set RecLSN of Dlrty_Pages entry to RecLSN In Olrty_PagLst;

END; /’ FOR ‘/

END; /’ WHEN(’End Chkpt’) */
WhEN(‘prepare’ \ ‘rollback’) DO;

IF LogRec. Type = ‘prepare’ THEk Trans_Tabl e[Log Rec. Transit]. State := ‘P’ ;

ELSE Trans Table [LogRec .Trans ID]. State := ‘U’;

Trans_Tabl~[LogRec .TransID] .Last LSN := LogRec. LSN;

ENO; /’ WHEN(’prepare’ I ‘roll bac<’) */
WHEN(‘end’) delete Trans_Table entry for which TransID = LogRec. Trans ID;

WHEN(‘OSfile_return’) delete from Olrty_?ages all pages of returned file;

ENO; /* SELECT ‘/

LogRec := Next_ Logo;

ENO; /’ WHILE ‘/
FOR EACH Trans Table entry with (State = ‘U’) & (Undo Nxt LSN = O) 00; /* rolled back trans */

write end re~ord and remove entry from Trans Table; I* w)th mlsslng end record *[

ENO; /* FOR */

RedoLSN := minimum(Di rty_Pages. RecLSN) ; /* return start posltlon for ~edo *I
RE-URN;

Fig. 10. Pseudocode for restart analysis.

avoid processing updates to files which have been returned to the operating

system. Another consequence is that the dirty .pages table used during the

redo pass cannot be used to filter update log records which occur after the

begin_ chkpt record.

6.2 Redo Pass

The second pass of the log that is made during restart recovery is the redo

pass. Figure 11 describes the RESTART.REDO routine that implements

ACM 11-ansact,ons on Database Systems, Vol. 17, No. 1, March 1992

ARIES: A Transaction Recovery Method . 125

RESTART-REDO(RedoLSN, Di rty_Pages);

Open_Log_Scan(RedoLSN); /* open log scan and :;s]tlon at restart pt *J

LojRec := Next_ Logo; /* read log record a: restart redo point */

WHILE NOT(End_of_Log) 00; /* look at all records till end of log */

IF LogRec. Type = (’update’ I ‘compensation’) & LogRec is redoable &

LogRec. PageIO IN Oirty-Pages & LogRec. LSN >= Oi rty_Pages[LogRec .~ageID] .Rec LSN
THEN 00; /’ a redoable page update. updated page mg-t not have made It to */

/* disk before sys failure. need to access cage and check Its LSN */
Page := fix&l atch(LogRec. PageIO, ‘X’);

IF Page. LSN < LogRec. LSN THEN 00 /* update not or cage. need to redo It *I

Redo_Update(Page, LogRec); /’ redo update */

Pag.?. LSN := LogRec. LSN;

END; [* redid update *I

ELSE Dlrty_Pages [LogRec. PageIO] .Rec LSN := Page. LSN+l; /’ .~date already on page *I
/’ update dirty page list with correct info. tr-s w1ll happen if this */
I* ~~gewaswritten to disk after :Re checkpt b.t before sYs failure */

unfix&unlatch (Page);

ENO;
LogRec

/“ LSN on ~age has to be checked */
: = Next_ Log (); /a read next 1og record */

ENO; /* reading till end of log */

RETURN;

Fig. 11. Pseudocode for restart redo,

the redo pass actions. The inputs to this routine are the RedoLSN and

the dirty-pages table supplied by the restart-analysis routine. No log

records are written by this routine. The redo pass starts scanning the

log records from the RedoLSN point. When a redoable log record is encoun-

tered, a check is made to see if the referenced page appears in the dirty-pages

table. If it does and if the log record’s LSN is greater than or equal to the

RecLSN for the page in the table, then it is suspected that the page state

might be such that the log record’s update might have to be redone. To

resolve this suspicion, the page is accessed. If the page’s LSN is found to be

less than the log record’s LSN, then the update is redone. Thus, the RecLSN

information serves to limit the number of pages which have to be examined.

This routine reestablishes the database state as of the time of system failure.

Even updates performed by loser transactions are redone. The rationale

behind this repeating of history is explained in Section 10.1. It turns out that

some of that redo of loser transactions’ log records may be unnecessary. In

[691 we have explored further the idea of restricting the repeating of history

to possibly reduce the number of pages which get dirtied during this pass.

Since redo is page-oriented, only the pages with entries in the dirty-pages

table may get modified during the redo pass. Only the pages listed in the

dirty-pages table will be read and examined during this pass. Not all the

pages that are read may require redo. This is because some of the pages that

were dirty at the time of the last checkpoint or which became dirty later

might have been written to nonvolatile storage before the system failure.

Because of reasons like reducing log volume and saving some CPU overhead,

we do not expect systems to write log records that identify the dirty pages

that were written to nonvolatile storage, although that option is available

and such log records can be used to eliminate the corresponding pages from

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992,

126 0 C. Mohan et al.

the dirty .pages table when those log records are encountered during the

analysis pass. Even if such records were always to be written after 1/0s

complete, a system failure in a narrow window could prevent them from

being written. The corresponding pages will not get modified during this

pass.

For brevity, we do not discuss here as to how, if a failure were to occur

after the logging of the end record of a transaction, but before the execution

of all the pending actions of that transaction, the remaining pending actions

are redone during the redo pass.

For exploiting parallelism, the availability of the information in the

dirty ..-pages table gives us the possibility of initiating asynchronous 1/0s in

parallel to read all these pages so that they may be available in the buffers

possibly before the corresponding log records are encountered in the redo

pass. Since updates performed during the redo pass are not logged, we can

also perform sophisticated things like building in-memory queues of log

records which potentially need to be reapplied (as dictated by the information

in the dirty .pages table) on a per page or group of pages basis and, as the

asynchronously initiated 1/0s complete and pages come into the buffer pool,

processing the corresponding log record queues using multiple processes.

This requires that each queue be dealt with by only one process. Updates to

different pages may get applied in different orders from the order represented

in the log. This does not violate any correctness properties since for a given

page all its missing updates are reapplied in the same order as before. These

parallelism ideas are also applicable to the context of supporting disaster

recovery via remote backups [731.

6.3 Undo Pass

The third pass of the log that is made during restart recovery is the undo

pass. Figure 12 describes the RESTART_ UNDO routine that implements

the undo pass actions. The input to this routine is the restart transaction

table. The dirty _pages table is not consulted during this undo pass. Also,

since history is repeated before the undo pass is initiated, the LSN on the

page is not consulted to determine whether an undo operation should be

performed or not. Contrast this with what we describe in Section 10.1 for

systems like DB2 that do not repeat history but perform selective redo.

The restart -undo routine rolls back losers transactions, in reverse chrono-

logical order, in a single sweep of the log. This is done by continually taking

the maximum of the LSNS of the next log record to be processed for each of

the yet-to-be-completely-undone loser transactions, until no loser transaction

remains to be undone. The next record to process for each transaction to be

rolled back is determined by an entry in the transaction table for each of

those transactions. The processing of the encountered log records is exactly

as we described before in Section 5.2. In the process of rolling back the

transactions, this routine writes CLRS. The buffer manager follows the usual

WAL protocol while writing dirty pages to nonvolatile storage during the

undo pass.

ACM TransactIons on Database Systems, Vol. 17, No. 1, March 1992

ARIES: A Transaction Recovery Method . 127

REST,.4//T-UMM(T rans-Tabl e);
.

WHILE EXISTS (Trans with State = ‘U’ in Trans_Table) DO;

UndoLSN := maxlmum(UndoNxtLSN) from Trans_Tab7e entries with State = ‘u’ ;

/’ pick UP UndoNxtLSN of unprepared trans with maximum UndoNxt LSN */
LogRec := Log-Read (UndoLSN); J* read log record to be undone or a CLR *J
SELECT(LogRec. Type)

WHEN(‘update’) DO;

IF LogRec is undoable THEN 00; f’ record needs undoing (not redo-only record) *I
Page := flx&latch(LogRec .Page IO, ‘X’);

Undo_Update(Page, LogRec);

Log_Wri te(’compensati on’ ,LogRec .Trans ID, Trans_Tabl e[LogRec. TransID] .LastLSN,

LogRec. Page ID, LogRec. PrevLSN, . . . ,LgLSN, Data); I* write CLR */
Page. LSN := LgLSN; /’ store LSN of CLR in page */
Trans_Tabl e[LogRec. TransID] .LastLSN := LgLSN; /’ store LSN of CLR in table ‘/
unfix&unl atch(Page);

ENO; I* undoable record case *I
ELSE; /* record cannot be undone - ignore it *I
Trans_Tabl e[LogRec. Trans IO] .UndoNxt LSN := LogRec. PrevLSN; /x next record to process is */

J* the one preceding this record in its backward chain *I

IF LogRec. PrevLSN = O THEN DO; /* have undone completely - write end */
Log_Wrlte(’end’ ,LogRec .Trans IO, Trans_Tabl e[LogRec. Transit]. LastLSN, . . .) ;
delete Trans_Table entry where TransID . LogRec. TransIO; /* delete trans from table */

ENO; I* trans fully undone */

ENO; /* WHEN(‘update’) */
WHEN(‘compensation’) Trans_Tabl e[LogRec. TransID] .UndoNxtLSN := LogRec. UndoNxt LSN;

/* pick UP addr of next record to examine */
WHEN(‘rollback’ [‘ prepare’) Trans_Tabl e[LogRec. TransIO] .UndoNxtLSN := LogRec. PrevLSN;

I* pick UP addr of next record to examine *I
ENO; /* SELECT “/

END; /* WHILE */
RETURN;

Fig. 12. Pseudocode for estart undo.

To exploit parallelism, the undo pass can also be performed using multiple

processes. It is important that each transaction be dealt with completely by a

single process because of the UndoNxtLSN chaining in the CLRS. This still

leaves open the possibility of writing the CLRS first, without applying the

undos to the pages (see Section 6.4 for problems in accomplishing this for

objects that may require logical undos), and then redoing the CLRS in

parallel, as explained in Section 6.2. In this fashion, the undo work of

actually applying the changes to the pages can be performed in parallel, even

for a single transaction.

Figure 13 depicts an example restart recovery scenario using ARIES. Here,

all the log records describe updates to the same page. Before the failure, the

page was written to disk after the second update. After that disk write, a

partial rollback was performed (undo of log records 4 and 3) and then the

transaction went forward (updates 5 and 6). During restart recovery,

the missing updates (3, 4, 4’, 3’, 5 and 6) are first redone and then the undos

(of 6, 5,2 and 1) are performed. Each update log record will be matched with

at most one CLR, regardless of how many times restart recovery is performed.

With ARIES, we have the option of allowing the continuation of loser

transactions after restart recovery is completed. Since ARIES repeats history

and supports the savepoint concept, we could, in the undo pass, roll back each

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

128 ● C. Mohan et al.

u
Wrl te !bdated

*
m

12344’3’5

REDO 344356

UNDO 6521

Fig. 13. Restart recovery example with ARIES.

loser only to its latest savepoint, instead of totally rolling back the loser

transactions. Later, we could resume the transaction by invoking its applica-

tion at a special entry point and passing enough information about the

savepoint from which execution is to be resumed. Doing this correctly would

require (1) the ability to generate lock names from the transaction’s log

records for its uncommitted, not undone updates, (2) reacquiring those locks

before completing restart recovery, and (3) logging enough information when-

ever savepoints are established so that the system can restore cursor positions,

application program state, and so on.

6.4 Selective or Deferred Restart

Sometimes, after a system failure, we may wish to restart the processing of

new transactions as soon as possible. Hence, we may wish to defer doing

some recovery work to a later point in time. This is usually done to reduce

the amount of time during which some critical data is unavailable. It is

accomplished by recovering such data first and then opening the system for

the processing of new transactions. In DB2, for example, it is possible to

perform restart recovery even when some of the objects for which redo and/or

undo work needs to be performed are offline when the system is brought up.

If some undo work needs to be performed for some loser transactions on those

offline objects, then DB2 is able to write the CLRS alone and finish handling

the transactions. This is possible because the CLRS can be generated based

solely on the information in the non-CLR records written during the forward

processing of the transactions [151. Because page (or minipage, for indexes) is

the smallest granularity of locking, the undo actions will be exact inverses

of the original actions. That is, there are no logical undos in DB2. DB2

remembers, in an exceptions table (called the database allocation (DBA)

table) that is maintained in the log and in virtual storage, the fact that those

offline objects need to be recovered when they are brought online, before they

are made accessible to other transactions [141. The LSN ranges of log records

to be applied are also remembered. Unless there are some in-doubt transac-

tions with uncommitted updates to those objects, no locks need to be acquired

to protect those objects since accesses to those objects will not be permitted

until recovery is completed. When those objects are brought online, then

ACM Transactions on Database Systems, Vol. 17, No 1, March 1992

ARIES: A Transaction Recovery Method . 129

recovery is performed efficiently by rolling forward using the log records in

the remembered ranges. Even during normal rollbacks, CLRS maybe written

for offline objects.

