
Multiversion Concurrency Control-Theory
and Algorithms

PHILIP A. BERNSTEIN and NATHAN GOODMAN
Harvard University

Concurrency control is the activity of synchronizing operations issued by concurrently executing
programs on a shared database. The goal is to produce an execution that has the same effect as a
serial (noninterleaved) one. In a multiversion database system, each write on a data item produces a
new copy (or version) of that data item. This paper presents a theory for analyzing the correctness of
concurrency control algorithms for multiversion database systems. We use the theory to analyze some
new algorithms and some previously published ones.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems.

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Transaction processing

1. INTRODUCTION

A database system (DBS) is a process that executes read and write operations on
data items of a database. A transaction is a program that issues reads and writes
to a DBS. When transactions execute concurrently, the interleaved execution of
their reads and writes by the DBS can produce undesirable results. Concurrency
control is the activity of avoiding such undesirable results. Specifically, the goal
of concurrency control is to produce an execution that has the same effect as a
serial (noninterleaved) one. Such executions are called serializable.

A DBS attains a serializable execution by controlling the order in which reads
and writes are executed. When an operation is submitted to the DBS, the DBS
can either execute the operation immediately, delay the operation for later
processing, or reject the operation. If an operation is rejected, then the transaction
that issued the operation is aborted, meaning that all of the transaction’s writes
are undone, and transactions that read any of the values produced by those writes
are also aborted.

The principal reason for rejecting an operation is that it arrived “too late.” For

This work was supported by N.S.F. Grant MCS-79-07762, by the Office of Naval Research under
Contract NOOO14-80-C-647, by Rome Air Development Center under Contract F30602-81-C-0028, and
by Digital Equipment Corporation.
Authors’ addresses: P. Bernstein, Sequoia Systems, Inc., 1 Metropolitan Corp. Center, Boston Park
West, Marlborough, MA 01752; N. Goodman, Computer Science Department, Boston University,
Boston, MA 02215.
Permission to copy without fee ail or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1983 ACM 0362-5915/83/1200-0465 $00.75

ACM ‘lkmsactions on Database Systems, Vol. 8, No. 4, December 1983, Pages 465-483.

466 l P. A. Bernstein and N. Goodman

example, a read is normally rejected because the value it was supposed to read
has already been overwritten. Such rejections can be avoided by keeping old
copies of each data item. Then a tardy read can be given an old value of a data
item, even though it was “overwritten.”

In a multiversion DBS, each write on a data item x, say, produces a new copy
(or version) of x. For each read on X, the DBS selects one of the versions of x to
be read. Since writes do not overwrite each other, and since reads can read any
version, the DBS has more flexibility in controlling the order of reads and writes.
Several interesting concurrency control algorithms that exploit multiversions
have been proposed [l, 2, 6, 7, 17, 19,20, 211. Theoretical work on this problem
includes [15] and [21].

This paper presents a theory for analyzing the correctness of concurrency
control algorithms for multiversions DBSs. We present some new multiversion
algorithms. We use the theory to analyze the new algorithms and several previ-
ously published ones.

Section 2 reviews concurrency control theory for nonmultiversion databases.
Section 3 extends the theory to multiversion databases. Sections 4-6 use the
theory to analyze multiversion concurrency control algorithms.

2. BASIC SERIALIZABILITY THEORY

The standard theory for analyzing database concurrency control algorithms is
serializability theory [4, 5, 8, 14, 16, 211. Serializability theory is a method for
analyzing executions allowed by the concurrency control algorithm. The theory
gives a precise condition under which an execution is correct. A concurrency
control algorithm is then judged to be correct if all of its executions are correct.

This section reviews serializability theory for concurrency control without
multiversions.

2.1 System Model

We assume the DBS is distributed and use Lamport’s model of distributed
executions [13]. The system consists of a collection of processes that communicate
by passing messages. The model describes an execution in terms of a happens-
before relation that tells the order in which events occur. An event is one of the
following: the execution of an operation by a process, the sending of a message,
or the receipt of a message.

Within a process, the happens-before relation is any partial order over the
events of the process. For the system, the happens-before relation (denoted <) is
the smallest partial order over all events in the system such that: (1) if e and fare
events in process P, and e happens before fin P, then e < f; (2) if e is the event
“process P sends message M” and f is the event “process Q receives M’,” then e
< fi Condition (1) states that < must be consistent with the order of events within
each process. Condition (2) states that a message must be sent before it is
received. And, since < is the smallest partial order satisfying these conditions,
condition (2) is the only way that events in different processes can be ordered.

This paper deals at a higher level of abstraction. Hereafter, we will not explicitly
mention processes and messages (except briefly in Section 6). For concreteness,
the reader may assume that each transaction is a process, and each data item is

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983.

Multiversion Concurrency Control 467

managed by a separate process. (Our results do not depend on these assumptions.)
Under these assumptions each database operation entails two message exchanges.
For transaction Ti to read X, Ti must send a message to x’s process; to return X’S
value, the x process must send a message to Ti. The same message pattern is
needed for writes; in this case, the return message just acknowledges that the
write has been done. Also under these assumptions, any decision or event ordering
involving one data item is a local activity; decisions or orderings involving
multiple data items are distributed activities. The abstraction that we use hides
message exchanges and related issues, allowing us to reason about concurrency
control at a higher level.

2.2 Logs

Serializability theory models executions by logs. A log identifies the read and
write operations executed on behalf of each transaction, and tells the order in
which those operations were executed. A log is an abstraction of Lamport’s
happens-before relation.

A trunsaction log represents an allowable execution of a single transaction.
Fo~Iw@, a transaction log is a partially ordered set (poset) Ti = (&, <i) where
Ii is the set of reads and writes issued by (an execution of) transaction i, and <i
tells the order in which those operations must be executed. We write transaction
logs as diagrams.

n[xl I

TI = Wl[Xl.

rd.21 7

TI represents a transaction that reads x and z in parallel, and then writes x.
(Presumably, the value written depends on the values read.)

We use r&x] (wi[x]) to denote a read (write) on x issued by Ti. To keep this
notation unambiguous, we assume that no transaction reads or writes a data item
more than once. None of our results depend on this assumption.

LetT={To,..., T,,} be a set of transaction logs. A DBS log (or simply a log)
over T represents an execution of TO, . . . , T,,. Formally, a log over T is a poset L
= (1, <), where

(1) C = ULCI Xi;

(2) < 2 U?4l <ii
(3) every r-[x] is preceded by at least one Wi[X] (i = j is possible), where wi[X]

precedes rj[x] is synonymous with wi[x] < ri[x]; and
(4) all pairs of conflicting operations are < related (two operations conflict if they

operate on the same data item, and at least one is a write).

