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In this paper we survey, consolidate, and present the state of the art in distributed 
database concurrency control. The heart of our analysts is a decomposition of the 
concurrency control problem into two major subproblems: read-write and write-write 
synchronization. We describe a series of synchromzation techniques for solving each 
subproblem and show how to combine these techniques into algorithms for solving the 
entire concurrency control problem. Such algorithms are called "concurrency control 
methods." We describe 48 principal methods, including all practical algorithms that have 
appeared m the literature plus several new ones. We concentrate on the structure and 
correctness of concurrency control algorithms. Issues of performance are given only 
secondary treatment. 
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INTRODUCTION 

The Concurrency Control Problem 

Concurrency control  is the  act ivi ty of co- 
ordinating concurrent  accesses to a data-  
base in a mul t iuser  da tabase  m a n a g e m e n t  
sys tem (DBMS).  Concurrency control  per- 
mits  users to access a da tabase  in a multi-  
p r o g r a m m e d  fashion while preserving the  
illusion tha t  each user is executing alone on 
a dedicated system. T h e  main  technical  
difficulty in a t ta ining this goal is to p revent  
da tabase  upda tes  per formed by  one user  
f rom interfering with da tabase  retr ievals  
and upda tes  per formed by  another .  T h e  
concurrency control p rob lem is exacerbated  
in a dis t r ibuted D B M S  (DDBMS)  because 
(1) users m a y  access da ta  s tored in m a n y  
different compute r s  in a dis t r ibuted system, 
and (2) a concurrency control  mechan i sm 
at  one compute r  cannot  ins tantaneously  
know about  interact ions a t  o ther  com- 
puters.  

Concurrency control  has  been  act ively 
invest igated for the  pas t  several  years,  and  
the p rob lem for nondis t r ibuted  D B M S s  is 
well understood.  A broad  m a t h e m a t i c a l  
theory  has  been  developed to analyze the  
problem,  and  one approach,  called two- 
p h a s e  locking, has  been  accepted  as a 
s tandard  solution. Curre.nt research  on non- 
dis t r ibuted concun 'ency control  is focused 
on evolut ionary  i m p r o v e m e n t s  to two- 
phase  locking, detai led pe r fo rmance  analy- 
sis and optimization,  and  extensions to the 
ma thema t i ca l  theory.  

Dis t r ibuted  concurrency control,  by  con- 
trast ,  is in a s ta te  of  ex t reme  turbulence.  
More than 20 concurrency control algo- 
rithms have been proposed for DDBMSs, 
and several have been, or are being, imple- 
mented. These algorithms are usually com- 
plex, hard to understand, and difficult to 
prove correct (indeed, many are incorrect). 
Because they are described in different ter- 
minologies and make different assumptions 
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about the underlying DDBMS environ- 
ment, it is difficult to compare the many 
proposed algorithms, even in qualitative 
terms. Naturally each author proclaims his 
or her approach as best, but  there is little 
compelling evidence to support the claims. 

To survey the state of the art, we intro- 
duce a standard terminology for describing 
DDBMS concurrency control algorithms 
and a standard model for the DDBMS en- 
vironment. For analysis purposes we de- 
compose the concurrency control problem 
into two major subproblems, called read- 
write and write-write synchronization. Ev- 

cry concurrency control algorithm must in- 
clude a subalgorithm to solve each subprob- 
lem. The first step toward understanding a 
concurrency control algorithm is to isolate 
the subalgorithm employed for each sub- 
problem. 

After studying the large number of pro- 
posed algorithms, we find that they are 
compositions of only a few subalgorithms. 
In fact, the subalgorithms used by all prac- 
tical DDBMS concurrency control algo- 
rithms are variations of just two basic tech- 
niques: two-phase locking and timestamp 
ordering; thus the state of the art is far 
more coherent than a review of the litera- 
ture would seem to indicate. 