In ARIES also, we can take similar actions, provided none of the loser

transactions has modified one or more of the offline objects that may require

logical undos. This is because logical undos are based on the current state of

the object. Redos are not at all a problem, since they are always page-oriented.

For logical undos involving space management (see Section 10.3), generally

we can take a conservative approach and generate the appropriate CLRS. For

example, during the undo of an insert record operation, we can write a CLR

for the space-related update stating that the page is O% full. But for the high

concurrency, index management methods of [62] this is not possible, since the

effect of the logical undo (e.g., retraversing the index tree to do a key

deletion), in terms of which page maybe affected, is unpredictable; in fact, we

cannot even predict when page-oriented undo will not work and hence logical

undo is necessary.

It is not possible to handle the undos of some of the records of a transaction

during restart recovery and handle the undos (possibly, logical) of the rest of

the records at a later point in time, if the two sets of records are interspersed.

Remember that in all the recovery methods, undo of a transaction is done

in reverse chronological order. Hence, it is enough to remember, for

each transaction, the next record to be processed during the undo; from

that record, the PrevLSN and/or the UndoNxtLSN chain leads us to all the

other records to be processed.

Even under the circumstances where one or more of the loser transactions

have to perform, potentially logical, undos on some offline objects, if deferred

restart needs to be supported, then we suggest the following algorithm:

1. Perform the repeating of history for the online objects, as usual; postpone it for
the off/ine objects and remember the log ranges.

2. Proceed with the undo pass as usual, but stop undoing a loser transaction

when one of its log records is encountered for which a CLR cannot be

generated for the above reasons. Call such a transaction a stopped transaction.
But continue undoing the other, unstopped transactions.

3. For the stopped transactions, acquire locks to protect their updates which have
not yet been undone. This could be done as part of the undo pass by continuing

to follow the pointers, as usual, even for the stopped transactions and acquir-
ing locks based on the encountered non-CLRs that were written by the stopped
transactions.

4. When restart recovery is completed and later the previously offline objects are
made online, fkst repeat history based on the remembered log ranges and then
continue with the undoing of the stopped transactions. After each of the

stopped transactions is totally rolled back, release its still held locks.

5. Whenever an offline object becomes online, when the repeating of history is
completed for that object, new transactions can be allowed to access that object

in parallel with the further undoing of all of the stopped transactions that can
make progress.

The above requires the ability to generate lock names based on the informa-

tion in the update (non-GLR) log records. DB2 is doing that already for

in-doubt transactions.

ACM Transactions on Database Systems, Vol 17, No, 1, March 1992.

130 . C. Mohan et al.

Even if none of the objects to be recovered is offline, but it is desired that

the processing of new transactions start before the rollbacks of the loser

transactions are completed, then we can accommodate it by doing the follow-

ing: (1) first repeat history and reacquire, based on their log records, the

locks for the uncommitted updates of the loser and in-doubt transactions, and

(2) then start processing new transactions even as the rollbacks of the loser

transactions are performed in parallel. The locks acquired in step (1) are

released as each loser transaction’s rollback completes. Performing step (1)

requires that the restart RedoLSN be adjusted appropriately to ensure that

all the log records of the loser transactions are encountered during the redo

pass. If a loser transaction was already rolling back at the time of the system

failure, then, with the information obtained during the analysis pass for such

a transaction, it will be known as to which log records remain to be undone.

These are the log records whose LSNS are less than or equal to the

UndoNxtLSN of the transaction’s last CLR. Locks need to be obtained

during the redo pass only for those updates that have not yet been undone.

If a long transaction is being rolled back and we would like to release some

of its locks as soon as possible, then we can mark specially those log records

which represent the first update by that transaction on the corresponding

object (e. g., record, if record locking is in effect) and then release that object’s

lock as soon as the corresponding log record is undone. This works only

because we do not undo CLRS and because we do not undo the same non-CLR

more than once; hence, it will not work in systems that undo CLRS (e. g.,

Encompass, AS/400, DB2) or that undo a non-CLR more than once

(e.g., IMS). This early release of locks can be performed in ARIES during

normal transaction undo to possibly permit resolution of deadlocks using

partial rollbacks.

7. CHECKPOINTS DURING RESTART

In this section, we describe how the impact of failures on CPU processing and

1/0 can be reduced by, optionally, taking checkpoints during different stages

of restart recovery processing.

Analysis pass. By taking a checkpoint at the end of the analysis pass, we

can save some work if a failure were to occur during recovery. The entries

of the transaction table of this checkpoint will be the same as the entries of

the transaction table at the end of the analysis pass. The entries

of the dirty–pages list of this checkpoint will be the same as the entries

that the restart dirty-pages table contains at the end of the analysis pass.

This is different from what happens during a normal checkpoint. For the

latter, the dirty .pages list is obtained from the buffer pool (BP) dirty-pages

table.

Redo pass. At the beginning of the redo pass, the buffer manager (BM) is

notified so that, whenever it writes out a modified page to nonvolatile storage

during the redo pass, it will change the restart dirty _pages table entry for

that page by making the RecLSN be equal to the LSN of that log record such

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

ARIES: A Transaction Recovery Method . 131

that all log records up to that log record had been processed. It is enough if

BM manipulates the restart dirty-pages table in this fashion. BM does not

have to maintain its own dirty--pages table as it does during normal process-

ing. Of course, it should still be keeping track of what pages are currently in

the buffers. The above allow checkpoints to be taken any time during the

redo pass to reduce the amount of the log that would need to be redone if

a failure were to occur before the end of the redo pass. The entries of

the dirty-pages list of this checkpoint will be the same as the entries

of the restart dirty–pages table at the time of the checkpoint. The

entries of the transaction table of this checkpoint will be the same as

the entries of the transaction table at the end of the analysis pass. This

checkpointing is not affected by whether or not parallelism is employed in

the redo pass.

Undo pass. At the beginning of the undo pass, the restart dirty-pages

table becomes the BP dirty-pages table. At this point, the table is cleaned up

by removing those entries for which the corresponding pages are no longer in

the buffers. From then onward, the BP manager manipulates this table as it

does during normal processing–removing entries when pages are written to

nonvolatile storage, adding entries when pages are about to become dirty,

etc. During the undo pass, the entries of the transaction table are modified as

during normal undo. If a checkpoint is taken any time during the undo pass,

then the entries of the dirty .pages list of that checkpoint are the same as the

entries of the BP dirty–pages table at the time of the checkpoint. The entries

of the transaction table of this checkpoint will be the same as the entries of

the transaction table at that time.

In System R, during restart recovery, sometimes it may be required that a

checkpoint be taken to free up some physical pages (the shadow pages) for

more undo or redo work to be performed. This is another consequence of the

fact that history cannot be repeated in System R. This complicates the restart

logic since the view depicted in Figure 17 would no longer be true after

a restart checkpoint completes. The restart checkpoint logic and its effect

on a restart following a system failure during an earlier restart were consid-

ered too complex to be describable in [31]. ARIES is able to easily accommo-

date checkpoints during restart. While these checkpoints are optional in our

case, they may be forced to take place in System R.

8. MEDIA RECOVERY

We will assume that media recovery will be required at the level of a file or

some such (like DBspace, tablespace, etc.) entity. A fuzzy image copy (also

called a fuzzy archive dump) operation involving such an entity can be

performed concurrently with modifications to the entity by other transac-

tions. With such a high concurrency image copy method, the image copy

might contain some uncommitted updates, in contrast to the method of [52].

Of course, if desired, we could also easily produce an image copy with no

uncommitted updates. Let us assume that the image copying is performed

directly from the nonvolatile storage version of the entity. This means that

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

132 . C. Mohan et al.

more recent versions of some of the copied pages may be present in the

transaction system’s buffers. Copying directly from the nonvolatile storage

version of the object would usually be much more efficient since the device

geometry can be exploited during such a copy operation and since the buffer

manager overheads will be eliminated. Since the transaction system does not

have to be up for the direct copying, it may also be more convenient than

copying via the transaction system’s buffers. If the latter is found desirable

(e.g., to support incremental image copying, as described in [131), then it is

easy to modify the presented method to accommodate it. Of course, in that

case, some minimal amount of synchronization will be needed. For example,

latching at the page level, but no locking will be needed.

When the fuzzy image copy operation is initiated, the location of the

begin. chkpt record of the most recent complete checkpoint is noted and

remembered along with the image copy data. Let us call this checkpoint the

image copy checkpoint. The assertion that can be made based on this check-

point information is that all updates that had been logged in log records

with LSNS less than minimum(minimum(RecL SNs of dirt y pages of the

image-copied entity in the image copy checkpoint’s end.chkpt record),

LSN(begin_chkpt record of the image copy checkpoint)) would have been

externalized to nonvolatile storage by the time the fuzzy image copy opera-

tion began. Hence, the image-copied version of the entity would be at least as

up to date as of that point in the log. We call that point the media recovery

redo point. The reason for taking into account the LSN of the begin. chkpt

record in computing the media recovery redo point is the same as the one

given in Section 5.4 while discussing the computation of the restart redo

point.

When media recovery is required, the image-copied version of the entity is

reloaded and then a redo scan is initiated starting from the media recovery

redo point. During the redo scan, all the log records relating to the entity

being recovered are processed and the corresponding updates are applied,

unless the information in the image copy checkpoint record’s dirty .pages list

or the LSN on the page makes it unnecessary. Unlike during restart redo, if

a log record refers to a page that is not in the dirt y_pages list and the log

record’s LSN is greater than the LSN of the begin–chkpt log record of the

image copy checkpoint, then that page must be accessed and its LSN com-

pared to the log record’s LSN to check if the update must be redone. Once the

end of the log is reached, if there are any in-progress transactions, then those

transactions that had made changes to the entity are undone, as in the undo

pass of restart recovery. The information about the identities, etc. of such

transactions may be kept separately somewhere (e.g., in an exceptions table

such as the DBA table in DB2—see Section 6.4) or may be obtained by

performing an analysis pass from the last complete checkpoint in the log

until the end of the log.

Page-oriented logging provides recovery independence amongst objects.

Since, in ARIES, every database page’s update is logged separately, even if

an arbitrary database page is damaged in the nonvolatile storage and the

page needs recovery, the recovery can be accomplished easily by extracting

ACM Transactions on Database Systems, Vol. 17, NO 1, March 1992

ARIES: A Transaction Recovery Method . 133

an earlier copy of that page from an image copy and rolling forward that

version of the page using the log as described above. This is to be contrasted

with systems like System R in which, since for some pages’ updates (e. g.,

index and space management pages’) log records are not written, recovery

from damage to such a page may require the expensive operation of recon-

structing the entire object (e. g., rebuilding the complete index even when

only one page of an index is damaged). Also, even for pages for which logging

is performed explicitly (e.g., data pages in System R), if CLRS are not written

when undo is performed, then bringing a page’s state up to date by starting

from the image copy state would require paying attention to the log records

representing the transaction’ state (commit, partial or total rollback) to

determine what actions, if any, should be undone. If any transactions had

rolled back partially or totally, then backward scans of such transactions

would be required to see if they made any changes to the page being

recovered so that they are undone. These backward scans may result in

useless work being performed, if it turns out that some rolled back transac-

tion had not made any changes to the page being recovered. An alternative

would be to preprocess the log and place forward pointers to skip over rolled

back log records, as it is done in System R during the analysis pass of restart

recovery (see Section 10.2 and Figure 18).

Individual pages of the database may be corrupted not only because

of media problems but also because of an abnormal process termination

while the process is actively making changes to a page in the buffer pool and

before the process gets a chance to write a log record describing the changes.

If the database code is executed by the application process itself, which is

what performance-conscious systems like DB2 implement, such abnormal

terminations may occur because of the user’s interruption (e.g., by hitting

the attention key) or due to the operating system’s action on noting that the

process had exhausted its CPU time limit. It is generally an expensive

operation to put the process in an uninterruptable state before every page

update. Given all these circumstances, an efficient way to recover the cor-

rupted page is to read the uncorrupted version of the page from the non-

volatile storage and bring it up to date by rolling forward the page state

using all relevant log records for that page, The roll-forward redo scan of the

log is started from the RecLSN remembered for the buffer by the buffer

manager. DB2 does this kind of internal recovery operation automatically

[151. The corruption of a page is detected by using a bit in the page header.

The bit is set to ’1’ after the page is fixed and X-latched. Once the update

operation is complete (i. e., page updated, update logged and page LSN

modified), the bit is reset to ‘O’. Given this, whenever a page is latched, for

read or write, first this bit is tested to see if its value is equal to ‘l’, in which

case automatic page recovery is initiated. From an availability viewpoint, it

is unacceptable to bring down the entire transaction system to recover from

such a broken page situation by letting restart recovery redo all those logged

updates that were in the corrupted page but were missing in the uncorrupted

version of the page on nonvolatile storage. A related problem is to make sure

that for those pages that were left in the fixed state by the abnormally

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

134 . C. Mohan et al.

terminating process, unfix calls are issued by the transaction system. By

leaving enough footprints around before performing operations like fix, unfix

and latch, the user process aids system processes in performing the necessary

clean-ups.

