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Concurrency control is the activity of synchronizing operations issued by concurrently executing 
programs on a shared database. The goal is to produce an execution that has the same effect as a 
serial (noninterleaved) one. In a multiversion database system, each write on a data item produces a 
new copy (or version) of that data item. This paper presents a theory for analyzing the correctness of 
concurrency control algorithms for multiversion database systems. We use the theory to analyze some 
new algorithms and some previously published ones. 
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1. INTRODUCTION 

A database system (DBS) is a process that executes read and write operations on 
data items of a database. A transaction is a program that issues reads and writes 
to a DBS. When transactions execute concurrently, the interleaved execution of 
their reads and writes by the DBS can produce undesirable results. Concurrency 
control is the activity of avoiding such undesirable results. Specifically, the goal 
of concurrency control is to produce an execution that has the same effect as a 
serial (noninterleaved) one. Such executions are called serializable. 

A DBS attains a serializable execution by controlling the order in which reads 
and writes are executed. When an operation is submitted to the DBS, the DBS 
can either execute the operation immediately, delay the operation for later 
processing, or reject the operation. If an operation is rejected, then the transaction 
that issued the operation is aborted, meaning that all of the transaction’s writes 
are undone, and transactions that read any of the values produced by those writes 
are also aborted. 

The principal reason for rejecting an operation is that it arrived “too late.” For 
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example, a read is normally rejected because the value it was supposed to read 
has already been overwritten. Such rejections can be avoided by keeping old 
copies of each data item. Then a tardy read can be given an old value of a data 
item, even though it was “overwritten.” 

In a multiversion DBS, each write on a data item x, say, produces a new copy 
(or version) of x. For each read on X, the DBS selects one of the versions of x to 
be read. Since writes do not overwrite each other, and since reads can read any 
version, the DBS has more flexibility in controlling the order of reads and writes. 
Several interesting concurrency control algorithms that exploit multiversions 
have been proposed [l, 2, 6, 7, 17, 19,20, 211. Theoretical work on this problem 
includes [15] and [21]. 

This paper presents a theory for analyzing the correctness of concurrency 
control algorithms for multiversions DBSs. We present some new multiversion 
algorithms. We use the theory to analyze the new algorithms and several previ- 
ously published ones. 

Section 2 reviews concurrency control theory for nonmultiversion databases. 
Section 3 extends the theory to multiversion databases. Sections 4-6 use the 
theory to analyze multiversion concurrency control algorithms. 

2. BASIC SERIALIZABILITY THEORY 

The standard theory for analyzing database concurrency control algorithms is 
serializability theory [4, 5, 8, 14, 16, 211. Serializability theory is a method for 
analyzing executions allowed by the concurrency control algorithm. The theory 
gives a precise condition under which an execution is correct. A concurrency 
control algorithm is then judged to be correct if all of its executions are correct. 

This section reviews serializability theory for concurrency control without 
multiversions. 

2.1 System Model 

We assume the DBS is distributed and use Lamport’s model of distributed 
executions [13]. The system consists of a collection of processes that communicate 
by passing messages. The model describes an execution in terms of a happens- 
before relation that tells the order in which events occur. An event is one of the 
following: the execution of an operation by a process, the sending of a message, 
or the receipt of a message. 

Within a process, the happens-before relation is any partial order over the 
events of the process. For the system, the happens-before relation (denoted <) is 
the smallest partial order over all events in the system such that: (1) if e and fare 
events in process P, and e happens before fin P, then e < f; (2) if e is the event 
“process P sends message M” and f is the event “process Q receives M’,” then e 
< fi Condition (1) states that < must be consistent with the order of events within 
each process. Condition (2) states that a message must be sent before it is 
received. And, since < is the smallest partial order satisfying these conditions, 
condition (2) is the only way that events in different processes can be ordered. 

This paper deals at a higher level of abstraction. Hereafter, we will not explicitly 
mention processes and messages (except briefly in Section 6). For concreteness, 
the reader may assume that each transaction is a process, and each data item is 
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managed by a separate process. (Our results do not depend on these assumptions.) 
Under these assumptions each database operation entails two message exchanges. 
For transaction Ti to read X, Ti must send a message to x’s process; to return X’S 
value, the x process must send a message to Ti. The same message pattern is 
needed for writes; in this case, the return message just acknowledges that the 
write has been done. Also under these assumptions, any decision or event ordering 
involving one data item is a local activity; decisions or orderings involving 
multiple data items are distributed activities. The abstraction that we use hides 
message exchanges and related issues, allowing us to reason about concurrency 
control at a higher level. 

2.2 Logs 

Serializability theory models executions by logs. A log identifies the read and 
write operations executed on behalf of each transaction, and tells the order in 
which those operations were executed. A log is an abstraction of Lamport’s 
happens-before relation. 

A trunsaction log represents an allowable execution of a single transaction. 
Fo~Iw@, a transaction log is a partially ordered set (poset) Ti = (&, <i) where 
Ii is the set of reads and writes issued by (an execution of) transaction i, and <i 
tells the order in which those operations must be executed. We write transaction 
logs as diagrams. 

n[xl I 

TI = Wl[Xl. 

rd.21 7 

TI represents a transaction that reads x and z in parallel, and then writes x. 
(Presumably, the value written depends on the values read.) 

We use r&x] (wi[x]) to denote a read (write) on x issued by Ti. To keep this 
notation unambiguous, we assume that no transaction reads or writes a data item 
more than once. None of our results depend on this assumption. 

LetT={To,..., T,,} be a set of transaction logs. A DBS log (or simply a log) 
over T represents an execution of TO, . . . , T,,. Formally, a log over T is a poset L 
= (1, <), where 

(1) C = ULCI Xi; 

(2) < 2 U?4l <ii 
(3) every r-[x] is preceded by at least one Wi[X] (i = j is possible), where wi[X] 

precedes rj[x] is synonymous with wi[x] < ri[x]; and 
(4) all pairs of conflicting operations are < related (two operations conflict if they 

operate on the same data item, and at least one is a write). 