Condition (1) states that the DBS executes all and only those operations submit-
ted by TO, . . . , T,,. Condition (2) states that the DBS honors all operation
orderings stipulated by the transactions. Condition (3) states that no transaction
can read a data item until some transaction has written its initial value. Condition
(4) states that the DBS executes conflicting operations sequentially. For example,
if Ti reads x and Tj writes X, ri[x] happens before wj[X] or vice versa; the
operations cannot occur at the same time.

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983.

468 l P. A. Bernstein and N. Goodman

Consider the following transaction logs:

w&l
To = wo[yl,

w&l

r1 [xl
L

Tl = Wl[Xl.
7

dzl
The following are some of the possible logs over {To, Tl}:

wo[x] + n[x]

1
I

MY1 w1[xl,
7

wo[z] + ri[z]

WO[X] + n[xl

L

WdYl T dxl,
f

WO[Z] + n[z]

(1)

(2)

w0[x] + rdxl

I

WdYl Wl[Xl.

7
WO[Z] + rdzl

(3)

Note that orderings implied by transitivity are usually not drawn. For example,
WO[X] < w~[x] is not drawn in the diagrams, although it follows from ZUO[X] c rl[x]
< Wl[X].

Notice that the DBS is allowed to process read(x) and read(z) sequentially (cf.
(1) and (2)), even though T, allows them to run in parallel. However, the DBS is
not allowed to reverse or eliminate any ordering stipulated by Tl.

Given transaction logs

wdxl
To = wo[y]

worz19

TZ = rz[xl ---* ~21~1,

dxl
2’1 = >wI[x],

rdzl

MYI

5”s = ra[z]< ,

w3lIzl

r4[.1cl
T4 = r.431,

r4C.21.

ACM Transactions on Database System, Vol. 8, No. 4, December 1983.

Multiversion Concurrency Control 469

the following is a log over {TO, T1, Tz, T3, T4} :

Ll =

r&l

rdyl

.r4[zl

The following is another log over the same transactions:

When we write a log as a sequence, for example, La, we mean that the log is
totally ordered: Each operation precedes the next one and ail subsequent ones in
the sequence. Thus, in Lz, wO[x] < w,Jy] c w&z] c r2[x]

2.3 Log Equivalence

Intuitively, two logs are equivalent if each transaction performs the same com-
putation in both logs. We formalize log equivalence in terms of information flow
between transactions.

Let L be a log over {To, . . . , T,}. Transaction Ti reads-x-from Ti in L if (1)
wi[x] and ri[x] are operations in L; (2) wi[x] c rj[x]; and (3) no w~[x] falls
between these operations. Two logs over (TO, . . . , T,,} are equivalent, denoted
E, if they have the same reads-from relationships; that is, for all i, j, and x, Tj
reads-x-from Ti in one log iff this condition holds in the other. This definition
ensures that each transaction reads the same values from the database in both
logs.

Consider logs L1 and LZ of the previous section. These logs have the same read-
from’s:

Tl reads-x-from TO, Tl reads-z-from TO;
TZ reads-x-from TO;
T3 reads-z-from TO;
T4 reads-x-from TI , T4 reads-y-from T3,

T4 reads-z-from T3.

Therefore, L1 = Lz.

This definitionof log equivalence ignores the final database state produced by
the logs. For example, the logs

L = w,[x]w,[x] and L’ = Wl[X]WO[X]

are equivalent, even though different transactions produce the final value of x in
each log. It is often desirable to strengthen the notion of equivalence by insisting
that for each x, the same transaction writes the final value of x in both logs. This
can be modeled by (1) adding a “final transaction” that follows all other trans-
actions and reads the entire database (e.g., T4 in logs L1 and Lz); and (2) redefining

ACM Transactions on Database System, Vol. 8, No. 4, December 1983.

470 * P. A. Bernstein and N. Goodman

equivalence to be that the logs have the same reads-from’s and the same final
transaction.

2.4 Serializable Logs

A serial log is a totally ordered log on 2 such that for every pair of transactions
Ti and Tj, either all the operations of Ti precede all those of Tj, or vice versa (e.g.,
k in Section 2.2). A serial log represents an execution in which there is no
concurrency whatsoever; each transaction executes from beginning to end before
the next transaction begins. From the point of view of concurrency control,
therefore, every serial log represents an obviously correct execution.

What other logs represent correct executions? From the point of view of
concurrency control, a correct execution is one in which concurrency is invisible.
That is, an execution is correct if it is equivalent to an execution in which there
is no concurrency. Serial logs represent the latter executions, and so a correct log
is any log equivalent to a serial log. Such logs are termed serializable (SR).

Log L1 of Section 2.2 is SR, because it is equivalent to serial log LZ of Section
2.3. Therefore L1 is a correct log.

2.5 The Serializability Theorem

Let L be a log over (TO, . . . , T,,}. The serialization graph for L, SG(L), is a
directed graph whose nodes are TO, . . . , T,, and whose edges are all Ti + Tj (i
j) such that some operation of Z’i precedes and conflicts with some operation
of Tj. The serialization graph of log L1, for example, is

SG(Ld = Tfi+eTd

Edge TO + Tl is present because WO[X] < rl[x], edge Tl + T3 is present because
rl[z] < w[z], and so forth.

SERIALIZABILITY THEOREM [4, 8, 14, 16, 211. IfSG(L) is acyclic, then L is SR.

3. MULTIVERSION SERIALIZABILITY THEORY

In a multiversion DBS, each write produces a new version. We denote versions
ofxbyxi,xj,..., where the subscript is the index of the transaction that wrote
the version. Operations on versions are denoted ri[Xj] and wi[Xi].

3.1 Multiversion Logs

Let T = {TO, . . . , T,} be a set of transaction logs (defined exactly as in Section
2.2, i.e., the operations reference data items). To execute T, a multiversion DBS
must translate T’s “data item operations” into “version operations.” We formalize
this translation by a function h which maps each wi[X] into wi[xi], and each ri[x]
iId0 ri[Xj] for somej.

A multiversion DBS log (or simply MV log) over T is a poset L = (C, <) where

(1) x = h(U F-1 Ci) for some translation function h,
(2) for each Ti and all operations opi and opi, if opi Ci opl then h(opi) < h(opf),

and

ACM Tnmsactions on Database Systems., Vol. 8, No. 4, December 1983.