For the variety of reasons mentioned in this section and elsewhere, writing

CLRS is a very good idea even if the system is supporting only page locking.

This is to be contrasted with the no-CLRs approach, suggested in [521, which

supports only page locking.

9. NESTED TOP ACTIONS

There are times when we would like some updates of a transaction to be

committed, irrespective of whether the transaction ultimately commits or

not. We do need the atomicit y property for these updates themselves. This is

illustrated in the context of file extension. After a transaction extends a file

which causes updates to some system data in the database, other transactions

may be allowed to use the extended area prior to the commit of the extending

transaction. If the extending transaction were to roll back, then it would not

be acceptable to undo the effects of the extension. Such an undo might very

well lead to a loss of updates performed by the other committed transactions.

On the other hand, if the extension-related updates to the system data in the

database were themselves interrupted by a failure before their completion, it

is necessary to undo them, These kinds of actions have been traditionally

performed by starting independent transactions, called top actions [511. A

transaction initiating such an independent transaction waits until that inde-

pendent transaction commits before proceeding. The independent transaction

mechanism is, of course, vulnerable to lock conflicts between the initiating

transaction and the independent transaction, which would be unacceptable.

In ARIES, using the concept of a nested top action, we are able to support

the above requirement very efficiently, without having to initiate indepen-

dent transactions to perform the actions. A nested top action, for our pur-

poses, is taken to mean any subsequence of actions of a transaction which

should not be undone once the sequence is complete and some later action

which is dependent on the nested top action is logged to stable storage,

irrespective of the outcome of the enclosing transaction.

A transaction execution performing a sequence of actions which define a

nested top action consists of the following steps:

(1) ascertaining the position of the current transaction’s last log record;

(2) logging the redo and undo information associated with the actions of the

nested top action; and

(3) on completion of the nested top action, writing a dummy CLR whose

UndoNxtLSN points to the log record whose position was remembered in

step (l).

We assume that the effects of any actions like creating a file and their

associated updates to system data normally resident outside the database are

externalized, before the dummy CLR is written. When we discuss redo, we

are referring to only the system data that is resident in the database itself.

ACM Transactions on Database Systems, Vol 17, No 1, March 1992,

ARIES: A Transaction Recovery Method . 135

*

Fig. 14. Nested top action example.

Using this nested top action approach, if the enclosing transaction were to

roll back after the completion of the nested top action, then the dummy CLR

will ensure that the updates performed as part of the nested top action are

not undone. If a system failure were to occur before the dummy CLR is

written, then the incomplete nested top action will be undone since the

nested top action’s log records are written as undo-redo (as opposed to

redo-only) 10g records. This provides the desired atomicity property for the

nested top action. Unlike for the normal CLRS, there is nothing to redo when

a dummy CLR is encountered during the redo pass. The dummy CLR in a

sense can be thought of as the commit record for the nested top action. The

advantage of our approach is that the enclosing transaction need not wait for

this record to be forced to stable storage before proceeding with its subse-

quent actions. 6 Also, we do not pay the price of starting a new transaction.

Nor do we run into lock conflict problems. Contrast this approach with the

costly independent-transaction approach.

Figure 14 gives an example of a nested top action consisting of the actions

3, 4 and 5. Log record 6’ acts as the dummy CLR. Even though the enclosing

transaction’s activity is interrupted by a failure and hence it needs to be

rolled back, 6’ ensures that the nested top action is not undone.

It should be emphasized that the nested top action implementation relies

on repeating history. If the nested top action consists of only a single update,

then we can log that update using a single redo-only log record and avoid

writing the dummy CLR. Applications of the nested top action concept in the

context of a hash-based storage method and index management can be found

in [59, 62].

10. RECOVERY PARADIGMS

This section describes some of the problems associated with providing fine-

granularity (e.g., record) locking and handling transaction rollbacks. Some

additional discussion can be found in [97]. Our aim is to show how certain

features of the existing recovery methods caused us difficulties in accomplish-

ing our goals and to motivate the need for certain features which we had to

include in ARIES. In particular, we show why some of the recovery paradigms

of System R, which were developed in the context of the shadow page

6 The dummy CLR may have to be forced if some urdogged updates may be performed later by

other transactions which depended on the nested top action having completed.

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

136 . C. Mohan et al.

technique, are inappropriate when WAL is to be used and there is a need for

high levels of concurrency. In the past, one or more of those System R

paradigms have been adopted in the context of WAL, leading to the design of

algorithms with limitations and/or errors [3, 15, 16, 52, 71, 72, 78, 82, 881.

The System R paradigms that are of interest are:

— selective redo during restart recovery.

— undo work preceding redo work during restart recovery.

— no logging of updates performed during transaction rollback (i.e., no

CLRS).

— no logging of index and space management information changes.

—no tracking of page state on page itself to relate it to logged updates (i.e.,

no LSNS on pages).

10.1 Selective Redo

The goal of this subsection is to introduce the concept of selective redo that

has been implemented in many systems and to show the problems that it

introduces in supporting fine-granularity locking with WAL-based recovery.

The aim is to motivate why ARIES repeats history.

When transaction systems restart after failures, they generally perform

database recovery updates in 2 passes of the log: a redo pass and an

undo pass (see Figure 6). System R first performs the undo pass and then the

redo pass. As we will show later, the System R paradigm of undo preceding

redo is incorrect with WAL and fine-granularity locking. The WAL-based

DB2, on the other hand, does just the opposite. During the redo pass, System

R redoes only the actions of committed and prepared (i.e., in-doubt) transac-

tions [311. We call this selectiue redo. While the selective redo paradigm of

System R intuitively seems to be the efficient approach to take, it has many

pitfalls, as we discuss below,

Some WAL-based systems, such as DB2, support only page locking and

perform selective redo [151. This approach will lead to data inconsistencies in

such systems, if record locking were to be implemented. Let us consider a

WAL technique in which each page contains an LSN as described before.

During the redo pass, the page LSN is compared to the LSN of a log record

describing an update to the page to determine whether the log record’s

update needs to be reapplied to the page. If the page LSN is less than the

log record’s LSN, then the update is redone and the page’s LSN is set to

the log record’s LSN (see Figure 15). During the undo pass, if the page LSN

is less than the L SN of the log record to be undone, then no undo action is

performed on the page. Otherwise, undo is performed on the page. Whether

or not undo needs to be actually performed on the page, a CLR describ-

ing the updates that would have been performed as part of the undo oper-

ation is always written, when the transaction’s actions are being rolled back.

The CLR is written, even when the page does not contain the update, just to

make media recovery simpler and not force it to handle rolled back updates

in a special way. Writing the CLR when an undo is not actually performed on

the page turns out to be necessary also when handling a failure of the system

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992,

ARIES: A Transaction Recovery Method . 137

T1 Is a Nonloser T2 is a Loser

REDO Redoes Update 30

UNDO Undoes Update 20

Fig. 15. Selective redo with WAL—problem-free scenario.

during restart recovery. This will happen, if there was an update U2 for page

PI which did not have to be undone, but there was an earlier update U1 for

PI which had to be undone, resulting in U1’ (CLll for Ul) being written and

Pi’s LSN being changed to the LSN of l.Jl’ (> LSN of U2). After that, if PI

were to be written to nonvolatile storage before a system failure interrupts

the completion of this restart, then, during the next restart, it would appear

as if P1 contains the update U2 and an attempt would be made to undo it. On

the other hand, if U2’ had been written, then there would not be any

problem. It should be emphasized that this problem arises even when only

page locking is used, as is the case with DB2 [15].

Given these properties of the selective redo WAL-based method under

discussion, we would lose track of the state of a page with respect to a losing

(in-progress or in-rollback) transaction in the situation where the page modi-

fied first by the losing transaction (say, update with LSN 20 by T2) was

subsequently modified by a nonloser transaction’s update (say, update with

LSN 30 by Tl) which had to be redone. The latter would have pushed

the LSN of the page beyond the value established by the loser. So, when the

time comes to undo the loser, we would not know if its update needs to be

undone or not. Figures 15 and 16 illustrate this problem with selective

redo and fine-granularity locking. In the latter scenario, not redoing

the update with LSN 20 since it belongs to a loser transaction, but redoing

the update with LSN 30 since it belongs to a nonloser transaction, causes the

undo pass to perform the undo of the former update even though it is not

present in the page. This is because the undo logic relies on the page_LSN

value to determine whether or not an update should be undone (undo if

page_LSN is greater than or equal to log records LSN). By not repeating

history, the page-LSN is no longer a true indicator of the current state of the

page.

Undoing an action even when its effect is not present in a page will be

harmless only under certain conditions; for example, with physical/byte-

oriented locking and logging, as they are implemented in IMS [76], VAX

DBMS and VAX Rdb/VMS [81], and other systems [6], there is no automatic

reuse of freed space, and unique keys for all records. With operation logging,

data inconsistencies will be caused by undoing an original operation whose

effect is not present in the page.

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

138 . C. Mohan et al.

LSN

0T1
Vr! fe !Mated

~, F“,2 I’Jq ,,

i .

f

.

10 20 30 Commit

T1 is a Nonloser T2 is a Loser

REDORedoes Update 30

UNDO Will Try to Undo 20 Even
Though Update Is NOT on Page

ERROR?!

Fig. 16. Selective redo with WAL—problem scenario

Reversing the order of the selective redo and the undo passes will not solve

the problem either. This incorrect approach is suggested in [3]. If the undo

pass were to precede the redo pass, then we might lose track of which actions

need to be redone. In Figure 15, the undo of 20 would make the page LSN

become greater than 30, because of the writing of a CLR and the assignment

of that CLR’S LSN to the page. Since, during the redo pass, a log record’s

update is redone only if the page-LSN is less than the log record’s LSN, we

would not redo 30 even though that update is not present on the page. Not

redoing that update would violate the durability and atomicity properties of

transactions.

The use of the shadow page technique by System R makes it unnecessary

to have the concept of page.LSN in that system to determine what needs to

be undone and what needs to be redone. With the shadow page technique,

during a checkpoint, an action consistent version of the database, called the

shadow uersion, is saved on nonvolatile storage. Updates between two check-

points create a new version of the updated page, thus constituting the current

version of the database (see Figure 1). During restart, recovery is performed

from the shadow version, and shadowing is done even during restart recov-

ery. As a result, there is no ambiguity about which updates are in the

database and which are not. All updates logged after the last checkpoint are

not in the database, and all updates logged before the checkpoint are in the

database.7 This is one reason the System R recovery method functions

correct] y even with selective redo. The other reason is that index and space

management changes are not logged, but are redone or undone logically. 8

7 This simple view, as it is depicted in Figure 17, is not completely accurate–see Section 10.2.
s In fact, if index changes had been logged, then selective redo would not have worked. The
problem would have come from structure modifications (like page split) which were performed
after the last checkpoint by loser transactions which were taken advantage of later by transac-
tions which ultimately committed. Even if logical undo were performed (if necessary), if redo was

page oriented, selective redo would have caused problems. To make it work, the structure
modifications could have been performed using separate transactions. Of course, this would have
been very expensive. For an alternate, efficient solution, see [62].

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

ARIES: A Transaction Recovery Method . 139

As was described before, ARIES does not perform selective redo, but

repeats history. Apart from allowing us to support fine-granularity locking,

repeating history has another beneficial side effect. It gives us the ability to

commit some actions of a transaction irrespective of whether the transaction

ultimately commits or not, as was described in Section 9.

10.2 Rollback State

The goal of this subsection is to discuss the difficulties introduced by roll-

backs in tracking their progress and how writing CLRS that describe updates

performed during rollbacks solves some of the problems. While the concept of

writing CLRS has been implemented in many systems and has been around

for a long time, there has not really been, in the literature, a significant

discussion of CLRS, problems relating to them and the advantages of writing

them. Their utility and the fundamental role that they play in recovery have

not been well recognized by the research community. In fact, whether undone

actions could be undone and what additional problems these would present

were left as open questions in [56]. In this section and elsewhere in this

paper, in the appropriate contexts, we try to note all the known advantages of

writing CLRS. We summarize these advantages in Section 13.

A transaction may totally or partially roll back its actions for any num-

ber of reasons. For example, a unique key violation will cause only the roll-

back of the update statement causing the violation and not of the entire

transaction. Figure 3 illustrates a partial roll back. Supporting partial

rollback [1, 31], at least internally, if not also at the application level, is a

very important requirement for present-day transaction systems. Since

a transaction may be rolling back when a failure occurs and since some of the

effects of the updates performed during the rollback might have been written

to nonvolatile storage, we need a way to keep track of the state of progress of

transaction rollback. It is relatively easy to do this in System R. The only

time we care about the transaction state in System R is at the time

a checkpoint is taken. So, the checkpoint record in System R keeps track

of the next record to be undone for each of the active transactions, some of

which may already be rolling back. The rollback state of a transaction at the

time of a system failure is unimportant since the database changes performed

after the last checkpoint are not uisible in the database during restart.