Condition (1) states that the DBS executes all and only those operations submit- 
ted by TO, . . . , T,,. Condition (2) states that the DBS honors all operation 
orderings stipulated by the transactions. Condition (3) states that no transaction 
can read a data item until some transaction has written its initial value. Condition 
(4) states that the DBS executes conflicting operations sequentially. For example, 
if Ti reads x and Tj writes X, ri[x] happens before wj[X] or vice versa; the 
operations cannot occur at the same time. 
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Consider the following transaction logs: 

w&l 
To = wo[yl, 

w&l 

r1 [xl 
L 

Tl = Wl[Xl. 
7 

dzl 
The following are some of the possible logs over {To, Tl}: 

wo[x] + n[x] 

1 
I 

MY1 w1[xl, 
7 

wo[z] + ri[z] 

WO[X] + n[xl 

L 

WdYl T dxl, 
f 

WO[Z] + n[z] 

(1) 

(2) 

w0[x] + rdxl 

I 

WdYl Wl[Xl. 

7 
WO[Z] + rdzl 

(3) 

Note that orderings implied by transitivity are usually not drawn. For example, 
WO[X] < w~[x] is not drawn in the diagrams, although it follows from ZUO[X] c rl[x] 
< Wl[X]. 

Notice that the DBS is allowed to process read(x) and read(z) sequentially (cf. 
(1) and (2)), even though T, allows them to run in parallel. However, the DBS is 
not allowed to reverse or eliminate any ordering stipulated by Tl. 

Given transaction logs 

wdxl 
To = wo[y] 

worz19 

TZ = rz[xl ---* ~21~1, 

dxl 
2’1 = >wI[x], 

rdzl 

MYI 

5”s = ra[z]< , 

w3lIzl 

r4[.1cl 
T4 = r.431, 

r4C.21. 
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the following is a log over {TO, T1, Tz, T3, T4} : 

Ll = 

r&l 

rdyl 

.r4[zl 

The following is another log over the same transactions: 

When we write a log as a sequence, for example, La, we mean that the log is 
totally ordered: Each operation precedes the next one and ail subsequent ones in 
the sequence. Thus, in Lz, wO[x] < w,Jy] c w&z] c r2[x] . . . . 

2.3 Log Equivalence 

Intuitively, two logs are equivalent if each transaction performs the same com- 
putation in both logs. We formalize log equivalence in terms of information flow 
between transactions. 

Let L be a log over {To, . . . , T,}. Transaction Ti reads-x-from Ti in L if (1) 
wi[x] and ri[x] are operations in L; (2) wi[x] c rj[x]; and (3) no w~[x] falls 
between these operations. Two logs over (TO, . . . , T,,} are equivalent, denoted 
E, if they have the same reads-from relationships; that is, for all i, j, and x, Tj 
reads-x-from Ti in one log iff this condition holds in the other. This definition 
ensures that each transaction reads the same values from the database in both 
logs. 

Consider logs L1 and LZ of the previous section. These logs have the same read- 
from’s: 

Tl reads-x-from TO, Tl reads-z-from TO; 
TZ reads-x-from TO; 
T3 reads-z-from TO; 
T4 reads-x-from TI , T4 reads-y-from T3, 

T4 reads-z-from T3. 

Therefore, L1 = Lz. 

This definitionof log equivalence ignores the final database state produced by 
the logs. For example, the logs 

L = w,[x]w,[x] and L’ = Wl[X]WO[X] 

are equivalent, even though different transactions produce the final value of x in 
each log. It is often desirable to strengthen the notion of equivalence by insisting 
that for each x, the same transaction writes the final value of x in both logs. This 
can be modeled by (1) adding a “final transaction” that follows all other trans- 
actions and reads the entire database (e.g., T4 in logs L1 and Lz); and (2) redefining 
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equivalence to be that the logs have the same reads-from’s and the same final 
transaction. 

2.4 Serializable Logs 

A serial log is a totally ordered log on 2 such that for every pair of transactions 
Ti and Tj, either all the operations of Ti precede all those of Tj, or vice versa (e.g., 
k in Section 2.2). A serial log represents an execution in which there is no 
concurrency whatsoever; each transaction executes from beginning to end before 
the next transaction begins. From the point of view of concurrency control, 
therefore, every serial log represents an obviously correct execution. 

What other logs represent correct executions? From the point of view of 
concurrency control, a correct execution is one in which concurrency is invisible. 
That is, an execution is correct if it is equivalent to an execution in which there 
is no concurrency. Serial logs represent the latter executions, and so a correct log 
is any log equivalent to a serial log. Such logs are termed serializable (SR). 

Log L1 of Section 2.2 is SR, because it is equivalent to serial log LZ of Section 
2.3. Therefore L1 is a correct log. 

2.5 The Serializability Theorem 

Let L be a log over (TO, . . . , T,,}. The serialization graph for L, SG(L), is a 
directed graph whose nodes are TO, . . . , T,, and whose edges are all Ti + Tj (i 
# j) such that some operation of Z’i precedes and conflicts with some operation 
of Tj. The serialization graph of log L1, for example, is 

SG(Ld = Tfi+eTd 

Edge TO + Tl is present because WO[X] < rl[x], edge Tl + T3 is present because 
rl[z] < w[z], and so forth. 

SERIALIZABILITY THEOREM [4, 8, 14, 16, 211. IfSG(L) is acyclic, then L is SR. 

3. MULTIVERSION SERIALIZABILITY THEORY 

In a multiversion DBS, each write produces a new version. We denote versions 
ofxbyxi,xj,..., where the subscript is the index of the transaction that wrote 
the version. Operations on versions are denoted ri[Xj] and wi[Xi]. 