Multiversion Concurrency Control - 471

(3) if h(rj[x]) = rj[xi], then wi[xi] < rj[xi].

Condition (1) states that each operation submitted by a transaction is translated
into an appropriate multiversion operation. Condition (2) states that the MV log
preserves all orderings stipulated by transactions. Condition (3) states that a
transaction may not read a version until it has been produced.

The following is an MV log over {To, TI, Tz, T3, T4} of Section 2.

LB =

r&x01

Wo[~l /r b
rl[z0]

WdYol

wo[zo]
j,

/’
wdal- r4[xl]

All MV logs over a set T have the same write operations, since h(wi[x]) =
Wi[xi], but they need not have the same reads. For example, L4 has rd[yJ instead
of r4[y3].

3.2 MV Log Equivalence

Most definitions and results from basic serializability theory extend to MV logs;
we simply replace the notion of “data item” by “version” in those definitions and
results. However, the structure of MV logs simplifies the treatment. This section
restates the material of Sections 2.3 and 2.4 for MV logs.

Let L be an MV log over {To, . . . , T,,}. Transaction Tj reads-x-from Ti in L if
Tj reads the version of x produced by Ti. By definition, the version of x produced
by Ti is xi. SO, Tj reads-x-from Ti iff Tj reads xi. This means that the reads-from
relationships in L are determined by the translation function h, namely, by the
way h translates “data item reads” into “version reads.”

Two MV logs over {TO, . . . , Tn} are equivalent, denoted E, if they have the
same reads-from relationships. The reads-from relationships in an MV log are
determined by its read operations: Tj reads-x-from Ti iff ri[xi] is an operation of
the log. So, two logs are equivalent iff they have the same read operations.
Moreover, since all MV logs over the same transactions have the same writes,
equivalence reduces to a trivial condition.

FACT 1. Two MV logs over a set of transactions T are equivalent iff the logs
have the same operations.

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983.

472 * P. A. Bernstein and N. Goodman

Two “version operations” conflict if they operate on the same version and one
is a write. Only one pattern of conflict is possible in an MV log: If opi < opj and
these operations conflict, then OPT is wi[zi] and opj is rj[Xi]. Conflicts of the form
tcli[xi] < K+[Xi] are impossible, because each write produces a new version.
Conflicts of the form Ij.[Xi] < wi[Xi] are impossible since Tj cannot read xi until it
has been produced. Thus all conflicts in an MV log correspond to reads-from
relationships.

The serialization graph for an MV log is defined as for a regular log. Since
conflicts are highly structured in an MV log, serialization graphs are quite simple.
Let L be an MV log over {To, . . . , Tn}. SG(L) has nodes To, . . . , T, and edges Ti
+ Tj (i # j) such that for some X, Tj reads-x-from Ti. That is, Ti + Tj is present
iff some X, rj[ri] is an operation of L. This gives us the following.

FACT 2. Let L and L’ be MV logs over T.

(1) If L and L’ have the same operations, then SG(L) = SG (L’).
(2) If L and L’ are equivalent, then SG(L) = SG(L’).

The serialization graphs for logs LB and LA of the previous section are given
below:

HT1- SG(L4 = To .-*T3 ---) T4

\TZ

SG(L4) = TO+34

(Cf. SG(LI) in Section 2.4.)

3.3 One-Copy Serializability

Although the database has multiple versions, users expect their transactions to
behave as if there were just one copy of each data item. Serial logs do not always
behave this way. Here is a simple example.

Tz reads-y-from To even though Tl comes between To and TZ and produces a new
value for y. This behavior cannot be reproduced with only one copy of y. In a
one-copy database, if To comes before Tl and Tl is before T2, then Tz must read
the value of y produced by Tl .

We must therefore restrict the set of allowable serial logs.
A serial MV log L is one-copy serial (or l-serial) if for all i, j, and x, if Tj reads-

x-from Ti then i = j or Ti is the last transaction preceding Tj that writes into any
version of x. (Since L is totally ordered, the word “last” in this definition is well-
defined.) The log above is not l-serial, because Tz reads-y-from To, but WO[yo] <
wl[yl] < rZ[yo]. Lb below is l-serial.

L = ~ol~alw [Y 1 1 1 1 1 [Y 1 0 0 wo a r2 x0 wz 2 r-1 lzol rl 20 WI x1 r3 20 w3 1 1 1 I 1 I [Y 1 1 1 1 1 3 w3 23 r4 x1 r4 lY31~41~31.
ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983.

Multiversion Concurrency Control * 473

A log is one-copy serializable (or I-SR) if it is equivalent to a l-serial log. For
example, La of Section 3.1 is equivalent to Lg, as can be verified by Fact 1; hence
LB is l-SR. L4 is equivalent to no l-serial log (this can be verified by checking all
possible serial logs with the same operations as L4); hence Ld is not l-SR.

It is possible for a serial log to be l-SR even though it is not l-serial itself. For
example,

is not l-serial since Tz reads-x-from TO instead of TI. But it is l-SR, because it is
equivalent to

One-copy serializability is our correctness criterion for multiversion concur-
rency control. The following theorem justifies this criterion, proving that an MV
log behaves like a serial non-MV log iff the MV log is l-SR.

First, we extend our notion of log equivalence to handle MV and non-MV logs.
Let L and L’ be (MV or non-MV) logs over T. L and L’ are equivalent, E, if they
have the same reads-from relationships.

l-SR EQUIVALENCE THEOREM. Let L be an MV log over T. L is equivalent to
a serial, non-MV log over T iff L is l-SR.

PROOF.
(If). Let L, be a l-serial log equivalent to L. Form a serial, non-MV log L: by

translating each Wi[xi] into Wi[x] and ri[xi] into rJx]. Consider any reads-from
relationship in L,, say Tj reads-x-from Ti. Since L, is l-serial, no wk[xk] lies
between wi[xi] and rj[xi]. Hence no w~[x] lies between w~[x] and rj[x] in Li. Thus,
Tj reads-x-from Ti in LA. This establishes L: s L,. Since L, s L, L E L: follows
by transitivity (since G is an equivalence relation).

(Only if). Let LL be the hypothesized serial, non-MV log equivalent to L.
Translate L: into a serial MV log L, by mapping each wi[x] into wi[xi] and each
rj[x] into rj[xi] such that Tj reads-x-from Ti in L’,. This translation preserves
reads-from relationships, so L, = L :. By transitivity, L = L, .