That is, restart recovery starts from the state of the database as of the last

checkpoint before the system failure —this is the shadow version of the

database at the time of system failure. Despite this, since CLRS are

never written, System R needs to do some special processing to handle those

committed or in-doubt transactions which initiated and completed partial

rollbacks after the last checkpoint. The special handling is to avoid the need

for multiple passes over the log during the redo pass. The designers wanted

to avoid redoing some actions only to have to undo them a little later with a

backward scan, when the information about a partial rollback having occurred

is encountered.

Figure 18 depicts an example of a restart recovery scenario for System R.

All log records are written by the same transaction, say T1. In the checkpoint

ACM Transactions on Database Systems, Vol 17, No. 1, March 1992.

140 . C. Mohan et al

Last

‘“g~

Uncommitted Committed Or In-Doubt
Changes Need Changes Need
Undo Redo

Fig. 17. Simple view of recovery processing in System R

~..----_- . .
12 3 4 5,,.’-6 7 8 ::jg

Log

@ Checkpoint

Fig. 18. Partial rollback handling in System R,

record, the information for T1 points to log record 2 since by the time the

checkpoint was taken log record 3 had already been undone because of a

partial rollback. System R not only does not write CLRS, but it also does not

write a separate log record to say that a partial rollback took place. Such

information must be inferred from the breakage in the chaining of the log

records of a transaction. Ordinarily, a log record written by a transaction

points to the record that was most recently written by that transaction via

the PrevLSN pointer. But the first forward processing log record written

after the completion of a partial rollback does not follow this protocol. When

we examine, as part of the analysis pass, log record 4 and notice that its

Prev-LSN pointer is pointing to 1, instead of the immediately preceding log

record 3, we conclude that the partial rollback that started with the undo of 3

ended with the undo of 2. Since, during restart, the database state from

which recovery needs to be performed is the state of the database as of the

last checkpoint, log record 2 definitely needs to be undone. Whether 1 needs

to be undone or not will depend on whether T1 is a losing transaction or not.

During the analysis pass it is determined that log record 9 points to log

record 5 and hence it is concluded that a partial rollback had caused the undo

of log records 6, 7, and 8. To ensure that the rolled back records are not

redone during the redo pass, the log is patched by putting a forward pointer

during the analysis pass in log record 5 to make it point to log record 9.

If log record 9 is a commit record then, during the undo pass, log record 2

will be undone and during the redo pass log records 4 and 5 will be redone.

Here, the same transaction is involved both in the undo pass and in the redo

pass. To see why the undo pass has to precede the redo pass in System R,g

g In the other systems, because of the fact that CLRS are written and that, sometimes, page
LSNS are compared with log record’s LSNS to determine whether redo needs to be performed or
not, the redo pass precedes the undo pass— see the Section “10. 1. Selectlve Redo” and Figure 6.

ACM Transactions on Database Systems, Vol 17, No. 1, March 1992

ARIES: A Transaction Recovery Method . 141

consider the following scenario: Since a transaction that deleted a record is

allowed to reuse that record’s ID for a record inserted later by the same

transaction, in the above case, a record might have been deleted because of

the partial rollback, which had to be dealt with in the undo pass, and that

record’s ID might have been reused in the portion of the transaction that is

dealt with in the redo pass. To repeat history with respect to the original

sequence of actions be fore the failure, the undo must be performed before the

redo is performed.

If 9 is neither a commit record nor a prepare record, then the transaction

will be determined to be a loser and during the undo pass log records 2

and 1 will be undone. In the redo pass, none of the records will be redone.

Since CLRS are not written in System R and hence the exact way in which

one transaction’s undo operations were interspersed with other transactions’

forward processing or undo actions is not known, the processing, for a given

page as well as across different pages during restart may be quite different

from what happened during normal processing (i.e., repeating history is

impossible to guarantee). Not logging index changes in System R also further

contributes to this (see footnote 8). These could potentially cause some space

management problems such as a split that did not occur during normal

processing being required during the resiart redo or undo processing (see also

Section 5.4). Not writing CLRS also prevents logging of redo information

from being done physically (i.e., the operation performed on an object has to

be logged—not the after-image created by the operation). Let us consider an

example: A piece of data has value O after the last checkpoint. Then,

transaction T1 adds 1, T2 adds 2, T1 rolls back, and T2 commits. If T1 and T2

had logged the after-image for redo and the operation for undo, then these

will be a data integrity problem because after recovery the data will have the

value 3 instead of 2. ln this case, in System F?, undo for T1 is being

accomplished by not redoing its update. Of course, System R did not support

the fancy lock mode which would be needed to support 2 concurrent updates

by different transactions to the same object. Allowing the logging of redo

information physically will let redo recovery be performed very efficiently

using dumb logic. This does not necessarily mean byte-oriented logging; that

will depend on whether or not flexible storage management is used (see

Section 10.3). Allowing the logging of undo information logically will permit

high concurrency to be supported (see [59, 621 for examples). ARIES supports

these.

WAL-based systems handle this problem by logging actions performed

during rollbacks using CLRS. So, as far as recovery is concerned, the state of

the data is always “marching” forward, even if some original actions are

being rolled back. Gontrast this with the approach, suggested in [521, in

which the state of the data, as denoted by the LSN, is “pushed” back during

rollbacks. That method works only with page level (or coarser granularity)

locking. The immediate consequence of writing CLRS is that, if a transaction

were to be rolled back, then some of its original actions are undone more than

once and, worse still, the compensating actions are also undone, possibly

more than once. This is illustrated in Figure 4, in which a transaction had

started rolling back even before the failure of the system. Then, during

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

142 . C. Mohan et al.

recovery, the previously written CLRS are undone and already undone non-

CLRS are undone again. ARIES avoids such a situation, while still retaining

the idea of writing CLRS. Not undoing CLRS has benefits relating to dead-

lock management and early release of locks on undone objects also (see item

22, Section 12, and Section 6.4). Additional benefits of CLRS are discussed in

the next section and in [691. Some were already discussed in the Section 8.

Unfortunately, recovery methods like the one suggested in [921 do not

support partial rollbacks. We feel that this is an important drawback of such

methods.

10.3 Space Management

The goal of this subsection is to point out the problems involved in space

management when finer than page level granularity of locking and varying

length records are to be supported efficiently.

A problem to be dealt with in doing record locking with flexible storage

management is to make sure that the space released by a transaction during

record deletion or update on a data page is not consumed by another

transaction until the space-releasing transaction is committed. This problem

is discussed briefly in [761. We do not deal with solutions to this space

reservation problem here, The interested reader is referred to [50]. For index

updates, in the interest of increasing concurrency, we do not want to pre-

vent the space released by one transaction from being consumed by another

before the commit of the first transaction. The way undo is dealt with under

such circumstances using a logical undo approach is described in [62].

Since flexible storage management was a goal, it was not desirable to do

physical (i.e., byte-oriented) locking and logging of data within a page, as

some systems do (see [6, 76, 811). That is, we did not want to use the address

of the first byte of a record as the lock name for the record. We did not want

to identify the specific bytes that were changed on the page. The logging and

locking have to be logical within a page. The record’s lock name looks

something like (page #, slot #) where the slot # identifies a location on the

page which then points to the actual location of the record. The log record

describes how the contents of the data record got changed. The consequence

is that garbage collection that collects unused space on a page does not have

to lock or log the records that are moved around within the page. This gives

us the flexibility of being able to move records around within a page to store

and modify variable length records efficiently. In systems like IMS, utilities

have to be run quite frequently to deal with storage fragmentation. These

reduce the availability y of data to users.

Figure 19 shows a scenario in which not keeping track of the actual page

state (by, e.g., storing the LSN in the nonvolatile storage version of the page)

and attempting to perform redo from an earlier point in the log leads to

problems when flexible storage management is used. Assuming that all

updates in Figure 19 involve the same page and the same transaction, an

insert requiring 200 bytes is attempted on a page which has only 100 bytes of

free space left in it. This shows the need for exact tracking of page state

ACM TransactIons on Database Systems, Vol. 17, No. 1, March 1992

ARIES: A Transaction Recovery Method . 143

Redo Attempted
From Here.

Page Full It Fails Due to Page State
As of Here Lack of Space On Disk

.Og

Oelete Insert Oelete Insert
/’

Commit
RI R2 R2 R3
Free 200 Consume Free 200 Consume
Bytes 200 Bytes Bytes 100 Bytes

Fig. 19. Wrong redo point-causing problem with space for insert.

using an LSN to avoid attempting to redo operations which are already

applied to the page.

Typically, each file containing records of one or more relations has a

few pages called free space inventory pages (FSIPS). They are called space

map pages (SMPS) in DB2. Each FSIP describes the space information

relating to many data or index pages. During a record insert operation,

possibly based on information obtained from a clustering index about the

location of other records with the same key (or closely related keys) as that of

the new record, one or more FSIPS are consulted to identify a data page with

enough free space in it for inserting the new record. The FSIP keeps only

approximate information (e.g., information such as that at least 25% of the

page is full, at least 5090 is full, etc.) to make sure that not every space-re-

leasing or -consuming operation to a data page requires an update to the

space information in the corresponding FSIP. To avoid special handling of

the recovery of the FSIPS during redo and undo, and also to provide recovery

independence, updates to the FSIPS must also be logged.

Transaction T1 might cause the space on the page to change from 23% full

to 27% full, thereby requiring an update to the FSIP to change it from O%

full to 25% full. Later, T2 might cause the space to go to 35% full, which does

not require an update to the FSIP. Now, if T1 were to roll back, then the

space would change to 3 l% full and this should not cause an update to the

FSIP. If T1 had written its FSIP change log record as a redoiundo record,

then T1’s rollback would cause the FSIP entry to say O% full, which would be

wrong, given the current state of the data page. This scenario points to the

need for logging the changes to the FSIP as redo-only changes and for the

need to do logical undos with respect to the free space inventory updates.

That is, while undoing a data page update, the system has to determine

whether that operation causes the free space information to change and if it

does cause a change, then update the FSIP and write a CLR which describes

the change to the FSIP. We can easily construct an example in which a

transaction does not perform an update to the FSIP during forward process-

ing, but needs to perform an update to the FSIP during rollback. We can also

construct an example in which the update performed during forward process-

ing is not the exact inverse of the update during the rollback.

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

144 @ C. Mohan et al

10.4 Multiple LSNS

Noticing the problems caused by having one LSN per page when trying to

support record locking, it may be tempting to suggest that we track each

object’s state precisely by assigning a separate LSN to each object. Next we

explain why it is not a good idea.

DB2 already supports a granularity of locking that is less than a page.

This happens in the case of indexes where the user has the option of

requiring DB2 to physically divide up each leaf page of the index into 2 to 16

minipages and do locking at the granularity of a minipage [10, 12]. The way

DB2 does recovery properly on such pages, despite not redoing actions of loser

transactions during the redo pass, is as follows. DB2 tracks each minipage’s

state separately by associating an LSN with each minipage, besides having

an LSN for the leaf page as a whole. Whenever a minipage is updated, the

corresponding log record’s LSN is stored in the minipage LSN field. The page

LSN is set equal to the maximum of the minipage LSNS. During undo, it is

the minipage LSN and not the page LSN that is compared to the log record’s

LSN to determine if that log record’s update needs to be actually undone on

the minipage. This technique, besides incurring too much space overhead

for storing the LSNS, tends to fragment (and therefore waste) space avail-

able for storing keys. Further, it does not carry over conveniently to the case

of record and key locking, especially when varying length objects have to be

supported efficiently. Maintaining LSNS for deleted objects is cumbersome at

best. We desired to have a single state variable (LSN) for each page, even

when minipage locking is being done, to make recovery, especially media

recovery, very efficient. The simple technique of repeating history during

restart recovery before performing the rollback of loser transactions turns out

to be sufficient, as we have seen in ARIES. Since DB2 physically divides up a

page into a fixed number of minipages, no special technique is needed to

handle the space reservation problem. Methods like the one proposed in [61]

for fine-granularity locking do not support varying length objects (atoms in

the terminology of that paper).

11. OTHER WAL-BASED METHODS

In the following, we summarize the properties of some other significant

recovery methods which also use the WAL protocol. Recovery methods based

on the shadow page technique (like that of System R) are not considered here

because of their well-known disadvantages, e.g., very costly checkpoints,

extra nonvolatile storage space overhead for the shadow copies of data,

disturbing the physical clustering of data, and extra 1/0s involving page map

blocks (see the previous sections of this paper and [31] for additional discus-

sions). First, we briefly introduce the different systems and recovery methods

which we will be examining in this section. Next, we compare the different

methods along various dimensions. We have been informed that the DB-cache

recovery method of [25] has been implemented with significant modifications

by Siemens. But, because of lack of information about the implementation,

we are unable to include it here.