3.1 Multiversion Logs 

Let T = {TO, . . . , T,} be a set of transaction logs (defined exactly as in Section 
2.2, i.e., the operations reference data items). To execute T, a multiversion DBS 
must translate T’s “data item operations” into “version operations.” We formalize 
this translation by a function h which maps each wi[X] into wi[xi], and each ri[x] 
iId0 ri[Xj] for somej. 

A multiversion DBS log (or simply MV log) over T is a poset L = (C, <) where 

(1) x = h(U F-1 Ci) for some translation function h, 
(2) for each Ti and all operations opi and opi, if opi Ci opl then h(opi) < h(opf), 

and 
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(3) if h(rj[x]) = rj[xi], then wi[xi] < rj[xi]. 

Condition (1) states that each operation submitted by a transaction is translated 
into an appropriate multiversion operation. Condition (2) states that the MV log 
preserves all orderings stipulated by transactions. Condition (3) states that a 
transaction may not read a version until it has been produced. 

The following is an MV log over {To, TI, Tz, T3, T4} of Section 2. 

LB = 

r&x01 

Wo[~l /r b 
rl[z0] 

WdYol 

wo[zo] 
j, 

/’ 
wdal- r4[xl] 

All MV logs over a set T have the same write operations, since h(wi[x]) = 
Wi[xi], but they need not have the same reads. For example, L4 has rd[yJ instead 
of r4[y3]. 

3.2 MV Log Equivalence 

Most definitions and results from basic serializability theory extend to MV logs; 
we simply replace the notion of “data item” by “version” in those definitions and 
results. However, the structure of MV logs simplifies the treatment. This section 
restates the material of Sections 2.3 and 2.4 for MV logs. 

Let L be an MV log over {To, . . . , T,,}. Transaction Tj reads-x-from Ti in L if 
Tj reads the version of x produced by Ti. By definition, the version of x produced 
by Ti is xi. SO, Tj reads-x-from Ti iff Tj reads xi. This means that the reads-from 
relationships in L are determined by the translation function h, namely, by the 
way h translates “data item reads” into “version reads.” 

Two MV logs over {TO, . . . , Tn} are equivalent, denoted E, if they have the 
same reads-from relationships. The reads-from relationships in an MV log are 
determined by its read operations: Tj reads-x-from Ti iff ri[xi] is an operation of 
the log. So, two logs are equivalent iff they have the same read operations. 
Moreover, since all MV logs over the same transactions have the same writes, 
equivalence reduces to a trivial condition. 

FACT 1. Two MV logs over a set of transactions T are equivalent iff the logs 
have the same operations. 
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Two “version operations” conflict if they operate on the same version and one 
is a write. Only one pattern of conflict is possible in an MV log: If opi < opj and 
these operations conflict, then OPT is wi[zi] and opj is rj[Xi]. Conflicts of the form 
tcli[xi] < K+[Xi] are impossible, because each write produces a new version. 
Conflicts of the form Ij.[Xi] < wi[Xi] are impossible since Tj cannot read xi until it 
has been produced. Thus all conflicts in an MV log correspond to reads-from 
relationships. 

The serialization graph for an MV log is defined as for a regular log. Since 
conflicts are highly structured in an MV log, serialization graphs are quite simple. 
Let L be an MV log over {To, . . . , Tn}. SG(L) has nodes To, . . . , T, and edges Ti 
+ Tj (i # j) such that for some X, Tj reads-x-from Ti. That is, Ti + Tj is present 
iff some X, rj[ri] is an operation of L. This gives us the following. 

FACT 2. Let L and L’ be MV logs over T. 

(1) If L and L’ have the same operations, then SG(L) = SG (L’). 
(2) If L and L’ are equivalent, then SG(L) = SG(L’). 

The serialization graphs for logs LB and LA of the previous section are given 
below: 

HT1- SG(L4 = To .-*T3 ---) T4 

\TZ 

SG(L4) = TO+34 

(Cf. SG(LI) in Section 2.4.) 

3.3 One-Copy Serializability 

Although the database has multiple versions, users expect their transactions to 
behave as if there were just one copy of each data item. Serial logs do not always 
behave this way. Here is a simple example. 

Tz reads-y-from To even though Tl comes between To and TZ and produces a new 
value for y. This behavior cannot be reproduced with only one copy of y. In a 
one-copy database, if To comes before Tl and Tl is before T2, then Tz must read 
the value of y produced by Tl . 

We must therefore restrict the set of allowable serial logs. 
A serial MV log L is one-copy serial (or l-serial) if for all i, j, and x, if Tj reads- 

x-from Ti then i = j or Ti is the last transaction preceding Tj that writes into any 
version of x. (Since L is totally ordered, the word “last” in this definition is well- 
defined.) The log above is not l-serial, because Tz reads-y-from To, but WO[ yo] < 
wl[yl] < rZ[yo]. Lb below is l-serial. 

L = ~ol~alw [Y 1 1 1 1 1 [Y 1 0 0 wo a r2 x0 wz 2 r-1 lzol rl 20 WI x1 r3 20 w3 1 1 1 I 1 I [Y 1 1 1 1 1 3 w3 23 r4 x1 r4 lY31~41~31. 
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A log is one-copy serializable (or I-SR) if it is equivalent to a l-serial log. For 
example, La of Section 3.1 is equivalent to Lg, as can be verified by Fact 1; hence 
LB is l-SR. L4 is equivalent to no l-serial log (this can be verified by checking all 
possible serial logs with the same operations as L4); hence Ld is not l-SR. 

It is possible for a serial log to be l-SR even though it is not l-serial itself. For 
example, 

is not l-serial since Tz reads-x-from TO instead of TI. But it is l-SR, because it is 
equivalent to 

One-copy serializability is our correctness criterion for multiversion concur- 
rency control. The following theorem justifies this criterion, proving that an MV 
log behaves like a serial non-MV log iff the MV log is l-SR. 