It remains to prove that L, is l-serial. Consider any reads-from relationship in
L:, say Tj reads-x-from Ti. Since Li is a non-MV log, no wk[x] lies between wi[x]
and ri[x]. Hence no wk[xh] lies between wi[xi] and rj[xi] in L,. Thus, L, is l-serial,
as desired. Cl

3.4 The 1 -Serializability Theorem

To tell if an MV log is l-SR we use a modified serialization graph. Given a log L
and data item x, a version order for x is any (nonreflexive) total order over all of
the versions of x written in L. A version order, <, for L is the union of the version
orders for all data items. A possible version order for LB of Section 3.1 (or L5 of
Section 3.3) is

I x0 cc Xl

cc= yoccy2ccy3.

20 cc 23

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983.

474 - P. A. Bernstein and N. Goodman

Given L and a version order <<, the multiversion serializution graph,
MVSG(L, <), is SG(L) with the following edges added:

(1) for each rh[ri] and Wi[Xi] in L, k # i, if xi << Xj then include !L’i + Tj, else
include Tk + Ti.

For example,

(Cf. SG(LJ in Section 2.5.)
The following theorem is our principal tool for analyzing multiversion concur-

rency control algorithms.

~-SERIALIZABILITY THEOREM. An MV log L is l-SR iff there exists a version
order CC such that MVSG(L, CC) is acyclic.

PROOF
(If). Let L, be a serial MV log induced by a topological sort of MVSG(L, <<).

That is, L, is formed by topologicahy sorting MVSG(L, c), and as each node Ti
is listed in the sort, the operations of Ti in L are added to L, one by one in any
order consistent with L. L, has the same operations as L, so by Fact 1, L G L,.

It remains to prove that L, is l-serial. Consider any reads-from situation, say,
Tk reads-x-from Tj. Let wi[Xi] be any other write on a version of X. If xi < Xj,
then by rule (1) of the MVSG definition, the graph includes Ti + Tj. This edge
forces Tj to follow Ti in L,. If xj << xi, then by rule (l), MVSG(L, <<) includes Tk
+ Ti. This forces Tk to precede Ti in L,. In both cases, Ti is prevented from
falling between Tj and Tk. Since Ti was an arbitrary writer on x, this proves that
no transaction that writes a version of x comes between Tj and Tk in L,. Thus L.
is l-serial.

(Only if). Given L and <<, let MV(L, -=K) be the graph specified by statement
(1) of the MVSG definition. Statement (1) depends only on the operations in L
and <<; it does not depend on the order of operations in L. Thus, if L1 and LZ are
multiversion logs with the same operations, then MV(L1, <<) = MV(L2, <), for
all version orders <<.

Let L, be a l-serial log equivalent to L. All edges in SG(L,) go “left-to-right”,
that is, if Ti + Tj, then Ti is before Tj in L,. Define << as follows: xi < xj only if
Ti is before Tj in L,. All edges in MV(L,, -K) are also left-to-right. Therefore ail
edges in MVSG(L,, <<) = MV(L,, -=K) U SG(LJ are left-to-right, too. This implies
that MVSG(L,, K) is acyclic.

By Fact 1, L and L, have the same operations. Hence, MV(L, <) = MV(L,,
-=K). By Fact 2, SG(L) = SG(L,). Therefore MVSG(L, -=K) = MVSG(L,, K). Since
MVSG(L,, <c) is acyclic, so is MVSG(L, c). Cl

Sections 4-6 use the l-Serializability Theorem to analyze multiversion concur-
rency control algorithms. We conclude this section with a complexity result.

3.5 l-Serializability Is NP-Complete

l-SR COMPLEXITY THEOREM. It is NP-complete to decide whether an MV log is
1-SR.
ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983.

Multiversion Concurrency Control l 475

PROOF

(Membership in NP). Let L be an MV log over T. Guess a l-serial log L, over
T and verify L, = L. By Fact 1, we can verify L, E L by comparing the logs’
operation sets.

(NP-hardness). The reduction is from the log SR problem (Problem SR 33 in
[9,14,16]). Let L’ be a non-MV log over T. Map L’ into an equivalent MV log L
by translating each WJX] into wi[Xi] and each ~Jx] into ri[ri] such that Tj reads-
x-from Ti in L’. By the l-SR Equivalence Theorem, L is l-SR iff there exists a
non-MV serial log L: such that L z L:. But, by transitivity, LG exists iff L’ is SR.
ThusL’isSRiffLisl-SR.Cl

Papadimitriou and Kanellakis prove that a related problem is NP-complete
[15]: Given a conventional log L, can one transform L into a l-SR MV log by
mapping each WJX] into wi[xi] and each r,{x] into rj[Xi] for some Xi where wi[X]
< rj[X]? This problem corresponds to choosing versions for reading after having
scheduled the operations. Our problem corresponds to choosing versions at the
same time as scheduling the operations.

4. MULTIVERSION TIMESTAMPING

The earliest multiversion concurrency control algorithm that we know of is
Reed’s multiversion timestamping algorithm [171.

Each transaction, Ti, is assigned a unique timestam., TS(i), when it begins
executing. Intuitively, the timestamp tells the “time” at which the transaction
began. Formally, timestamps are just numbers with the property that each
transaction is assigned a different timestamp. Each read and write carries the
timestamp of the transaction that issued it, and each version carries the time-
stamp of the transaction that wrote it.

Operations are processed first-come-first-served. But the translation from data
item operations to version operations makes it appear as if operations were
processed in timestamp order.

The algorithm works as follows.

(1) ri[x] is translated into ri[rh], where xk is the version of x with largest
timestamp 5 TS(i).

(2) wi[X] has two cases. If the DBS has already processed rj[xk] such that TS(k)
< TS(i) < TS(J’), then wi[X] is rejected. Otherwise Wi[X] is translated into
wi[xi]. Intuitively, wi[x] is rejected if it would invalidate rj[xk].

We wish to use serializability theory to prove this algorithm correct. To do so,
we must state the algorithm in terms of serializability theory. We take the
description of the algorithm above and infer properties that all logs produced by
the algorithm will satisfy. These properties form our formal definition of the
algorithm. We use serializability theory to prove that these log properties imply
l-serializability.

The following properties form our formal definition of the MV timestumping
algorithm. Let L be an MV log over {TO, . . . , Tn}.

TSl. Every Ti has a numeric timestamp TS(i) satisfying a uniqueness condi-
tion: TS(i) = TS(J’) iff i =j.