ACM Transactions on Database Systems, Vol 17, No. 1, March 1992

ARIES: A Transaction Recovery Method . 145

IBM’s IMS/VS [41, 42, 43, 48, 53, 76, 80, 941, which is a hierarchical

database system, consists of two parts: IMS Full Function (FF), which is

relatively flexible, and IMS Fast Path [28, 42, 93], which is more efficient but

has many restrictions (e.g., no support for secondary indexes). A single IMS

transaction can access both FF and Fast Path (FP) data. The recovery and

buffering methods used by the two parts have many differences. In FF,

depending on the database types and the operations, the granularities of the

locked objects vary. FP supports two kinds of databases: main storage

databases (MSDBS) and data entry databases (DEDBs). MSDBS support only

fixed length records, but FP provides the mechanisms (i.e., field calls) to

make the lock hold times be the minimum possible for MSDB records. Only

page locking is supported for DEDBs. But, DEDBs have many high-

availability and parallelism features and large database support. IMS, with

XRF, provides hot-standby support [431. IMS, via global locking, also sup-

ports data sharing across two different systems, each with its own buffer

pOOk [80, 941.

DB2 is IBM’s relational database system for the MVS operating system.

Limited distributed data access functions are available in DB2. The DB2

recovery algorithm has been presented in [1, 13, 14, 15, 19]. It supports

different locking granularities (tablespace, table and page for data, and

minipage and page for indexes) and consistency levels (cursor stability,

repeatable read) [10, 11, 12]. DB2 allows logging to be turned off temporarily

for tables and indexes only during utility operations like loading and

reorganizing data. A single transaction can access both DB2 and IMS data

with atomicity. The Encompass recovery algorithm [4, 37] with some changes

has been incorporated in Tandem’s NonStop SQL [95]. With NonStop, Tan-

dem provides hot-standby support for its products. Both Encompass and

NonStop SQL support distributed data access. They allow multisite updates

within a single transaction using the Presumed Abort two-phase commit

protocol of [63, 64]. NonStop SQL supports different locking granularities

(file, key prefix and record) and consistency levels (cursor stability, repeat-

able read, and unlocked or dirty read). Logging can be turned off temporarily

or permanently even for nonutility operations on files.

Schwarz [881 presents two different recovery methods based on value

logging (a la IMS) and operation logging. The two methods have several

differences, as will be outlined below. The value logging method (VLM),

which is much less complex than the operation logging method (OLM), has

been implemented in CMU’S Camelot [23, 901.

Buffer management. Encompass, NonStop SQL, OLM, VLM and DB2

have adopted the steal and no-force policies. During normal processing, VLM

and OLM write a fetch record whenever a page is read from nonvolatile

storage and an end-write record every time a dirty page is successfully

written back to nonvolatile storage. These are written during restart process-

ing also in OLM alone. These records help in identifying the super set of

dirty pages that might have been in the buffer pool at the time of system

failure. DB2 has a sophisticated buffer manager [10, 961, and writes a log

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

146 . C. Mohan et al.

record whenever a tablespace or an indexspace is opened, and another record

whenever such a space is closed. The close operation is performed only

after all the dirty pages of the space have been written back to nonvolatile

storage. DB2’s analysis pass uses these log records to bring the dirty objects

information up to date as of the failure.

For MSDBS, IMS FP does deferred updating. This means that a transaction

does not see its own MSDB updates. For DEDBs, a no-steal policy is used. FP

writes, at commit time, all the log records for a given transaction in a single

call to the log manager. After placing the log records in the log buffers (not

on stable storage), the MSDB updates are applied and the MSDB record locks

are released. The MSDB locks are released even before the commit log record

is placed on stable storage. This is how FP minimizes the amount of time

locks are held on the MSDB records. The DEDB locks are transferred to

system processes. The log manager is given time to let it force the log records

to stable storage ultimately (i.e., group commit logic is used—see [28]). After

the logging is completed (i.e., after the transaction has been committed),

all the pages of the DEDBs that were modified by the transaction are forced

to nonvolatile storage using system processes which, on completion of the

1/0s, release the DEDB locks. This does not result in any uncommitted

updates being forced to nonvolatile storage since page locking with a no-steal

policy is used for DEDBs. The use of separate processes for writing the DEDB

pages to nonvolatile storage is intended to let the user process go ahead with

the next transaction’s processing as soon as possible and also to gain paral-

lelism for the 1/0s. IMS FF follows the steal and force policies. Before

committing a transaction, IMS FF forces to nonvolatile storage all the pages

that were modified by that transaction. Since finer than page locking is

supported by FF, this may result in some uncommitted data being placed on

nonvolatile storage. Of course, all the recovery algorithms considered in this

section force the log during commit processing.

Normal checkpointing. Normal checkpoints are the ones that are taken

when the system is not in the restart recovery mode. OLM and VLM quiesce

all activity in the system and take, similar to System R, an operation

consistent (not necessarily transaction consistent) checkpoint. The contents

of the checkpoint record are similar to those of ARIES. DB2, IMS, NonStop

SQL, and Encompass do take (fuzzy) checkpoints even when update and

logging activities are going on concurrently. DB2’s checkpoint actions are

similar to what we described for ARIES. The major difference is that, instead

of writing the dirty _pages table, it writes the dirty objects (table spaces,

indexspaces, etc.) list with a RecLSN for each object [961. For MSDBS alone,

IMS writes their complete contents alternately on one of two files on non-

volatile storage during a checkpoint. Since deferred updating is performed for

MSDBS, no uncommitted changes will be present in their checkpointed

version. Also, it is ensured that no partial committed changes of a transac-

tion are present. Care is needed since the updates are applied after the

commit record is written. For DEDBs, any committed updated pages which

have not yet been written to nonvolatile storage are included in the check-

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992

ARIES: A Transaction Recovery Method . 147

point records. These together avoid the need for examining, during restart

recovery, any log records written before the checkpoint for FP data recovery.

Encompass and NonStop SQL might force some dirty pages to nonvolatile

storage during a checkpoint. They enforce the policy that requires that a

page once dirtied must be written to nonvolatile storage before the comple-

tion of the second checkpoint following the dirtying of the page. Because of

this policy, the completion of a checkpoint may be delayed waiting for the

completion of the writing of the old dirty pages.

Partial rollbacks. Encompass, NonStop SQL, OLM and VLM do not sup-

port partial transaction rollback. From Version 2 Release 1, IMS supports

partial rollbacks. In fact, the savepoint concept is exposed at the application

program level. This support is available only to those applications that do not

access FP data. The reason FP data is excluded is because FP does not write

undo data in its log records and because deferred updating is performed for

MSDBS. DB2 supports partial rollbacks for internal use by the system to

provide statement-level atomicity [1].

Compensation log records. Encompass, NonStop SQL, DB2, VLM, OLM

and IMS FF write CLRS during normal rollbacks. During a normal rollback,

IMS FP does not write CLRS since it would not have written any log records

for changes to such data until the decision to rollback is made. This is

because FP is always the coordinator in two-phase commit and hence it never

needs to get into the prepared state. Since deferred updating is performed for

MSDBS, the updates kept in pending (to-do) lists are discarded at rollback

time. Since a no-steal policy is followed and page locking is done for DEDBs,

the modified pages of DEDBs are simply purged from the buffer pool at

rollback time. Encompass, NonStop SQL, DB2 and IMS (FF and FP) write

CLRS during restart rollbacks also. During restart recovery, IMS FP might

find some log records written by (at the most) one in-progress transaction.

This transaction must have been in commit processing—i.e., about to com-

mit, with some of its log records already having been written to nonvolatile

storage— when the system went down. Even though, because of the no-steal

policy, none of the corresponding FP updates would have been written to

nonvolatile storage and hence there would be nothing to be undone, IMS FP

writes CLRS for such records to simplify media recovery [931. Since the FP log

records contain only redo information, just to write these CLRS, for which the

undo information is needed, the corresponding unmodified data on non-

volatile storage is accessed during restart recovery. This should illustrate to

the reader that even with a no-steal policy and without supporting partial

rollbacks, there are still some problems to be dealt with at restart for FP. Too

often, people assume that no-steal eliminates many problems. Actually, it

has many shortcomings.

VLM does not write CLRS during restart rollbacks. As a result, a bounded

amount of logging will occur for a rolled back transaction, even in the face of

repeated failures during restart. In fact, CLRS are written only for normal

rollbacks. Of course, this has some negative implications with respect to

media recovery. OLM writes CLRS for undos and redos performed during

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

148 . C. Mohan et al

restart (called undomodify and redomodify records, respectively). This is
done to deal with failures during restart. OLM might write multiple undo-

modify and redomodify records for a given update record if failures inter-

rupt restart processing. No CLRS are generated for CLRS themselves.

During restart recovery, Encompass and DB2 undo changes of CLRS, thus

causing the writing of CLRS for CLRS and the writing of multiple, identical

CLRS for a given record written during forward or restart processing. In the

worst case, the number of log records written during repeated restart failures

grows exponentially. Figure 5 shows how ARIES avoids this problem. IMS

ignores CLRS during the undo pass and hence does not write CLRS for them.

The net result is that, because of multiple failures, like the others, IMS

might wind up writing multiple times the same CLR for a given record

written during forward processing. In the worst case, the number of log

records written by IMS and OLM grows linearly. Because of its force policy,

IMS will need to redo the CLR’S updates only during media recovery.

Log record contents. IMS FP writes only redo information (i.e., after-image

of records) because of its no-steal policy. As mentioned before, IMS does value

(or state) logging and physical (i.e., byte-range) locking (see [761). Ih’ls FF

logs both the undo information and the redo information. Since IMS does not

undo CLRS’ updates, CLRS need to have only the redo information. For

providing the XRF hot-standby support, IMS includes enough information in

its log records for the backup system to track the lock names of updated

objects. IMS FP also logs the address of the buffer occupied by a modified

page. This information is used during a backup’s takeover or restart recovery

to reduce the amount of redo work of DEDBs’ updates. Encompass and VLM

also log complete undo and redo information of updated records. DB2 and

NonStop SQL log only the before- and after-images of the updated fields.

OLM logs the description of the update operation. The CLRS of Encompass

and DB2 need to contain both the redo and the undo information since their

CLRS might be undone. OLM periodically logs an operation consistent snap-

shot of each object. OLM’S undomodify and redomodify records contain no

redo or undo information but only the L SNS of the corresponding modify

records. But OLM’S modify, redomodify and undomodify records also contain

a page map which specifies the set of pages where parts of the modified object

reside.

Page overhead. Encompass and NonStop SQL use one LSN on each page
to keep track of the state of the page. VLM uses no LSNS, but OLM uses one

LSN. DB2 uses one LSN and IMS FF no LSN. Not having the LSN in IMS

FF and VLM to know the exact state of a page does not cause any problems

because of IMS’ and VLM’S value logging and physical locking attributes. It

is acceptable to redo an already present update or undo an absent update.

IMS FP uses a field in the pages of DEDBs as a version number to correctly
handle redos after all the data sharing systems have failed [671. When DB2

divides an index leaf page into minipages then it uses one LSN for each

minipage, besides one LSN for the page as a whole.

ACM Transactions on Database Systems, Vol 17, No. 1, March 1992.

ARIES: A Transaction Recovery Method . 149

Log passes during restart recovery. Encompass and NonStop SQL make

two passes (redo and then undo), and DB2 makes three passes (analysis, redo,

and then undo— see Figure 6). Encompass and NonStop SQL start their

redo passes from the beginning of the penultimate successful checkpoint.

This is sufficient because of the buffer management policy of writing to disk a

dirty page within two checkpoints after the page became dirty. They also

seem to repeat history before performing the undo pass. They do not seem to

repeat history if a backup system takes over when a primary system fails [41.

In the case of a takeover by a hot-standby, locks are first reacquired for the

losers’ updates and then the rollbacks of the losers are performed in parallel

with the processing of new transactions. Each loser transaction is rolled back

using a separate process to gain parallelism. DB2 starts its redo scan from

that point, which is determined using information recorded in the last

successful checkpoint, as modified by the analysis pass. As mentioned before,

DB2 does selective redo (see Section 10.1).

VLM makes one backward pass and OLM makes three passes (analysis,

undo, and then redo). Many lists are maintained during OLM’S and VLM’S

passes. The undomodify and redomodify log records of OLM are used only to

modify these lists, unlike in the case of the CLRS written in the other

systems. In VLM, the one backward pass is used to undo uncommitted

changes on nonvolatile storage and also to redo missing committed changes.

No log records are written during these operations. In OLM, during the undo

pass, for each object to be recovered, if an operation consistent version of

the object does not exist on nonvolatile storage, then it restores a snapshot

of the object from the snapshot log record so that, starting from a consistent

version of the object, (1) in the remainder of the undo pass any to-be-undone

updates that precede the snapshot log record can be undone logically, and (2)

in the redo pass any committed or in-doubt updates (modify records only) that

follow the snapshot record can be redone logically. This is similar to the

shadowing performed in [16, 781 using a separate log—the difference is that

the database-wide checkpointing is replaced by object-level checkpointing and

the use of a single log instead of two logs.