First, we extend our notion of log equivalence to handle MV and non-MV logs. 
Let L and L’ be (MV or non-MV) logs over T. L and L’ are equivalent, E, if they 
have the same reads-from relationships. 

l-SR EQUIVALENCE THEOREM. Let L be an MV log over T. L is equivalent to 
a serial, non-MV log over T iff L is l-SR. 

PROOF. 
(If). Let L, be a l-serial log equivalent to L. Form a serial, non-MV log L: by 

translating each Wi[xi] into Wi[x] and ri[xi] into rJx]. Consider any reads-from 
relationship in L,, say Tj reads-x-from Ti. Since L, is l-serial, no wk[xk] lies 
between wi[xi] and rj[xi]. Hence no w~[x] lies between w~[x] and rj[x] in Li. Thus, 
Tj reads-x-from Ti in LA. This establishes L: s L,. Since L, s L, L E L: follows 
by transitivity (since G is an equivalence relation). 

(Only if). Let LL be the hypothesized serial, non-MV log equivalent to L. 
Translate L: into a serial MV log L, by mapping each wi[x] into wi[xi] and each 
rj[x] into rj[xi] such that Tj reads-x-from Ti in L’,. This translation preserves 
reads-from relationships, so L, = L :. By transitivity, L = L, . 

It remains to prove that L, is l-serial. Consider any reads-from relationship in 
L:, say Tj reads-x-from Ti. Since Li is a non-MV log, no wk[x] lies between wi[x] 
and ri[x]. Hence no wk[xh] lies between wi[xi] and rj[xi] in L,. Thus, L, is l-serial, 
as desired. Cl 

3.4 The 1 -Serializability Theorem 

To tell if an MV log is l-SR we use a modified serialization graph. Given a log L 
and data item x, a version order for x is any (nonreflexive) total order over all of 
the versions of x written in L. A version order, <, for L is the union of the version 
orders for all data items. A possible version order for LB of Section 3.1 (or L5 of 
Section 3.3) is 

I x0 cc Xl 

cc= yoccy2ccy3. 

20 cc 23 
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Given L and a version order <<, the multiversion serializution graph, 
MVSG(L, <), is SG(L) with the following edges added: 

(1) for each rh[ri] and Wi[Xi] in L, k # i, if xi << Xj then include !L’i + Tj, else 
include Tk + Ti. 

For example, 

(Cf. SG(LJ in Section 2.5.) 
The following theorem is our principal tool for analyzing multiversion concur- 

rency control algorithms. 

~-SERIALIZABILITY THEOREM. An MV log L is l-SR iff there exists a version 
order CC such that MVSG(L, CC) is acyclic. 

PROOF 
(If ). Let L, be a serial MV log induced by a topological sort of MVSG(L, <<). 

That is, L, is formed by topologicahy sorting MVSG(L, c), and as each node Ti 
is listed in the sort, the operations of Ti in L are added to L, one by one in any 
order consistent with L. L, has the same operations as L, so by Fact 1, L G L,. 

It remains to prove that L, is l-serial. Consider any reads-from situation, say, 
Tk reads-x-from Tj. Let wi[Xi] be any other write on a version of X. If xi < Xj, 
then by rule (1) of the MVSG definition, the graph includes Ti + Tj. This edge 
forces Tj to follow Ti in L,. If xj << xi, then by rule (l), MVSG(L, <<) includes Tk 
+ Ti. This forces Tk to precede Ti in L,. In both cases, Ti is prevented from 
falling between Tj and Tk. Since Ti was an arbitrary writer on x, this proves that 
no transaction that writes a version of x comes between Tj and Tk in L,. Thus L. 
is l-serial. 

(Only if). Given L and <<, let MV(L, -=K) be the graph specified by statement 
(1) of the MVSG definition. Statement (1) depends only on the operations in L 
and <<; it does not depend on the order of operations in L. Thus, if L1 and LZ are 
multiversion logs with the same operations, then MV(L1, <<) = MV(L2, <), for 
all version orders <<. 

Let L, be a l-serial log equivalent to L. All edges in SG(L,) go “left-to-right”, 
that is, if Ti + Tj, then Ti is before Tj in L,. Define << as follows: xi < xj only if 
Ti is before Tj in L,. All edges in MV(L,, -K) are also left-to-right. Therefore ail 
edges in MVSG(L,, <<) = MV(L,, -=K) U SG(LJ are left-to-right, too. This implies 
that MVSG(L,, K) is acyclic. 

By Fact 1, L and L, have the same operations. Hence, MV(L, <) = MV(L,, 
-=K). By Fact 2, SG(L) = SG(L,). Therefore MVSG(L, -=K) = MVSG(L,, K). Since 
MVSG(L,, <c) is acyclic, so is MVSG(L, c). Cl 

Sections 4-6 use the l-Serializability Theorem to analyze multiversion concur- 
rency control algorithms. We conclude this section with a complexity result. 

3.5 l-Serializability Is NP-Complete 

l-SR COMPLEXITY THEOREM. It is NP-complete to decide whether an MV log is 
1-SR. 
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PROOF 

(Membership in NP). Let L be an MV log over T. Guess a l-serial log L, over 
T and verify L, = L. By Fact 1, we can verify L, E L by comparing the logs’ 
operation sets. 

(NP-hardness). The reduction is from the log SR problem (Problem SR 33 in 
[9,14,16]). Let L’ be a non-MV log over T. Map L’ into an equivalent MV log L 
by translating each WJX] into wi[Xi] and each ~Jx] into ri[ri] such that Tj reads- 
x-from Ti in L’. By the l-SR Equivalence Theorem, L is l-SR iff there exists a 
non-MV serial log L: such that L z L:. But, by transitivity, LG exists iff L’ is SR. 
ThusL’isSRiffLisl-SR.Cl 

Papadimitriou and Kanellakis prove that a related problem is NP-complete 
[15]: Given a conventional log L, can one transform L into a l-SR MV log by 
mapping each WJX] into wi[xi] and each r,{x] into rj[Xi] for some Xi where wi[X] 
< rj[X]? This problem corresponds to choosing versions for reading after having 
scheduled the operations. Our problem corresponds to choosing versions at the 
same time as scheduling the operations. 