‘TS2. All rk[xj] and wi[xi] are <-related; that is, rh[xj] < wi[xi], or vice versa.

ACM Treneactions on Database Systems, Vol. 8, No. 4, December 1983.

476 l P. A. Bernstein and N. Goodman

TS3.1. For every rh’k[q], TS(J’) 5 TS(k).
TS3.2. For every rh[q] and wi[Xi], i # j, if wi[Xi] < rh[q], then either TS(i) <

TS(J’) or TS(k) I TS(i).
TS4. For every rk[Xj] and Ui[Xi], i # j, if rk[Xj] < Wi[Xi], then either TS(i) C

TS(J’) or TS(k) I TS(i).

Property TSl just says that transactions have unique timestamps. TS2 is
implicit in the description of how the algorithm works; without this property, the
condition, “If the DBS has already processed rj[xh] . . .” is not well-defined. TS3
states that at the time rk[xj] is processed, Xj is the version of x with the largest
timestamp I TS(k). TS4 states that once the DBS has processed rk[xj], it wiII
not process any LDi[Ti] with TS(J’) I TS(i) < TS(k).

Properties TS3.2 and TS4 can be simplified. By TS2, rk[xj] and wi[xi] are
<-related. So TS3.2 and TS4 are equivalent to the foIIowing.

TS5. For every rk[xj] and wi[Xi], i #j, either TS(i) < TS(J’) or TS(k) 5 TS(i).

We now prove that any log satisfying these properties is l-SR. In other words,
MV timestamping is a correct concurrency control aIgorithm.

MULTIVERSION TIMESTAMPING THEOREM. All logs produced by the MV time-
stamping algorithm are I-SR.

PROOF. Let L be a log produced by the algorithm. Define a version order as
follows: Xi << Xj implies TS(i) c TS(J’). We prove that all edges in MVSG(L, a)
are in timestamp order: If Ti + 2” is an edge, then TS(i) < TS(J’).

Let Ti + Ti be an edge of SG(L). This edge corresponds to a reads-from
situation, that is, for some x, Tj reads-x-from Ti. By TS3.1, TS(i) 5 TS(J’); by
TSl, TS(i) # TS(J’). So TS(i) c TS(J’), as desired.

Consider any edge introduced by rule (1) of the MVSG definition. Let Wi[Xi],
wj [Xi], and rk [Xi] be the operations stipulated by rule (1). There are two cases.

(1) Xi< Xj.

Then the edge is Ti + Tj. TS(i) < TS(J’) comes from our definition of <<.

(2) XjC Xi.

Then the edge is Tk + Ti. By TS5, either TS(i) < TS(J’) or TS(k) 5 TS(i). The
first option is impossible, since the definition of << requires TS(j) < TS(i). By
TSl, TS(k) # TS(i). So, TS(k) < TS(i), as desired.

This proves that ah edges in MVSG(L, 6~) are in timestamp order. Since
tin-restamps are numbers, hence totally ordered, it follows that MVSG(L, CX) is
acyclic. So by the l-serializability theorem, L is l-SR. Cl

5. MULTIVERSION LOCKING

Bayer et al. [l, 21 and Stearns and Rosenkrantz [20] have presented multiversion
algorithms that synchronize using a technique similar to locking. This section
studies a generalization of their algorithms. As in the previous section, we start
with an informal description of the algorithm. Then we state log properties
induced by the algorithm. Finally we prove that these log properties imply l-
serializability.

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983.

Multiversion Concurrency Control 477

Each transaction and version exists in one of two states: certified or uncertified.
When a transaction begins, it is uncertified; when a version is written, it, too, is
uncertified. Later actions of the algorithm cause the transaction and all versions
it wrote to become certified. The concept of “certified” corresponds to “closed”
in [20].

Let ci[xi] be the event “xi is certified.” The algorithm requires that all ci[ri]
and rh[xj] be c-related. Also, all ci[xi] and cj[Xj] must be <-related. A version
order is defined thus: xi < rj iff ci [xi] < cj [Xj].

The algorithm works as follows.
First, ri[x] is translated into ri[xk], where 3ck is either the last (with respect to

K) certified version of x or any uncertified version. The algorithm may use any
rule whatever for deciding which of these versions to read.

Then, Loi[X] is translated into wi[xi]. As stated above, .Iti is uncertified at this
point.

Finally, when a transaction finishes executing, the DBS attempts to certify it
and all versions it wrote. For each data item x that Ti wrote, the DBS tries to set
a certify-lock on x for Ti. This succeeds iff no other transaction already has a
certify-lock on x; if the lock cannot be set, Ti waits until it can. When Ti has all
of its certify-locks, two further conditions must be satisfied:

Cl. For each xk that Ti read, k # i, xk is certified.
C2. For each xi that Ti wrote, and for each version xk of x that is already certified,

aU transactions that read xk have been certified.

Attaining Cl is just a matter of time; once Cl is satisfied no future event can
cause it to become false. To attain C2, we set a certib-token on x to stop future
reads from reading certified versions of x; instead, they may read Xi or any other
uncertified version of x.

When these conditions hold, Ti is declared to be certified. This fact is broadcast
to all versions Ti wrote. When a version xi receives this information, it, too, is
certified, that is, the event ci[Xi] occurs. When xi is certified, the certify-lock and
certify-token on xi are released.

This algorithm, like most locking algorithms, can deadlock. Deadlocks can arise
from two independent causes: waiting for certify-locks, and waiting for conditions
Cl and C2. To detect deadlocks, the algorithm can use a directed blocking graph
whose nodes are the transactions, and whose edgesare all Ti + Tj such that Ti
is blocking the progress of Tj. There is a deadlock iff the graph has a cycle [ll,
121. Deadlock prevention schemes such as those in [3, 181 can also be used. The
system should keep track of the two types of deadlock separately. To resolve
deadlocks caused by certify-locks, the system should force one or more transac-
tions to give up enough of their certify-locks to break the deadlock; these
transactions can try later to get these locks back. To break deadlocks caused by
Cl and C2, the system must abort one or more transactions. (Cascading abort is
possible if the algorithm allows transactions to read uncertified versions.)

The algorithm induces the following log properties. These properties form our
formal definition of the MVlocking algorithm. Let L be an MV log over { TO, . . . ,
T,,). Let us augment L with symbols that represent important events in the
algorithm, specihcally: for each Ti, let ci represent the event “Ti is declared to be

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983.