IMS first reloads MSDBS from the file that received their contents during

the latest successful checkpoint before the failure. The dirty DEDB buffers

that were included in the checkpoint records are also reloaded into the same

buffers as before. This means that, during the restart after a failure, the

number of buffers cannot be altered. Then, it makes just one forward pass

over the log (see Figure 6). During that pass, it accumulates log records in

memory on a per-transaction basis and redoes, if necessary, completed trans-

actions’ FP updates. Multiple processes are used in parallel to redo the

DEDB updates. As far as FP is concerned, only the updates starting from

the last checkpoint before the failure are of interest. At the end of that one

pass, in-progress transactions’ FF updates are undone (using the log records

in memory), in parallel, using one process per transaction. If the space

allocated in memory for a transaction’s log records is not enough, then a

backward scan of the log will be performed to fetch the needed records during

that transaction’s rollback. In the XRF context, when a hot-standby IMS

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

150 . C. Mohan et al.

takes over, the handling of the loser transactions is similar to the way

Tandem does it. That is, rollbacks are performed in parallel with new

transaction processing.

Page forces during restart. OLM, VLM and DB2 force all dirty pages at

the end of restart. Information on Encompass and NonStop SQL is not

available.

Restart checkpoints. IMS, DB2, OLM and VLM take a checkpoint only at

the end of restart recovery. Information on Encompass and NonStop SQL is

not available.

Restrictions on data. Encompass and NonStop SQL require that every

record have a unique key. This unique key is used to guarantee that if an

attempt is made to undo a logged action which was never applied to the

nonvolatile storage version of the data, then the latter is realized and

the undo fails. In other words, idempotence of operations is achieved

using the unique key. IMS in effect does byte-range locking and logging and

hence does not allow records to be moved around freely within a page. This

results in the fragmentation and the less efficient usage of free space. IMS

imposes some additional constraints with respect to FP data. VLM requires

that an object’s representation be divided into fixed length (less than one

page sized), unrelocatable quanta. The consequences of these restrictions are

similar to those for IMS.

[2, 26, 56] do not discuss recovery from system failures, while the theory of

[33] does not include semantically rich modes of locking (i.e., operation

logging). In other sections of this paper, we have pointed out the problems

with some of the other approaches that have been proposed in the literature.

12. ATTRIBUTES OF ARIES

ARIES makes few assumptions about the data or its model and has several

advantages over other recovery methods. While ARIES is simple, it possesses

several interesting and useful properties. Each of most of these properties

has been demonstrated in one or more existing or proposed systems, as

summarized in the last section. However, we know of no single system,

proposed or real, which has all of these properties. Some of these properties of

ARIES are:

(1) Support for finer than page-level concurrency control and multiple granu-
larities of locking. ARIES supports page-level and record-level locking in

a uniform fashion. Recovery is not affected by what the granularity of

locking is. Depending on the expected contention for the data, the appropri-

ate level of locking can be chosen. It also allows multiple granularities of

locking (e.g., record, table, and tablespace-level) for the same object (e. g.,

tablespace). Concurrency control schemes other than locking (e.g., the
schemes of [2]) can also be used.

(2) Flexible buffer management during restart and normal processing. As
long as the write-ahead logging protocol is followed, the buffer manager is

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992

ARIES: A Transaction Recovery Method . 151

free to use any page replacement policy. In particular, dirty pages of

incomplete transactions can be written to nonvolatile storage before those

transactions commit (steal policy). Also, it is not required that all pages

dirtied by a transaction be written back to nonvolatile storage before the

transaction is allowed to commit (i.e., no-force policy). These properties

lead to reduced demands for buffer storage and fewer 1/0s involving

frequently updated (hot-spot) pages. ARIES does not preclude the possibili-

ties of using deferred-updating and force-at-commit policies and benefiting

from them. ARIES is quite flexible in these respects.

(3) Minimal space overhead–only one LSN per page. The permanent

(excluding log) space overhead of this scheme is limited to the storage

required on each page to store the LSN of the last logged action performed

on the page. The LSN of a page is a monotonically increasing value.

(4) No constraints on data to guarantee idempotence of redo or undo of

logged actions. There are no restrictions on the data with respect to

unique keys, etc, Records can be of variable length. Data can be moved

around within a page for garbage collection. Idempotence of operations is

ensured since the LSN on each page is used to determine whether an

operation should be redone or not.

(5) Actions taken during the undo of an update need not necessarily be the

exact inverses of the actions taken during the original update. Since CLRS

are being written during undos, any differences between the inverses of the

original actions and what actually had to be done during undo can be

recorded in the former. An example of when the inverse might not be

correct is the one that relates to the free space information (like at least

10% free, 20% free) about data pages that are maintained in space map

pages. Because of finer than page-level granularity locking, while no free

space information change takes place during the initial update of a page by

a transaction, a free space information change might occur during the undo

(from 20% free to 10% free) of that original change because of intervening

update activities of other transactions (see Section 10.3).

Other benefits of this attribute in the context of hash-based storage

methods and index management can be found in [59, 621.

(6) Support for operation logging and novel lock modes. The changes made

to a page can be logged in a logical fashion. The undo information and the

redo information for the entire object need not be logged. It suffices if the

changed fields alone are logged. Since history is repeated, for increment or

decrement kinds of operations before- and after-images of the field are not

needed. Information about the type of operation and the decrement or

increment amount is enough. Garbage collection actions and changes to

some fields (e.g., amount of free space) of that page need not be logged.

Novel lock modes based on commutativity and other properties of opera-

tions can be supported [2, 26, 881.

(7) Even redo-only and undo-only records are accommodated. While it may
be efficient (single call to the log component) sometimes to include the

undo and redo information about an update in the same log record, at other

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

152 . C. Mohan et al.

times it may be efficient (from the original data, the undo record can be

constructed and, after the update is performed in-place in the data record,

from the updated data, the redo record can be constructed) and/or neces-

sary (because of log record size restrictions) to log the information in two

different records. ARIES can handle both situations. Under these condi-

tions, the undo record must be logged before the redo record.

(8) Support for partial and total transaction rollback. Besides allowing

transactions to be rolled back totally, ARIES allows the establishment of

savepoints and the partial rollback of transactions to such savepoints.

Without the support for partial rollbacks, even logically recoverable errors

(e.g., unique key violation, out-of-date cached catalog information in a

distributed database system) will require total rollbacks and result in

wasted work.

(9) Support for objects spanning multiple pages. Objects can span multiple

pages (e.g., an IMS “record” which consists of multiple segments may be

scattered over many pages). When an object is modified, if log records are

written for every page affected by that update, ARIES works fine. ARIES

itself does not treat multipage objects in any special way.

(10) Allows files to be acquired or returned, any time, from or to the operating

system. ARIES provides the flexibility of being able to return files dy-

namically and permanently to the operating system (see [19] for the

detailed description of a technique to accomplish this). Such an action is

considered to be one that cannot be undone. It does not prevent the same

file from being reallocated to the database system. Mappings between

objects (table spaces, etc.) and files are not required to be defined statically

as in System R.

(11) Some actions of a transaction maybe committed even if the transaction as

a whole is rolled back. This refers to the technique of using the concept of

a dummy CLR to implement nested top actions. File extension has been

given as an example situation which could benefit from this. Other applica-

tions of this technique, in the context of hash-based storage methods and
index management, can be found in [59, 621.

(12) Efficient checkpoints (including during restart recovery). By supporting

fuzzy checkpointing, ARIES makes taking a checkpoint an efficient opera-

tion. Checkpoints can be taken even when update activities and logging

are going on concurrently. Permitting checkpoints even during restart

processing will help reduce the impact of failures during restart recovery.
The dirty .pages information written during checkpointing helps reduce

the number of pages which are read from nonvolatile storage during the

redo pass.

(13) Simultaneous processing of multiple transactions in forward processing

and /or in rollback accessing same page. Since many transactions could

simultaneously be going forward or rolling back on a given page, the level

of concurrent access supported could be quite high. Except for the short

duration latching which has to be performed any time a page is being

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

ARIES: A Transaction Recovery Method . 153

physically modified or examined, be it during forward processing or during

rollback, rolling back transactions do not affect one another in any unusual

fashion.

(14) No locking or deadlocks during transaction rollback. Since no locking

is required during transaction rollback, no deadlocks will involve transac-

tions that are rolling back. Avoiding locking during rollbacks simplifies

not only the rollback logic, but also the deadlock detector logic. The

deadlock detector need not worry about making the mistake of choosing a

rolling back transaction as a victim in the event of a deadlock (cf. System R

and R* [31, 49, 64]).

(15) Bounded logging during restart in spite of repeated failures or of nested

rollbacks. Even if repeated failures occur during restart, the number of

CLRS written is unaffected. This is also true if partial rollbacks are nested.

The number of log records written will be the same as that written at the

time of transaction rollback during normal processing. The latter again is

a fixed number and is, usually, equal to the number of undoable records

written during the forward processing of the transaction. No log records

are written during the redo pass of restart.

(16) Permits exploitation of parallelism and selective/deferred processing for

faster restart. Restart can be made faster by not doing all the needed 1/0s

synchronously one at a time while processing the corresponding log record.

ARIES permits the early identification of the pages needing recovery and

the initiation of asynchronous parallel 1/0s for the reading in of those

pages. The pages can be processed concurrently as they are brought into

memory during the redo pass. Undo parallelism requires complete han-

dling of a given transaction by a single process. Some of the restart

processing can be postponed to speed up restart or to accommodate offline

devices. If desired, undo of loser transactions can be performed in parallel

with new transaction processing.

(17) Fuzzy image copying (archive dumping) for media recovery. Media

recovery and image copying of the data are supported very efficiently. To

take advantage of device geometry, the actual act of copying can even be

performed outside the transaction system (i.e., without going through the

buffer pool). This can happen even while the latter is accessing and

modifying the information being copied. During media recovery only one

forward traversal of the log is made.

(18) Continuation of loser transactions after a system restart. Since ARIES

repeats history and supports the savepoint concept, we could, in the undo

pass, instead of totally rolling back the loser transactions, roll back each

loser only to its latest savepoint. Locks must be acquired to protect the

transaction’s uncommitted, not undone updates. Later, we could resume

the transaction by invoking its application at a special entry point and

passing enough information about the savepoint from which execution is to

be resumed.

(19) Only one backward traversal of log during restart or media recovery.

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

154 . C. Mohan et al

Both during media recovery and restart recovery one backward traversal of

the log is sufficient. This is especially important if any portion of the log is

likely to be stored in a slow medium like tape.

(20) Need only redo information in compensation log records. Since

compensation records are never undone they need to contain only redo

information. So, on the average, the amount of log space consumed during

a transaction rollback will be half the space consumed during the forward

processing of that transaction.

(21) Support for distributed transactions. ARIES accommodates distributed

transactions. Whether a given site is a coordinator or a subordinate site

does not affect ARIES.

(22) Early release of locks during transaction rollback and deadlock resolu-

tion using partial rollbacks. Because ARIES never undoes CLRS and

because it never undoes a particular non-CLR more than once, during a

(partial) rollback, when the transaction’s very first update to a particular

object is undone and a CLR is written for it, the system can release the lock

on that object. This makes it possible to consider resolving deadlocks using

partial rollbacks.

It should be noted that ARIES does not prevent the shadow page technique

from being used for selected portions of the data to avoid logging of only undo

information or both undo and redo information. This may be useful for

dealing with long fields, as is the case in the 0S/2 Extended Edition

Database Manager. In such instances, for such data, the modified pages

would have to be forced to nonvolatile storage before commit. Whether or not

media recovery and partial rollbacks can be supported will depend on what is

logged and for which updates shadowing is done.

13. SUMMARY

In this paper, we presented the ARIES recovery method and showed why

some of the recovery paradigms of System R are inappropriate in the WAL

context. We dealt with a variety of features that are very important in

building and operating an industrial-strength transaction processing system.

Several issues regarding operation logging, fine-granularity locking, space

management, and flexible recovery were discussed. In brief, ARIES accom-

plishes the goals that we set out with by logging all updates on a per-page

basis, using an LSN on every page for tracking page state, repeating history

during restart recovery before undoing the loser transactions, and chaining
the CLRS to the predecessors of the log records that they compensated. Use of

ARIES is not restricted to the database area alone. It can also be used for

implementing persistent object-oriented languages, recoverable file systems

and transaction-based operating systems. In fact, it is being used in the

QuickSilver distributed operating system [401 and in a system designed to

aid the backing up of workstation data on a host [441.
In this section, we summarize as to which specific features of ARIES lead

to which specific attributes that give us flexibility and efficiency.

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992

ARIES: A Transaction Recovery Method . 155

Repeating history exactly, which in turn implies using LSNS and writing

CLRS during undos, permits the following, irrespective of whether CLRS are

chained using the UndoNxtLSN field or not:

(1) Record level locking to be supported and records to be moved around

within a page to avoid storage fragmentation without the moved

records having to be locked and without the movements having to be

logged.

(2) Use only one state variable, a log sequence number, per page.

(3) Reuse of storage released by one transaction for the same transaction’s

later actions or for other transactions’ actions once the former commits,

thereby leading to the preservation of clustering of records and the

efficient usage of storage.

(4) The inverse of an action origianlly performed during forward processing

of a transaction to be different from the action(s) performed during the

undo of that original action (e. g., class changes in the space map pages).

That is, logical undo with recovery independence is made possible.

(5) Multiple transactions may undo on the same page concurrently with

transactions going forward.