4. MULTIVERSION TIMESTAMPING 

The earliest multiversion concurrency control algorithm that we know of is 
Reed’s multiversion timestamping algorithm [ 171. 

Each transaction, Ti, is assigned a unique timestam., TS(i), when it begins 
executing. Intuitively, the timestamp tells the “time” at which the transaction 
began. Formally, timestamps are just numbers with the property that each 
transaction is assigned a different timestamp. Each read and write carries the 
timestamp of the transaction that issued it, and each version carries the time- 
stamp of the transaction that wrote it. 

Operations are processed first-come-first-served. But the translation from data 
item operations to version operations makes it appear as if operations were 
processed in timestamp order. 

The algorithm works as follows. 

(1) ri[x] is translated into ri[rh], where xk is the version of x with largest 
timestamp 5 TS(i). 

(2) wi[X] has two cases. If the DBS has already processed rj[xk] such that TS(k) 
< TS(i) < TS(J’), then wi[X] is rejected. Otherwise Wi[X] is translated into 
wi[xi]. Intuitively, wi[x] is rejected if it would invalidate rj[xk]. 

We wish to use serializability theory to prove this algorithm correct. To do so, 
we must state the algorithm in terms of serializability theory. We take the 
description of the algorithm above and infer properties that all logs produced by 
the algorithm will satisfy. These properties form our formal definition of the 
algorithm. We use serializability theory to prove that these log properties imply 
l-serializability. 

The following properties form our formal definition of the MV timestumping 
algorithm. Let L be an MV log over {TO, . . . , Tn}. 

TSl. Every Ti has a numeric timestamp TS(i) satisfying a uniqueness condi- 
tion: TS(i) = TS(J’) iff i =j. 

‘TS2. All rk[xj] and wi[xi] are <-related; that is, rh[xj] < wi[xi], or vice versa. 
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TS3.1. For every rh’k[q], TS(J’) 5 TS(k). 
TS3.2. For every rh[q] and wi[Xi], i # j, if wi[Xi] < rh[q], then either TS(i) < 

TS(J’) or TS(k) I TS(i). 
TS4. For every rk[Xj] and Ui[Xi], i # j, if rk[Xj] < Wi[Xi], then either TS(i) C 

TS(J’) or TS(k) I TS(i). 

Property TSl just says that transactions have unique timestamps. TS2 is 
implicit in the description of how the algorithm works; without this property, the 
condition, “If the DBS has already processed rj[xh] . . .” is not well-defined. TS3 
states that at the time rk[xj] is processed, Xj is the version of x with the largest 
timestamp I TS(k). TS4 states that once the DBS has processed rk[xj], it wiII 
not process any LDi[Ti] with TS(J’) I TS(i) < TS(k). 

Properties TS3.2 and TS4 can be simplified. By TS2, rk[xj] and wi[xi] are 
<-related. So TS3.2 and TS4 are equivalent to the foIIowing. 

TS5. For every rk[xj] and wi[Xi], i #j, either TS(i) < TS(J’) or TS(k) 5 TS(i). 

We now prove that any log satisfying these properties is l-SR. In other words, 
MV timestamping is a correct concurrency control aIgorithm. 

MULTIVERSION TIMESTAMPING THEOREM. All logs produced by the MV time- 
stamping algorithm are I-SR. 

PROOF. Let L be a log produced by the algorithm. Define a version order as 
follows: Xi << Xj implies TS(i) c TS(J’). We prove that all edges in MVSG(L, a) 
are in timestamp order: If Ti + 2” is an edge, then TS(i) < TS(J’). 

Let Ti + Ti be an edge of SG(L). This edge corresponds to a reads-from 
situation, that is, for some x, Tj reads-x-from Ti. By TS3.1, TS(i) 5 TS(J’); by 
TSl, TS(i) # TS(J’). So TS(i) c TS(J’), as desired. 

Consider any edge introduced by rule (1) of the MVSG definition. Let Wi[Xi], 
wj [ Xi], and rk [ Xi] be the operations stipulated by rule (1). There are two cases. 

(1) Xi< Xj. 

Then the edge is Ti + Tj. TS(i) < TS(J’) comes from our definition of <<. 

(2) XjC Xi. 

Then the edge is Tk + Ti. By TS5, either TS(i) < TS(J’) or TS(k) 5 TS(i). The 
first option is impossible, since the definition of << requires TS(j) < TS(i). By 
TSl, TS(k) # TS(i). So, TS(k) < TS(i), as desired. 

This proves that ah edges in MVSG(L, 6~) are in timestamp order. Since 
tin-restamps are numbers, hence totally ordered, it follows that MVSG(L, CX) is 
acyclic. So by the l-serializability theorem, L is l-SR. Cl 

5. MULTIVERSION LOCKING 

Bayer et al. [l, 21 and Stearns and Rosenkrantz [20] have presented multiversion 
algorithms that synchronize using a technique similar to locking. This section 
studies a generalization of their algorithms. As in the previous section, we start 
with an informal description of the algorithm. Then we state log properties 
induced by the algorithm. Finally we prove that these log properties imply l- 
serializability. 
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Each transaction and version exists in one of two states: certified or uncertified. 
When a transaction begins, it is uncertified; when a version is written, it, too, is 
uncertified. Later actions of the algorithm cause the transaction and all versions 
it wrote to become certified. The concept of “certified” corresponds to “closed” 
in [20]. 

Let ci[xi] be the event “xi is certified.” The algorithm requires that all ci[ri] 
and rh[xj] be c-related. Also, all ci[xi] and cj[Xj] must be <-related. A version 
order is defined thus: xi < rj iff ci [ xi] < cj [ Xj]. 