478 l P. A. Bernstein and N. Goodman

certified”; for each version xi written by Ti, let cZi[ri] represent “the DBS sets a
certify-lock on x for Ti’; and for each xi, let ci[a] represent “xi is certified.”

L1.l. For every Ti, ci follows all of the reads and writes of Ti.
L1.2. For every every Xi written by Ti, cZi[S] C ci < ci[Xi].

Property Ll says that a transaction is certified after it executes; all certify-locks
must be obtained before the transaction is certified; and the transaction must be
certified before its versions are certified.
L2.1. Every cZi[Xi] and c&[x~] are <-related.
L2.2. For every xi and rj, if cZi[a] < cl,[xj] then ci[ri] < c&[x~].

L2 says that certify-locks conflict-two transactions cannot simultaneously hold
certify-locks on the same data item.

L3.1. Every rk[xj] and ci[xi] are <-related.
L3.2. For every rh[xi] and Wi[Xi], i #j, if ci[ri] C rh[rj] and cj[rj] < rh[xj], then

Ci[Xi] < Cj[Xj].

L3 expresses the rule for translating reads. If rj is already certified at the time
rk[xj] OCCUKS, then Xj is the lust certified version at that time.

L4.1. For every rk[rj], k #j, Cj[Xj] < ck.
L4.2. For WWJ rk[Xj] and Wi[Xi], i #j, if rk[xj] < Ci[Xi] and Cj[Xj] < Ci, then ck

< Ci.

These last properties are certification conditions Cl and C2, respectively.
The following lemmas extract useful properties from Ll-L4.

LEMMA 1. Let Ti and Tj be transactions that write x. Then

either CZi[Xi] < Ci C Ci[Xi] C CZj[Xj] < Cj < Cj[Xj]
or Ct$[Xj] < Cj < Cj[Xj] < CZi[Xi] < Ci < Ci[Xi]m

PROOF. L2.1 requires that cZi[Xi] and cZj[rj] be <-related. Suppose cZi[ri] <
CZj[Xj]- By L1.2, CZi[Xi] < ci < ci[Xi]; by L2.2, ci[Xi] < c&[Xj]; by L1.2 again, cZj[Xj]
< cj < Cj[rj]. This establishes the first possibility permitted by Lemma 1. If
cZj[rj] < cZi[Xi], the same argument establishes the second possibility. Cl

LEMMA 2. Properties Ll-LA imply

L5. For every rk[xj], k #j, cj < ck.
L6. For every rk[xj] and Wi[Xi], i # j, either ci < cj or ck < ci.

PROOF (L5). By Ll, Cj < Cj[Xj]. By L4.1, Cj[Xj] < ck. L5 follows by transitivity.
(L6). Using logical manipulation we can express L3.2 as

LX2’. (Ci[Xi] < rk[Xj]) * (Ci[Xi] < rk[Xj]) A T(Cj[Xj] < rk[Xj])

V (G[xi] < Cj[XjJ)-

By L3.1, the first line on the right-hand side simplifies to

(G[Xi] < rk[Xj]) A (rk[Xj] C Cj[Xj]).

By transitivity, this implies (ci [Xi] < cj [Xj I), and so the entire right-hand side
ACM Transactions on Database System, Vol. 3, No. 4, December 1983.

Multiversion Concurrency Control * 479

implies ci[xi] < cj[xj]. By Lemma 1, this implies ci < cj. SO L3.2’ implies

L3.2”. (ci[xi] < rh[xj]) * ci < cj.

Similarly, we can express L4.2 as

U-2’. (rk[Xj] < Ci[Xi]) =$q (Cj[Xj] < Ci) V (Ck < Ci).

By Lemma 1, cj [xj] and ci are c-related. SO the first term on the right-hand side
simplifies to (ci < cj [xj]). By Lemma 1, again, this is equivalent to ci < C; . SO

IA2 is equivalent to

IAL?“. (rk[Xj] < Ci[Xi]) * Ci < Cj V ck < Ci.

L3.1 requires that rh[xj] and ci[xi] be <-related. This lets us drop the left-hand
sides of L3.2” and L4.2”, combining them into the following:

For f%W'J' rk [xj] and Ci[Xi], Ci < Cj V Ck < Ci.

Since Ci[Xi] exists iff ZUi[xi] exists, L6 follows. 0

We now prove that any log satisfying these properties is l-SR. In other words,
MV locking is a correct concurrency control algorithm.

MULTIVERSION LOCKING THEOREM. All logs produced by the MV locking
algorithm are l-SR.

PROOF. Let L be a log produced by the algorithm. Define a version order as
follows: xi << xj implies ci < cj. We prove that all edges in MVSG(L, -x) are in
certification order: If Ti + Tj is an edge, then ci < cj.

Let Ti + Tj be an edge of SG(L). This edge corresponds to a reads-from
situation, that is, for some X, Tj reads-x-from Ti. By L5, ci < cj.

Consider any edge introduced by rule (1) of the MVSG definition. Let wi[xi],
Wj[xj], and rk[xj] be the operations stipulated by rule (1). There are two cases.

(1) xi -X xj : Then the edge is Ti + c ; ci < cj comes from ow definition of <<.
(2) Xj << Xi: Then the edge is Tk + Ti.

By L6, either ci < cj or ck < ci. The first option is impossible, since the definition
of -X requires Cj < Ci. SO, ck < Ci as desired.

This proves that all edges in MVSG(L, <<) are in certification order. Since the
certification order is embedded in a partial order (namely L), it follows that
MVSG(L, K) is acyclic. So, by the l-Serializability Theorem, L is l-SR. Cl

The Stearns and Rosenkrantz algorithm [20] differs from ours in two respects.
Theirs allows at most one uncertified version of a data item to exist at any point
in time, by requiring that write operations set write-locks. Consequently, their
algorithm never needs more than two versions of any data item: one certified
version and at most one uncertified version. This fits nicely with database
recovery [lo]. Stearns and Rosenkrantz identify the certified version of a data
item with its “before-value,” and the uncertified version with its “after-value.”
The other difference involves deadlock handling. Their algorithm uses an inter-
esting new deadlock avoidance scheme based on timestamps.

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983.

480 * P. A. Bernstein and N. Goodman

The Bayer et al. algorithm [1, 21 also uses at most two versions of each data
item. As in [20], the versions of a data item are identified with its before- and
after-values. Unlike Stearns and Rosenkrantz, Bayer et al. use the blocking graph
to help translate data item reads into version reads. They prove that they can
always select a correct version to read. That is, reads never cause a log to become
non-1-SR and never cause deadlocks. This is a good property since it allows read-
only transactions (queries) to run with little synchronization delay and no danger
of deadlock.