(6) Recovery of each page independently of other pages or of log records

relating to transaction state, especially during media recovery.

(7) If necessary, the continuation of transactions which were in progress at

the time of system failure.

(8) Selective or deferred restart, and undo of losers concurrently with new

transaction processing to improve data availability.

(9) Partial rollback of transactions.

(10) Operation logging and logical logging of changes within a page. For

example, decrement and increment operations may be logged, rather

than the before- and after-images of modified data.

Chaining, using the UndoNxtLSN field, CLRS to log records written during

forward processing permits the following, provided the protocol of repeating

history is also followed:

(1) The avoidance of undoing CLRS’ actions, thus avoiding writing CLRS for

CLRS. This also makes it unnecessary to store undo information in CLRS.

(2) The avoidance of the undo of the same log record written during forward
processing more than once.

(3) As a transaction is being rolled back, the ability to release the lock on an

object when all the updates to that object had been undone. This may be

important while rolling back a long transaction or while resolving a

deadlock by partially rolling back the victim.

(4) Handling partial rollbacks without any special actions like patching the
log, as in System R.

(5) Making permanent, if necessary via nested top actions, some of the

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

156 . C. Mohan et al.

changes made by a transaction, irrespective of whether the transaction

itself subsequently rolls back or commits.

Performing the analysis pass before repeating history permits the following:

(1) Checkpoints to be taken any time during the redo and undo passes of

recovery.

(2) Files to be returned to the operating system dynamically, thereby allow-

ing dynamic binding between database objects and files.

(3) Recovery of file-related information concurrently with the recovery of

user data, without requiring special treatment for the former.

(4) Identifying pages possibly requiring redo, so that asynchronous parallel

1/0s could be initiated for them even before the redo pass starts.

(5) Exploiting opportunities to avoid redos on some pages by eliminating

those pages from the dirty .pages table on noticing, e.g., that some empty

pages have been freed.

(6) Exploiting opportunities to avoid reading some pages during redo, e.g., by

writing end. write records after dirt y pages have been written to non-

volatile storage and by eliminating those pages from the dirty .pages

table when the end. write records are encountered.

(7) Identifying the transactions in the in-doubt and in-progress states so that

locks could be reacquired for them during the redo pass to support

selective or deferred restart, the continuation of loser transactions after

restart, and undo of loser transactions in parallel with new transaction

processing.

13.1 Implementations and Extensions

ARIES forms the basis of the recovery algorithms used in the IBM Research

prototype systems Starburst [871 and QuickSilver [401, in the University of

Wisconsin’s EXODUS and Gamma database machine [201, and in the IBM

program products 0S/2 Extended Edition Database Manager [71 and Work-

station Data Save Facility/VM [441. One feature of ARIES, namely repeating
history, has been implemented in DB2 Version 2 Release 1 to use the concept

of nested top action for supporting segmented tablespaces. A simulation

study of the performance of ARIES is reported in [981. The following conclu-

sions from that study are worth noting: “Simulation results indicate the

success of the ARIES recovery method in providing fast recovery from
failures, caused by long intercheckpoint intervals, efficient use of page LSNS,

log LSNS, and RecLSNs avoids redoing updates unnecessarily, and the actual

recovery load is reduced skillfully. Besides, the overhead incurred by the

concurrency control and recovery algorithms on transactions is very low, as

indicated by the negligibly small difference between the mean transaction

response time and the average duration of a transaction if it ran alone in a

never failing system. This observation also emerges as evidence that the

recovery method goes well with concurrency control through fine-granularity

locking, an important virtue. ”

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992

ARIES: A Transaction Recovery Method . 157

We have extended ARIES to make it work in the context of the nested

transaction model (see [70, 85]). Based on ARIES, we have developed new

methods, called ARIES /KVL, ARIES/IM and ARIES /LHS, to efficiently

provide high concurrency and recovery for B ‘-tree indexes [57, 62] and for

hash-based storage structures [59]. We have also extended ARIES to restrict

the amount of repeating of history that takes place for the loser transactions

[691. We have designed concurrency control and recovery algorithms, based
on ARIES, for the N-way data sharing (i. e., shared disks) environment [65,

66,67, 68]. Commit.LSN, a method which takes advantage of the page.LSN

that exists in every page to reduce the locking, latching and predicate

reevaluation overheads, and also to improve concurrency, has been presented

in [54, 58, 60]. Although messages are an important part of transaction

processing, we did not discuss message logging and recovery in this paper.

ACKNOWLEDGMENTS

We have benefited immensely from the work that was performed in the

System R project and in the DB2 and IMS product groups. We have learned

valuable lessons by looking at the experiences with those systems. Access to

the source code and internal documents of those systems was very helpful.

The Starburst project gave us the opportunity to begin from scratch and

design some of the fundamental algorithms of a transaction system, taking

into account experiences with the prior systems. We would like to acknowl-

edge the contributions of the designers of the other systems. We would

also like to thank our colleagues in the research and product groups that

have adopted our research results. Our thanks also go to Klaus Kuespert,

Brian Oki, Erhard Rahm, Andreas Reuter, Pat Selinger, Dennis Shasha,

and Irv Traiger for their detailed comments on the paper.

REFERENCES

1. BAKER, J., CRUS, R., AND HADERLE, D. Method for assuring atomicity of multi-row update
operations in a database system. U.S. Patent 4,498,145, IBM, Feb. 19S5.

2. BADRINATH, B. R., AND RAMAMRITHAM, K. Semantics-based concurrency control: Beyond
commutativity. In Proceedings 3rd IEEE International Conference on Data Engineering

(Feb. 1987).

3. BERNSTEIN, P., HADZILACOS, V., AND GOODMAN, N. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, Reading, Mass., 1987.

4. BORR, A. Robustness to crash in a distributed database: A non-shared-memory multi-
processor approach. In Proceedings 10th International Conference on Very Large Data Bases

(Singapore, Aug. 1984).

5. CHAMBERLAIN,D., GILBERT, A., AND YOST, R. A history of System R and SQL)Data System.
In Proceedings 7th International Conference on Very Large Data Bases (Cannes, Sept.

1981).

6. CHANG, A., AND MERGEN, M. 801 storage: Architecture and programming. ACM Trans.
Comput. Syst., 6, 1 (Feb. 1988), 28-50.

7. CHANG, P. Y., AND MYRE, W. W. 0S/2 EE database manager: Overview and technical
highlights. ZBM Syst. J. 27, 2 (198S).

8. COPELAND, G., KHOSHAFIAN, S., SMITH, M., AND VALDURIEZ, P. Buffering schemes
for permanent data. In Proceedings International Conference on Data Engineering

(Los Angeles, Feb. 1986).

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

158 . C. Mohan et al.

9. CLARK, B. E., AND CORRTGAN,M. J. Application System/400 performance characteristics.
IBM S@. J. 28, 3 (1989).

10. CHENG, J., LOOSELY, C., SHIBAMIYA, A., AND WORTHINGTON, P. IBM Database 2 perfor-
mance: Design, implementation, and tuning. IBM Sy.st. J. 23, 2 (1984).

11. CRUS, R , HADERLE, D., AND HERRON, H. Method for managing lock escalation in a

multiprocessing, multiprogramming environment. U.S. Patent 4,716,528, IBM, Dec. 1987.

12. CRUS, R., MALKEMUS, T., AND PUTZOLU, G. R. Index mini-pages IBM Tech. Disclosure

Bull. 26, 4 (April 1983), 5460-5463.

13. CRUS, R., PUTZOLU, F., AND MORTENSON, J. A Incremental data base log image copy IBM
!l’ec~.Disclosure Bull. 25, 7B (Dec. 1982), 3730-3732.

14. CRUS, R., AND PUTZOLU, F. Data base allocation table. IBM Tech. Disclosure Bull. 25, 7B

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

(Dec. 1982), 3722-2724.

CRUS, R. Data recovery in IBM Database2. IBM Syst. J. 23,2(1984).

CURTIS, R. Informix-Turbo, In Proceedings LZEECornpcon Sprmg’88(Feb. -March l988),

DASGUPTA, P., LEBLANC, R., JR., AND APPELBE, W. The Clouds distributed operating

system. In Proceedings 8th International Conference on Distributed Computing Systems

(San Jose, Calif., June 1988).
DATE, C. AGuideto INGRES. Addison-Wesley, Reading, Mass., l987.

DEY, R., SHAN, M., AND TRAIGER, 1. Method fordropping data sets. IBM Tech. Disclosure

Bull. 25, 11A (April 1983), 5453-5455.

DEWITT, D., GHANDEHARIZADEH, S., SCHNEIDER, D., BRICKER, A., HSIAO, H.-I., AND
RASMUSSEN,R. The Gamma database machine project. IEEE Trans. Knowledge Data Eng.

2, 1 (March 1990).

DELORME, D., HOLM, M., LEE, W., PASSE, P., RICARD, G., TIMMS, G., JR., AND YOUNGREN, L.

Database index journaling for enhanced recovery. U.S. Patent 4,819,156, IBM, April 1989
DIXON, G. N., BARRINGTON, G. D., SHRIVASTAVA, S., AND WHEATER, S. M. The treatment of

persistent objects in Arjuna. Comput. J. 32, 4 (1989).

DUCHAMP, D. Transaction management. Ph.D. dissertation, Tech. Rep. CMU-CS-88-192,

Carnegie-Mellon Univ., Dec. 1988,
EFFEUSBERG, W., AND HAERDER, T. Principles of database buffer management, ACM

Trans. Database Syst. 9, 4 (Dec. 1984).

ELHARDT, K , AND BAYER, R. A database cache for high performance and fast restart in

database systems. ACM Tram Database Syst. 9, 4 (Dec. 1984).
FEKETE, A., LYNCH, N., MERRITT, M., AND WEIHL, W. Commutativity-based locking for
nested transactions. Tech. Rep. MIT/LCS/TM-370.b, MIT, July 1989,

FOSSUM, B Data base integrity as provided for by a particular data base management
system. In Data Base Management, J. W. Klimbie and K. L. Koffeman, Eds., North-Holland,
Amsterdam, 1974.

GAWLICK, D., AND KINKADE, D. Varieties of concurrency control in IMS/VS Fast Path.

IEEE Database Eng. 8, 2 (June 1985).
GARZA, J., AND KIM, W. Transaction management in an object-oriented database system.
In Proceedings ACM-SIGMOD International Conference on Management of Data (Chicago,

June 1988).

GHEITH, A., AND SCHWAN, K. CHAOS’% Support for real-time atomic transactions. In
Proceedings 19th International Symposium on Fault-Tolerant Computing (Chicago, June
1989).

GRAY, J., MCJONES, P., BLASGEN, M., LINDSAY, B., LORIE, R., PRICE, T., PUTZOLU, F., AND
TRAIGER, I. The recovery manager of the System R database manager. ACM Comput.

Suru. 13, 2 (June 1981).
GRAY, J. Notes on data base operating systems. In Operating Systems–An Aduanced

Course, R. Bayer, R. Graham, and G. Seegmuller, Eds., LNCS Vol. 60, Springer-Verlag,

New York, 1978.
HADZILACOS, V, A theory of reliability m database systems. J. ACM 35, 1 (Jan. 1988),
121-145.
HAERDER, T. Handling hot spot data in DB-sharing systems. Inf S.yst. 13, 2 (1988),

155-166.

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992

ARIES: A Transaction Recovery Method . 159

35. HADERLE, D., AND JACKSON, R. IBM Database 2 overview. IBM Syst. J. 23, 2 (1984).

36. HAERDER, T., AND REUTER, A. Principles of transaction oriented database recovery–A

taxonomy. ACM CornPUt.Sure. 15, 4 (Dec. 1983).

37. HELLAND, P. The TMF application programming interface: Program to program communi-

cation, transactions, and concurrency in the Tandem NonStop system. Tandem Tech. Rep.
TR89.3, Tandem Computers, Feb. 1989.

38. HERLIHY, M., AND WEIHL, W. Hybrid concurrency control for abstract data types. In
Proceedings 7th ACM SIGAC’T-SIGMOD-SIGART Symposium on Principles of Database

Systems (Austin, Tex., March 1988).
39. HERLIHY, M., AND WING, J. M. Avalon: Language support for reliable distributed

systems. In Proceedings 17th International Symposium on Fault-Tolerant Computing

(Pittsburgh, Pa., July 1987).

40. HASKIN, R., MALACHI, Y., SAWDON, W., AND CHAN, G. Recovery management in Quick-
Silver. ACM !/’runs. Comput. Syst. 6, 1 (Feb. 1988), 82-108.

41. IMS/ VS Version 1 Release 3 Recovery/Restart. Dec. GG24-1652, IBM, April 1984.

42. IMS/ VS Version 2 Application Programming. Dec. SC26-4178, IBM, March 1986.

43. IMS/ VS Extended Recovery Facility (XRF): Technical Reference. Dec. GG24-3153, IBM,
April 1987.

44. IBM Workstation Data Save Facility / VM: General Information. Dec. GH24-5232, IBM,
1990.

45. KORTH, H. Locking primitives in a database system. JACM 30, 1 (Jan. 1983), 55-79.
46. LUM, V., DADAM, P., ERBE, R., GUENAUER, J., PISTOR, P., WALCH, G., WERNER, H., AND

WOODFILL, J. Design of an integrated DBMS to support advanced applications. In Pro-

ceedings International Conference on Foundations of Data Organization (Kyoto, May 1985).