The algorithm works as follows. 
First, ri[x] is translated into ri[xk], where 3ck is either the last (with respect to 

K) certified version of x or any uncertified version. The algorithm may use any 
rule whatever for deciding which of these versions to read. 

Then, Loi[X] is translated into wi[xi]. As stated above, .Iti is uncertified at this 
point. 

Finally, when a transaction finishes executing, the DBS attempts to certify it 
and all versions it wrote. For each data item x that Ti wrote, the DBS tries to set 
a certify-lock on x for Ti. This succeeds iff no other transaction already has a 
certify-lock on x; if the lock cannot be set, Ti waits until it can. When Ti has all 
of its certify-locks, two further conditions must be satisfied: 

Cl. For each xk that Ti read, k # i, xk is certified. 
C2. For each xi that Ti wrote, and for each version xk of x that is already certified, 

aU transactions that read xk have been certified. 

Attaining Cl is just a matter of time; once Cl is satisfied no future event can 
cause it to become false. To attain C2, we set a certib-token on x to stop future 
reads from reading certified versions of x; instead, they may read Xi or any other 
uncertified version of x. 

When these conditions hold, Ti is declared to be certified. This fact is broadcast 
to all versions Ti wrote. When a version xi receives this information, it, too, is 
certified, that is, the event ci[Xi] occurs. When xi is certified, the certify-lock and 
certify-token on xi are released. 

This algorithm, like most locking algorithms, can deadlock. Deadlocks can arise 
from two independent causes: waiting for certify-locks, and waiting for conditions 
Cl and C2. To detect deadlocks, the algorithm can use a directed blocking graph 
whose nodes are the transactions, and whose edgesare all Ti + Tj such that Ti 
is blocking the progress of Tj. There is a deadlock iff the graph has a cycle [ll, 
121. Deadlock prevention schemes such as those in [3, 181 can also be used. The 
system should keep track of the two types of deadlock separately. To resolve 
deadlocks caused by certify-locks, the system should force one or more transac- 
tions to give up enough of their certify-locks to break the deadlock; these 
transactions can try later to get these locks back. To break deadlocks caused by 
Cl and C2, the system must abort one or more transactions. (Cascading abort is 
possible if the algorithm allows transactions to read uncertified versions.) 

The algorithm induces the following log properties. These properties form our 
formal definition of the MVlocking algorithm. Let L be an MV log over { TO, . . . , 
T,, ). Let us augment L with symbols that represent important events in the 
algorithm, specihcally: for each Ti, let ci represent the event “Ti is declared to be 
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certified”; for each version xi written by Ti, let cZi[ri] represent “the DBS sets a 
certify-lock on x for Ti’; and for each xi, let ci[a] represent “xi is certified.” 

L1.l. For every Ti, ci follows all of the reads and writes of Ti. 
L1.2. For every every Xi written by Ti, cZi[S] C ci < ci[Xi]. 

Property Ll says that a transaction is certified after it executes; all certify-locks 
must be obtained before the transaction is certified; and the transaction must be 
certified before its versions are certified. 
L2.1. Every cZi[Xi] and c&[x~] are <-related. 
L2.2. For every xi and rj, if cZi[a] < cl,[xj] then ci[ri] < c&[x~]. 

L2 says that certify-locks conflict-two transactions cannot simultaneously hold 
certify-locks on the same data item. 

L3.1. Every rk[xj] and ci[xi] are <-related. 
L3.2. For every rh[xi] and Wi[Xi], i #j, if ci[ri] C rh[rj] and cj[rj] < rh[xj], then 

Ci[Xi] < Cj[Xj]. 

L3 expresses the rule for translating reads. If rj is already certified at the time 
rk[xj] OCCUKS, then Xj is the lust certified version at that time. 

L4.1. For every rk[rj], k #j, Cj[Xj] < ck. 
L4.2. For WWJ rk[Xj] and Wi[Xi], i #j, if rk[xj] < Ci[Xi] and Cj[Xj] < Ci, then ck 

< Ci. 

These last properties are certification conditions Cl and C2, respectively. 
The following lemmas extract useful properties from Ll-L4. 

LEMMA 1. Let Ti and Tj be transactions that write x. Then 

either CZi[Xi] < Ci C Ci[Xi] C CZj[Xj] < Cj < Cj[Xj] 
or Ct$[Xj] < Cj < Cj[Xj] < CZi[Xi] < Ci < Ci[Xi]m 

PROOF. L2.1 requires that cZi[Xi] and cZj[rj] be <-related. Suppose cZi[ri] < 
CZj[Xj]- By L1.2, CZi[Xi] < ci < ci[Xi]; by L2.2, ci[Xi] < c&[Xj]; by L1.2 again, cZj[Xj] 
< cj < Cj[rj]. This establishes the first possibility permitted by Lemma 1. If 
cZj[rj] < cZi[Xi], the same argument establishes the second possibility. Cl 

LEMMA 2. Properties Ll-LA imply 

L5. For every rk[xj], k #j, cj < ck. 
L6. For every rk[xj] and Wi[Xi], i # j, either ci < cj or ck < ci. 

PROOF (L5). By Ll, Cj < Cj[Xj]. By L4.1, Cj[Xj] < ck. L5 follows by transitivity. 
(L6). Using logical manipulation we can express L3.2 as 

LX2’. (Ci[Xi] < rk[Xj]) * (Ci[Xi] < rk[Xj]) A T(Cj[Xj] < rk[Xj]) 

V (G[xi] < Cj[XjJ)- 

By L3.1, the first line on the right-hand side simplifies to 

(G[Xi] < rk[Xj]) A (rk[Xj] C Cj[Xj]). 

By transitivity, this implies (ci [Xi] < cj [Xj I), and so the entire right-hand side 
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implies ci[xi] < cj[xj]. By Lemma 1, this implies ci < cj. SO L3.2’ implies 

L3.2”. (ci[xi] < rh[xj]) * ci < cj. 