6. MULTIVERSION MIXED METHOD

Prime Computer, Inc., has developed an interesting multiversion algorithm [7].
Prime’s algorithm, like those at the end of Section 5, integrates concurrency
control with database recovery. Unlike those algorithms, Prime’s algorithm can
exploit multiple certified versions of data items. Computer Corporation of Amer-
ica has adopted Prime’s algorithm for its Adaplex DBS [6]. This section studies
a generalization of Prime’s algorithm.

The algorithm we study is called a mixed method. A mixed method is a
concurrency control algorithm that combines locking with timestamping [3].
Mixed methods introduce a new problem: consistent timestamp generation. A
timestamping algorithm uses timestamps to order conflicting transactions; intui-
tively, if Ti and q conflict, then Ti is synchronized before q iff TS(i) < TS(j).
A locking algorithm orders transactions on-the-fly; intuitively, if Ti and Tj conflict,
then Ti is synchronized before Tj iff ci < cj . TO combine locking and timestamping,
we must render their synchronization orders consistent.

Our algorithm uses MV timestamping to process read-only transactions (quer-
ies). The algorithm uses MV locking to process general transactions (updaters).
Queries and updaters are assigned timestamps satisfying two properties:

(1) Let Ti and Tj be updaters. If ci < cj then TS(i) < TS(J’).
(2) Let T4 be a query and Ti an updater. If rq[xk] < wi[ni] then TS(q) c TS(i).

A consistent timestamp generator is any means of assigning timestamps that
satisfy these properties.

Our algorithm uses a Lamport clock to generate consistent timestamps. Recall
the discussion of distributed systems from Section 2. A Lamport clock assigns a
number to each event (called its time) subject to two conditions.

LCl. If e and fare events of the same process and e happened before f, then
time(e) < time(f).

LC2. If e is the event “process P sends message M” and f is the event “process
Q receives it&” then time(e) < time(f).

LCl is easily achieved using clocks or counters local to each process. LC2 can
be implemented by stamping each message with the local clock time when it was
sent; if a process Q receives a message whose time t is greater than Q’s local time,
Q pushes its clock ahead to t.

LCl and LC2 imply the following.

LC. Let e and fbe events in a distributed system. If e < fthen time(e) < time(f)

lJ31.

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983.

Multiversion Concurrency Control 481

LC is precisely the condition we need to generate consistent timestamps. When
an updater !Z’i is certified, the process that certifies it assigns TS(i) = time(ci). By
LC, ci < cj implies time(ci) < time(ci); hence TS(i) < TS(j) as desired. When a
query Tq begins executing, we make TS(q) less than or equal to the current
Lamport time. So for all reads rq[xh], TS(q) < time(r,[xk]). Consider any write
wi[Xi] such that rq[xk] < Wi[Xi]. By locking property Ll (see Section 5), wi[Xi]
< ci, SO by transitivity rJxk] < ci. By LC this implies time(r,[xk]) < time(ci);
hence TS(q) < TS(i) as desired.

We now describe the algorithm in detail.

(1) The system maintains a Lamport clock.
(2) Updaters use the MV locking algorithm of Section 5.
(3) When an updater Ti is certified, the system assigns TS(i) = time(ci). This

timestamp is transmitted to all versions that Ti wrote. Thus, certified versions
have timestamps, but uncertified versions do not.

(4) When a query Tq begins executing, the system makes TS(q) less than or
equal to the current time.

(5) Consider any read by T,,r,[x]. As in Section 4, we want to translate this
into rq[xh] where xk is the version of x with the largest timestamp less than
TS(q). But, some care is needed since uncertified versions do not have time-
stamps. Let t be a lower bound on the possible timestamps of any uncertified x
versions. For instance, let t = min{time(cZi[xi]) 1 xi is uncertified}. Since cZi[Xi]
< ci, time(cZi[xi]) is a lower bound on time(s) = TS(i); therefore t is a lower
bound on the timestamps of any uncertified Xi.

Consider r, [x] again. If x has no uncertified versions, or if TS(q) c t, then
rq[x] reads the version xk of x with the largest timestamp less than TS(q); else
rq[x] waits until the condition is satisfied. (This will eventually happen.)

The log properties induced by the algorithm are a simple combination of the
properties induced by MV timestamping and locking. The correctness proof is
similar to those in Sections 4 and 5.

MULTIVERSION MIXED METHOD THEOREM. All logs produced by the MV
mixed method are l-SR.

Prime’s algorithm differs from ours in two respects. Most importantly, Prime’s
algorithm does not use explicit timestamps. All certify events are <-related, that
is, Cl, . . . , cn are totally ordered. The algorithm maintains a list, CL, of all
transactions that have been certified; when Ti is certified, its identifier, i, is
included in CL. When a query Tq begins executing, it makes a copy of CL, denoted
CL(q). When Tp issues a read, rq[x], it reads xk where xk is the latest version
(with respect to <<) of x such that k. E CL(q). We can analyze this behavior as a
special case of our mixed method. Imagine that each updater Ti is assigned a
timestamp equal to its place in the certification total order, that is, TS(i) = t iff
Ti is the tth transaction to be certified. Imagine that T* is assigned the timestamp
TStq) = I CL(q)1 + E, for 0 < E < 1. This is a consistent way of assigning
timestamps. If we now run Tp. under our algorithm, it reads the same versions as
under Prime’s algorithm. Since our algorithm is l-SR, so is Prime’s.

The other difference is that Prime uses a restricted form of multiversion locking
for updaters, namely two-phase locking [8]. Write operations set write-locks, so

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983.

482 l P. A. Bernstein and N. Goodman

that no data item ever has more than one uncertified version. And, once Ti writes
x, no updater Tj reads x until Ti is certified, and vice versa. Consequently, every
updater can be certified as soon as it finishes executing.

The net effect is that queries and updaters are totally decoupled. Queries never
delay or cause the abort of updaters, and updaters never delay or cause the abort
of queries.

Prime’s algorithm is most naturally implemented in a centralized DBS because
of the need to totally order certify events.

The following variant is more suitable for a distributed DBS.
(1) The system maintains a Lamport clock.
(2) Updaters use two-phase locking, hence they can be certified as soon as each

finishes executing. The system assigns TS(i) = time(ci), as in the general
algorithms.