47. LEVINE, F., AND MOHAN, C. Method for concurrent record access, insertion, deletion and
alteration using an index tree. U.S. Patent 4,914,569, IBM, April 1990.

48. LEWIS, R. Z. ZMS Program Isolation Locking. Dec. GG66-3193, IBM Dallas Systems
Center, Dec. 1990.

49. LINDSAY, B., HAAS, L., MOHAN, C., WILMS, P., AND YOST, R. Computation and communica-
tion in R*: A distributed database manager. ACM Trans. Comput. Syst. 2, 1 (Feb. 1984).

Also in Proceedings 9th ACM Symposium on Operating Systems Principles (Bretton Woods,

Oct. 1983). Also available as IBM Res. Rep. RJ3740, San Jose, Calif., Jan. 1983.

50. LINDSAY, B., MOHAN, C., AND PIRAHESH, H. Method for reserving space needed for “roll-
back” actions. IBM Tech. Disclosure Bull. 29, 6 (Nov. 1986).

51. LISKOV, B., AND SCHEIFLER, R. Guardians and actions: Linguistic support for robust,
distributed programs. ACM Trans. Program. Lang. Syst. 5, 3 (July 1983).

52. LINDSAY, B., SELINGER, P., GALTIERL C., GRAY, J., LORIE, R., PUTZOLU, F., TRAIGER, I., AND
WADE, B. Notes on distributed databases. IBM Res. Rep. RJ2571, San Jose, Calif., July

1979.

53. MCGEE, W. C. The information management syste]m IMS/VS—Part II: Data base facili-
ties; Part V: Transaction processing facilities. IBM Syst. J. 16, 2 (1977).

54. MOHAN, C., HADERLE, D., WANG, Y., AND CHENG, J. Single table access using multiple
indexes: Optimization, execution, and concurrency control techniques. In Proceedings

International Conference on Extending Data Base Technology (Venice, March 1990). An

expanded version of this paper is available as IBM Res. Rep. RJ7341, IBM Almaden
Research Center, March 1990.

55. MOHAN, C., FUSSELL, D., AND SILBERSCHATZ,A. Compatibility and commutativity of lock
modes. Znf Control 61, 1 (April 1984). Also available as IBM Res. Rep. RJ3948, San Jose,

Calif., July 1983.

56. MOSS, E., GRIFFETH, N., AND GRAHAM, M. Abstraction in recovery management. In
Proceedings ACM SIGMOD International Conference on Management of Data (Washington,
D. C., May 1986).

57. MOHAN, C. ARIES /KVL: A key-value locking method for concurrency control of multiac-
tion transactions operating on B-tree indexes. In Proceedings 16th International Conference

on Very Large Data Bases (Brisbane, Aug. 1990). Another version of this paper is available

as IBM Res. Rep. RJ7008, IBM Almaden Research Center, Sept. 1989.

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.

160 . C. Mohan et al

58. MOHAN, C. Commit -LSN: A novel and simple method for reducing locking and latching in
transaction processing systems In Proceedings 16th International Conference on Very Large

Data l?ases (Brisbane, Aug. 1990). Also available as IBM Res. Rep. RJ7344, IBM Almaden

Research Center, Feb. 1990.
59 MOHAN, C. ARIES/LHS: A concurrency control and recovery method using write-ahead

logging for linear hashing with separators. IBM Res. Rep., IBM Almaden Research Center,

Nov. 1990.

60. MOHAN, C. A cost-effective method for providing improved data avadability during DBMS
restart recovery after a failure In Proceedings of the 4th International Workshop on HLgh

Performance Transachon Systems (Asilomar, Calif., Sept. 1991). Also available as IBM Res.

Rep. RJ81 14, IBM Almaden Research Center, April 1991.

61. Moss, E., LEBAN, B., AND CHRYSANTHIS, P. Fine grained concurrency for the database

cache. In Proceedings 3rd IEEE International Conference on Data Engineering (Los Angeles,
Feb. 1987),

62. MOHAN, C., AND LEVINE, F. ARIES/IM: An efficient and high concurrency index manage-
ment method using write-ahead logging. IBM Res. Rep. RJ6846, IBM Almaden Research

Center, Aug. 1989.
63. MOHAN, C., AND LINDSAY, B. Efficient commit protocols for the tree of processes model of

distributed transactions. In Proceedings 2nd ACM SIGACT/ SIGOPS Sympos~um on Pri-

nciples of Distributed Computing (Montreal, Aug. 1983). Also available as IBM Res. Rep.

RJ3881, IBM San Jose Research Laboratory, June 1983.

64. MOHAN, C., LINDSAY, B., AND OBERMARCK, R. Transaction management in the R* dk-

tributed database management system. ACM Trans. Database Syst. 11, 4 (Dec. 1986).

65. MOHAN, C., ANn NARANG, I. Recovery and coherency-control protocols for fast intersystem

page transfer and tine-granularity locking in a shared disks transaction environment. In
Proceedings 17th International Conference on Very Large Data Bases (Barcelona, Sept.

1991). A longer version is available as IBM Res. Rep. RJ8017, IBM Almaden Research

Center, March 1991.

66. MOHAN, C., AND NARANG, I. Efficient locking and caching of data in the multisystem
shared disks transaction environment. In proceedings of the International Conference on

Extending Database Technology (Vienna, Mar. 1992). Also available as IBM Res. Rep.

RJ8301, IBM Almaden Research Center, Aug. 1991.

67. MOHAN, C., NARANG, I., AND PALMER, J. A case study of problems in migrating to
distributed computing: Page recovery using multiple logs in the shared disks environment.
IBM Res. Rep. RJ7343, IBM Almaden Research Center, March 1990.

68. MOHAN, C., NARANG, I., SILEN, S. Solutions to hot spot problems in a shared disks
transaction environment. In proceedings of the 4th International Workshop on High Perfor-

mance Transaction Systems (Asilomar, Calif., Sept. 1991). Also available as IBM Res Rep.
8281, IBM Almaden Research Center, Aug. 1991.

69. MOHAN, C., AND PIRAHESH, H. ARIES-RRH: Restricted repeating of history in the ARIES
transaction recovery method. In Proceedings 7th International Conference on Data Engi-

neering (Kobe, April 1991). Also available as IBM Res. Rep. RJ7342, IBM Almaden

Research Center, Feb. 1990

70. MOHAN, C , AND ROTHERMEL, K. Recovery protocol for nested transactions using write-
ahead logging. IBM Tech. Dwclosure Bull. 31, 4 (Sept 1988).

71. Moss, E. Checkpoint and restart in distributed transaction systems. In Proceedings 3rd
Symposium on Reliability in Dwtributed Software and Database Systems (Clearwater

Beach, Oct. 1983).
72. Moss, E Log-based recovery for nested transactions. In Proceedings 13th International

Conference on Very Large Data Bases (Brighton, Sept. 1987).

73. MOHAN, C., TIUEBER, K., AND OBERMARCK, R. Algorithms for the management of remote
backup databases for disaster recovery. IBM Res. Rep. RJ7885, IBM Almaden Research
Center, Nov. 1990.

74. NETT, E., KAISER, J., AND KROGER, R. Providing recoverability in a transaction oriented
distributed operating system. In Proceedings 6th International Conference on Distributed

Computing Systems (Cambridge, May 1986).

ACM Transactions on Database Systems, Vol. 17, No, 1, March 1992

ARIES: A Transaction Recovery Method . 161

75. NOE, J., KAISER, J., KROGER, R., AND NETT, E. The commit/abort problem in type-specific
locking. GMD Tech. Rep. 267, GMD mbH, Sankt Augustin, Sept. 1987.

76. OBERMARCK, R. IMS/VS program isolation feature. IBM Res. Rep. RJ2879, San Jose,

Calif., July 1980.

77. O’NEILL, P. The Escrow transaction method. ACM Trans. Database Syst. 11, 4
(Dec. 1986).

78. ONG, K. SYNAPSE approach to database recovery. In Proceedings 3rd ACM SIGACT-

SIGMOD Symposium on Principles of Database Systems (Waterloo, April 1984).

79. PEINL, P., REUTER, A., AND SAMMER, H. High contention in a stock trading database: A
case study. In Proceedings ACM SIGMOD International Conference on Management of Data

(Chicago, June 1988).

80. PETERSON,R. J., AND STRICKLAND, J. P. Log write-ahead protocols and IMS/VS logging. In
Proceedings 2nd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems
(Atlanta, Ga., March 1983).

81. RENGARAJAN, T. K., SPIRO, P., AND WRIGHT, W. “High availability mechanisms of VAX
DBMS software. Digital Tech. J. 8 (Feb. 1989).

82. REUTER, A. A fast transaction-oriented logging scheme for UNDO recovery. IEEE Trans.
Softw. Eng. SE-6, 4 (July 1980).

83. REUTER, A. Concurrency on high-traffic data elements. In Proceedings ACM SIGACT-

SIGMOD Symposium on Principles of Database Systems (Los Angeles, March 1982).

84. REUTER, A. Performance analysis of recovery techniques. ACM Trans. Database Syst. 9,4
(Dec. 1984), 526-559.

85. ROTHERMEL, K., AND MOHAN, C. ARIES/NT: A recovery method based on write-ahead
logging fornested transactions. In Proceedings 15th International Conference on Very Large

Data Bases (Amsterdam, Aug. 1989). Alonger version ofthis paper is available as IBM
Res. Rep. RJ6650, lBMAlmaden Research Center, Jan. 1989.

86. ROWE, L., AND STONEBRAKER, M. The commercial INGRES epilogue. Ch. 3 in The ZN-

GRES Papers, Stonebraker, M., Ed., Addson-Wesley, Reading, Mass., 1986.

87. SCHWARZ, P., CHANG, W., FREYTAG, J., LOHMAN, G., MCPHERSON, J., MOHAN, C., AND
PIRAHESH, H. Extensibility in the Starburst database system. In Proceedings Workshop on

Object-Oriented Data Base Systems (Asilomar, Sept. 1986). Also available as IBM Res. Rep.

RJ5311, San Jose, Calif., Sept. 1986.

88. SCHWARZ,P. Transactions on typed objects. Ph.D. dissertation, Tech. Rep. CMU-CS-84-166,
Carnegie Mellon Univ., Dec. 1984.

89. SHASHA, D., AND GOODMAN, N. Concurrent search structure algorithms. ACM Trans.

Database Syst. 13, 1 (March 1988).

90. SPECTOR, A., PAUSCH, R., AND BRUELL, G. Came Lot: A flexible, distributed transaction
processing system. In Proceedings IEEE Compcon Spring ’88 (San Francisco, Calif., March
1988).

91. SPRATT, L. The transaction resolution journal: Extending the before journal. ACM Oper.

Syst. Rev. 19, 3 (July 1985).

92. STONEBRAKER, M. The design of the POSTGRES storage system. In Proceedings 13th

International Conference on Very Large Data Bases (Brighton, Sept. 1987).

93. STILLWELL, J. W., AND RADER, P. M. IMSj VS Version 1 Release 3 Fast Path Notebook.

Dec. G320-0149-0, IBM, Sept. 1984.
94. STRICKLAND, J., UHROWCZIK, P., AND WATTS, V. IMS/VS: An evolving system. IBM Syst.

J. 21, 4 (1982).

95. THE TANDEM DATABASE GROUP. NonStop SQL: A distributed, high-performance,

high-availability implementation of SQL. In Lecture Notes in Computer Science Vol. 359,

D. Gawlick, M. Haynie, and A. Reuter, Eds., Springer-Verlag, New York, 1989.

96. TENG, J., AND GUMAER, R. Managing IBM Database 2 buffers to maximize performance.
IBM Syst. J. 23, 2 (1984).

97. TRAIGER, I. Virtual memory management for database systems. ACM Oper. Syst. Rev. 16,
4 (Oct. 1982), 26-48.

98. VURAL, S. A simulation study for the performance analysis of the ARIES transaction
recovery method. M. SC. thesis, Middle East Technical Univ., Ankara, Feb. 1990.

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992,

162 . C. Mohan et al.

99 WATSON, C. T., AND ABERLE, G. F System/38 machine database support. In IBM Syst,

38/ Tech. Deu., Dec. G580-0237, IBM July 1980.

100. WEIKUM, G. Principles and realization strategies of multi-level transaction management.
ACM Trans. Database Syst. 16, 1 (Mar. 1991).

101. WEINSTEIN, M., PAGE, T., JR , LNEZEY, B., AND POPEK, G. Transactions and synchroniza-
tion in a distributed operating system. In Proceedings 10th ACM Symposium on Operating

Systems Principles (Orcas Island, Dec. 1985).

Received January 1989; revised November 1990; accepted April 1991

ACM TransactIons on Database Systems, Vol. 17, No. 1, March 1992