Similarly, we can express L4.2 as 

U-2’. (rk[Xj] < Ci[Xi]) =$q (Cj[Xj] < Ci) V (Ck < Ci). 

By Lemma 1, cj [xj] and ci are c-related. SO the first term on the right-hand side 
simplifies to (ci < cj [xj]). By Lemma 1, again, this is equivalent to ci < C; . SO 

IA2 is equivalent to 

IAL?“. (rk[Xj] < Ci[Xi]) * Ci < Cj V ck < Ci. 

L3.1 requires that rh[xj] and ci[xi] be <-related. This lets us drop the left-hand 
sides of L3.2” and L4.2”, combining them into the following: 

For f%W'J' rk [xj] and Ci[Xi], Ci < Cj V Ck < Ci. 

Since Ci[Xi] exists iff ZUi[xi] exists, L6 follows. 0 

We now prove that any log satisfying these properties is l-SR. In other words, 
MV locking is a correct concurrency control algorithm. 

MULTIVERSION LOCKING THEOREM. All logs produced by the MV locking 
algorithm are l-SR. 

PROOF. Let L be a log produced by the algorithm. Define a version order as 
follows: xi << xj implies ci < cj. We prove that all edges in MVSG(L, -x) are in 
certification order: If Ti + Tj is an edge, then ci < cj. 

Let Ti + Tj be an edge of SG(L). This edge corresponds to a reads-from 
situation, that is, for some X, Tj reads-x-from Ti. By L5, ci < cj. 

Consider any edge introduced by rule (1) of the MVSG definition. Let wi[xi], 
Wj[xj], and rk[xj] be the operations stipulated by rule (1). There are two cases. 

(1) xi -X xj : Then the edge is Ti + c ; ci < cj comes from ow definition of <<. 
(2) Xj << Xi: Then the edge is Tk + Ti. 

By L6, either ci < cj or ck < ci. The first option is impossible, since the definition 
of -X requires Cj < Ci. SO, ck < Ci as desired. 

This proves that all edges in MVSG(L, <<) are in certification order. Since the 
certification order is embedded in a partial order (namely L), it follows that 
MVSG(L, K) is acyclic. So, by the l-Serializability Theorem, L is l-SR. Cl 

The Stearns and Rosenkrantz algorithm [20] differs from ours in two respects. 
Theirs allows at most one uncertified version of a data item to exist at any point 
in time, by requiring that write operations set write-locks. Consequently, their 
algorithm never needs more than two versions of any data item: one certified 
version and at most one uncertified version. This fits nicely with database 
recovery [lo]. Stearns and Rosenkrantz identify the certified version of a data 
item with its “before-value,” and the uncertified version with its “after-value.” 
The other difference involves deadlock handling. Their algorithm uses an inter- 
esting new deadlock avoidance scheme based on timestamps. 
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The Bayer et al. algorithm [1, 21 also uses at most two versions of each data 
item. As in [20], the versions of a data item are identified with its before- and 
after-values. Unlike Stearns and Rosenkrantz, Bayer et al. use the blocking graph 
to help translate data item reads into version reads. They prove that they can 
always select a correct version to read. That is, reads never cause a log to become 
non-1-SR and never cause deadlocks. This is a good property since it allows read- 
only transactions (queries) to run with little synchronization delay and no danger 
of deadlock. 

6. MULTIVERSION MIXED METHOD 

Prime Computer, Inc., has developed an interesting multiversion algorithm [7]. 
Prime’s algorithm, like those at the end of Section 5, integrates concurrency 
control with database recovery. Unlike those algorithms, Prime’s algorithm can 
exploit multiple certified versions of data items. Computer Corporation of Amer- 
ica has adopted Prime’s algorithm for its Adaplex DBS [6]. This section studies 
a generalization of Prime’s algorithm. 

The algorithm we study is called a mixed method. A mixed method is a 
concurrency control algorithm that combines locking with timestamping [3]. 
Mixed methods introduce a new problem: consistent timestamp generation. A 
timestamping algorithm uses timestamps to order conflicting transactions; intui- 
tively, if Ti and q conflict, then Ti is synchronized before q iff TS(i) < TS(j). 
A locking algorithm orders transactions on-the-fly; intuitively, if Ti and Tj conflict, 
then Ti is synchronized before Tj iff ci < cj . TO combine locking and timestamping, 
we must render their synchronization orders consistent. 

Our algorithm uses MV timestamping to process read-only transactions (quer- 
ies). The algorithm uses MV locking to process general transactions (updaters). 
Queries and updaters are assigned timestamps satisfying two properties: 

(1) Let Ti and Tj be updaters. If ci < cj then TS(i) < TS(J’). 
(2) Let T4 be a query and Ti an updater. If rq[xk] < wi[ni] then TS(q) c TS(i). 

A consistent timestamp generator is any means of assigning timestamps that 
satisfy these properties. 

Our algorithm uses a Lamport clock to generate consistent timestamps. Recall 
the discussion of distributed systems from Section 2. A Lamport clock assigns a 
number to each event (called its time) subject to two conditions. 

LCl. If e and fare events of the same process and e happened before f, then 
time(e) < time(f). 

LC2. If e is the event “process P sends message M” and f is the event “process 
Q receives it&” then time(e) < time( f). 

LCl is easily achieved using clocks or counters local to each process. LC2 can 
be implemented by stamping each message with the local clock time when it was 
sent; if a process Q receives a message whose time t is greater than Q’s local time, 
Q pushes its clock ahead to t. 

LCl and LC2 imply the following. 