(3) Queries are processed using timestamps, exactly as in the general algorithm.
This algorithm decouples queries and updaters almost as fully as Prime’s

algorithm. Queries never delay or abort updaters, and updaters never abort
queries. But an updater can delay a query under one condition: If a query T4
reads x, updater Ti has a certify-lock on x, and TS(q) is greater than the time of
that certify-lock, then Tg must wait until Ti certifies x.

7. CONCLUSION

This paper has studied the concurrency control problem for multiversion data-
bases. Multiversion databases add a new aspect to concurrency control. Trans-
actions issue operations that specify data items (e.g., read(x), write(x)); the
system must translate these into operations that specify versions. In a single-
version database, concurrency control correctness depends on the order in which
reads and writes are processed. In a multiversion database, correctness depends
on translation as well as order.

We have extended concurrency control theory to account for the translation
aspect of multiversion databases. The main idea is one-copy serializability: an
execution of transactions in a multiversion database is one-copy serializable
(1-5X) if it is equivalent to a serial execution of the same transactions in a single-
version database. A multiversion concurrency control algorithm is correct if all of
its executions are l-SR. We derived effective necessary and sufficient conditions
for an execution to be l-SR, these condition use the concept of version order. We
gave a graph structure, multiversion serialization graphs (MVSGs), that helps
check these conditions. Once a version order is fixed, an execution is l-SR iff its
MVSG is acyclic. MVSGs are analogous to the serialization graphs widely used
in single-version concurrency control theory.

We applied the theory to three multiversion concurrency control algorithms.
One algorithm uses time&s, one uses locking, and one combines locking with
timestamps. The timestamping algorithm is Reed’s [17]. The locking algorithm
was inspired by (and generalizes) the work of Bayer et al. [l, 21 and Stearns and
Rosenkrantz [20]. The combination algorithm generalizes an algorithm developed
by Prime Computer, Inc. [7] and used by Computer Corporation of America [6].

REFERENCES

1. BAYER, R., ELHARDT, E., HELLER, H., AND REISER, A. Distributed concurrency control in
database systems. In Proc. 6th Znt. Conf Very Large Data Bases (Montreal, Oct. l-3, 19801,

ACM Tmnssctiom on Database System, Vol. 8, No. 4, December 1983.

Multiversion Concurrency Control 483

ACM, New York, 1980, pp. 275-284.
2. BAYER, H., HELLER, H., AND REISER A. ParaIIeIism and recovery in database systems. ACM

Truns. Database Syst. 5,2 (June 1980), 139-156.
3. BERNSTEIN, P. A., AND GOODMAN, N. Concurrency control in distributed database systems.

ACM Comput. Suru. 13,2 (June 1981) 185-221.
4. BERNSTEIN, P. A., SHIPMAN, D. W., AND WONG, W. S. Formal aspects of serializability in

database concurrency control. IEEE Trans. Softw. Eng. SE-5,3 (May 1979), 203-215.
5. CASANOVA, M. A. The Concurrency Control Problem of Database Systems. Lecture Notes in

Computer Science, vol. 116, Springer-Verlag, New York, 1981. (OriginaIIy published as Tech. Rep.
TR-17-79, Center for Research in Computing Technology, Harvard University, 1979.)

6. CHAN, A., Fox, S., LIN, W. T. K., NORI, A., AND RIES, D. R. The implementation of an integrated
concurrency control and recovery scheme. In Proc. 1982 ACM SIGMOD Conf Management of
Data (Orlando, Fla., June 2-4, 1982), M. Schkohrick, Ed., ACM, New York, 1982, pp. 184-191.

7. DUBOURDIEU, D. J. Implementation of distributed transactions. In Proc. 1982 Berkeley Work-
shop on Distributed Data Management and Computer Networks, pp. 81-94.

8. ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND TRAIGER, I. L. The notions of consistency and
predicate locks in a database system. Commun. ACM 19,ll (Nov. 1976), 624-633.

9. GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, San Francisco, 1979.

10. GRAY, J. N. Notes on database operating systems. In Operating Systems: An Advanced Course,
Lecture Notes in Computer Science, vol. 66, Springer-Verlag, New York, 1978, pp. 393-481.

11. HOLT, R. C. Some deadlock properties of computer systems. ACM Comput. Suru. 4, 3 (Sept.
1972), 179-196.

12. KING, P. F., AND COLLMEYER, A. J. Database sharing-an efficient mechanism for supporting
concurrent processes. In Proc. 1974 NCC, AFIPS Press, MontvaIe, N.J., 1974.

13. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21, 7 (July 1978), 558-565.

14. PAPADIMITRIOU, C. H. The serializability of concurrent database updates. J. ACM 26, 4 (Oct.
1979), 631-653.

15. PAPADIMITRIOU, C. H., AND KANELLAKIS, P. C. On concurrency control by multiple versions. In
Proc. ACM Symp. Principles of Database Systems (Los Angeles, March 29-31,1982), ACM, New
York, 1982, pp. 76-82.

16. PAPADIMITRIOU, C. H., BERNSTEIN, P. A., AND ROTHNIE, J. B., JR. Some computational
problems related to database concurrency control. In Proc. Conf. Theoretical Computer Science,
(Waterloo, Ontario, Aug. 1977).

17. REED, D. Naming and synchronization in a decentralized computer system. Tech. Rep. MIT/
LCS/TR-205, Dept. Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Sept. 1978.

18. ROSENHRANTZ, D. J., STEARNS, R. E., AND LEWIS, P. M., II System level concurrency control
for distributed database systems. ACM Trans. Database Syst. 3, 2 (June 1978), 178-198.

19. SILBERSCHATZ, A. A multi-version concurrency control scheme with no rollbacks. In Proc. ACM
SIGACT-SIGOPS Symp. Principles of Distributed Computing (Ottawa, Canada, Aug. 18-20,
1982), ACM, New York, 1982, pp. 216-223.

20. STEARNS, R. E., AND ROSENIIRANTZ, D. J. Distributed database concurrency controhr using
before-values. In Proc. 1981 ACM SIGMOD Conf Management of Data, ACM, New York, 1981,
pp. 74-83.

21. STEARNS, R. E., LEWIS, P. M., II, AND ROSENKRANTZ, D. J. Concurrency controls for database
systems. In Proc. 17th Symp. Foundations of Computer Science, IEEE, New York, 1976, pp.
19-32.

Received July 1982; revised November 1982; accepted December 1982

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983.