LC. Let e and fbe events in a distributed system. If e < fthen time(e) < time(f) 

lJ31. 
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LC is precisely the condition we need to generate consistent timestamps. When 
an updater !Z’i is certified, the process that certifies it assigns TS( i) = time( ci). By 
LC, ci < cj implies time( ci) < time( ci); hence TS( i) < TS( j) as desired. When a 
query Tq begins executing, we make TS(q) less than or equal to the current 
Lamport time. So for all reads rq[xh], TS(q) < time(r,[xk]). Consider any write 
wi[Xi] such that rq[xk] < Wi[Xi]. By locking property Ll (see Section 5), wi[Xi] 
< ci, SO by transitivity rJxk] < ci. By LC this implies time(r,[xk]) < time(ci); 
hence TS(q) < TS(i) as desired. 

We now describe the algorithm in detail. 

(1) The system maintains a Lamport clock. 
(2) Updaters use the MV locking algorithm of Section 5. 
(3) When an updater Ti is certified, the system assigns TS( i) = time( ci). This 

timestamp is transmitted to all versions that Ti wrote. Thus, certified versions 
have timestamps, but uncertified versions do not. 

(4) When a query Tq begins executing, the system makes TS(q) less than or 
equal to the current time. 

(5) Consider any read by T,,r,[x]. As in Section 4, we want to translate this 
into rq[xh] where xk is the version of x with the largest timestamp less than 
TS(q). But, some care is needed since uncertified versions do not have time- 
stamps. Let t be a lower bound on the possible timestamps of any uncertified x 
versions. For instance, let t = min{time(cZi[xi]) 1 xi is uncertified}. Since cZi[Xi] 
< ci, time(cZi[xi]) is a lower bound on time(s) = TS(i); therefore t is a lower 
bound on the timestamps of any uncertified Xi. 

Consider r, [x] again. If x has no uncertified versions, or if TS( q) c t, then 
rq[x] reads the version xk of x with the largest timestamp less than TS( q); else 
rq[x] waits until the condition is satisfied. (This will eventually happen.) 

The log properties induced by the algorithm are a simple combination of the 
properties induced by MV timestamping and locking. The correctness proof is 
similar to those in Sections 4 and 5. 

MULTIVERSION MIXED METHOD THEOREM. All logs produced by the MV 
mixed method are l-SR. 

Prime’s algorithm differs from ours in two respects. Most importantly, Prime’s 
algorithm does not use explicit timestamps. All certify events are <-related, that 
is, Cl, . . . , cn are totally ordered. The algorithm maintains a list, CL, of all 
transactions that have been certified; when Ti is certified, its identifier, i, is 
included in CL. When a query Tq begins executing, it makes a copy of CL, denoted 
CL(q). When Tp issues a read, rq[x], it reads xk where xk is the latest version 
(with respect to <<) of x such that k. E CL(q). We can analyze this behavior as a 
special case of our mixed method. Imagine that each updater Ti is assigned a 
timestamp equal to its place in the certification total order, that is, TS(i) = t iff 
Ti is the tth transaction to be certified. Imagine that T* is assigned the timestamp 
TStq) = I CL(q)1 + E, for 0 < E < 1. This is a consistent way of assigning 
timestamps. If we now run Tp. under our algorithm, it reads the same versions as 
under Prime’s algorithm. Since our algorithm is l-SR, so is Prime’s. 

The other difference is that Prime uses a restricted form of multiversion locking 
for updaters, namely two-phase locking [8]. Write operations set write-locks, so 
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that no data item ever has more than one uncertified version. And, once Ti writes 
x, no updater Tj reads x until Ti is certified, and vice versa. Consequently, every 
updater can be certified as soon as it finishes executing. 

The net effect is that queries and updaters are totally decoupled. Queries never 
delay or cause the abort of updaters, and updaters never delay or cause the abort 
of queries. 

Prime’s algorithm is most naturally implemented in a centralized DBS because 
of the need to totally order certify events. 

The following variant is more suitable for a distributed DBS. 
(1) The system maintains a Lamport clock. 
(2) Updaters use two-phase locking, hence they can be certified as soon as each 

finishes executing. The system assigns TS(i) = time( ci), as in the general 
algorithms. 

(3) Queries are processed using timestamps, exactly as in the general algorithm. 
This algorithm decouples queries and updaters almost as fully as Prime’s 

algorithm. Queries never delay or abort updaters, and updaters never abort 
queries. But an updater can delay a query under one condition: If a query T4 
reads x, updater Ti has a certify-lock on x, and TS( q) is greater than the time of 
that certify-lock, then Tg must wait until Ti certifies x. 

7. CONCLUSION 

This paper has studied the concurrency control problem for multiversion data- 
bases. Multiversion databases add a new aspect to concurrency control. Trans- 
actions issue operations that specify data items (e.g., read(x), write(x)); the 
system must translate these into operations that specify versions. In a single- 
version database, concurrency control correctness depends on the order in which 
reads and writes are processed. In a multiversion database, correctness depends 
on translation as well as order. 

We have extended concurrency control theory to account for the translation 
aspect of multiversion databases. The main idea is one-copy serializability: an 
execution of transactions in a multiversion database is one-copy serializable 
( 1-5X) if it is equivalent to a serial execution of the same transactions in a single- 
version database. A multiversion concurrency control algorithm is correct if all of 
its executions are l-SR. We derived effective necessary and sufficient conditions 
for an execution to be l-SR, these condition use the concept of version order. We 
gave a graph structure, multiversion serialization graphs (MVSGs), that helps 
check these conditions. Once a version order is fixed, an execution is l-SR iff its 
MVSG is acyclic. MVSGs are analogous to the serialization graphs widely used 
in single-version concurrency control theory. 

We applied the theory to three multiversion concurrency control algorithms. 
One algorithm uses time&amps, one uses locking, and one combines locking with 
timestamps. The timestamping algorithm is Reed’s [17]. The locking algorithm 
was inspired by (and generalizes) the work of Bayer et al. [l, 21 and Stearns and 
Rosenkrantz [20]. The combination algorithm generalizes an algorithm developed 
by Prime Computer, Inc. [7] and used by Computer Corporation of America [6]. 
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