Examples of Concurrency Control Anomalies 

The goal of concurrency control is to pre- 
vent interference among users who are si- 
multaneously accessing a database. Let us 
illustrate the problem by presenting two 
"canonical" examples of interuser interfer- 
ence. Both are examples of an on-line 
electronic funds transfer system accessed 
via remote automated teller machines 
(ATMs).  In response to customer requests, 
ATMs retrieve data from a database, per- 
form computations, and store results back 
into the database. 

Anomaly  1: Lost  Updates. Suppose two 
customers simultaneously try to deposit 
money into the same account. In the ab- 
sence of concurrency control, these two ac- 
tivities could interfere (see Figure 1). The 
two ATMs handling the two customers 
could read the account balance at approxi- 
mately the same time, compute new bal- 
ances in parallel, and then store the new 
balances back into the database. The net 
effect is incorrect: although two customers 
deposited money, the database only reflects 
one activity; the other deposit is lost by the 
system. 

Anomaly 2: Inconsistent Retrievals. 
Suppose two customers simultaneously ex- 
ecute the following transactions. 

Customer 1: Move $1,000,000 from Acme 
Corporation's savings ac- 
count to its checking account. 

Customer 2: Pr in t  Acme Corporat ion 's  
total balance in savings and 
checking. 

Computing Surveys, Vol. 13, No 2, June 1981 



Execut,on of T I 

READ bolonce 

Add ~I,000,000 

WRITE result 
bock to dotobose 

Concurrency Control in Database Systems 

Dotobose Execution of T 2 

I I ,   00000 ]  0,000e 
$1,500,000 [ J $2~500,000 ] Add $21000,000 

bock to dotobose 

187 

Figure 1. Lost update anomaly. 

In the absence of concurrency control 
these two transactions could interfere (see 
Figure 2). The first transaction might read 
the savings account balance, subtract 
$1,000,000, and store the result back in the 
database. Then the second transaction 
might read the savings and checking ac- 
count balances and print the total. Then 
the first transaction might finish the funds 
transfer by reading the checking account 
balance, adding $1,000,000, and finally stor- 
ing the result in the database. Unlike 
Anomaly 1, the final values placed into the 
database by this execution are correct. Still, 
the execution is incorrect because the bal- 
ance printed by Customer 2 is $1,000,000 
short. 

These two examples do not exhaust all 
possible ways in which concurrent users 
can interfere. However, these examples are 
typical of the concurrency control problems 
that  arise in DBMSs. 

Comparison to Mutual Exclusion Problems 

The problem of database concurrency con- 
trol is similar in some respects to that  of 
mutual exclusion in operating systems. The 
latter problem is concerned with coordinat- 
ing access by concurrent processes to sys- 
tem resources such as memory, I/O devices, 
and CPU. Many solution techniques have 
been developed, including locks, sema- 
phores, monitors, and serializers [BRIN73, 
DIJK71, HEWI74, HOAR74]. 

The concurrency control and mutual ex- 
clusion problems are similar in that  both 
are concerned with controlling concurrent 

access to shared resources. However, con- 
trol schemes that  work for one do not nec- 
essarily work for the other, as illustrated by 
the following example. Suppose processes 
P1 and P2 require access to resources R1 
and R2 at different points in their execution. 
In an operating system, the following inter- 
leaved execution of these processes is per- 
fectly acceptable: P1 uses R1, P2 uses R~, Pe 
uses R2, P1 uses R2. In a database, however, 
this execution is not always acceptable. As- 
sume, for example, that P2 transfers funds 
by debiting one account (RI), then crediting 
another (R2). If P2 checks both balances, it 
will see R~ after it has been debited, but see 
R2 before it has been credited. Other differ- 
ences between concurrency control and mu- 
tual exclusion are discussed in CHAM74. 

1. TRANSACTION-PROCESSING MODEL 

To understand how a concurrency control 
algorithm operates, one must understand 
how the algorithm fits into an overall 
DDBMS. In this section we present a sim- 
ple model of a DDBMS, emphasizing how 
the DDBMS processes user interactions. 
Later we explain how concurrency control 
algorithms operate in the context of this 
model. 

1.1 Preliminary Definitions and DDBMS 
Architecture 

A distributed database management sys- 
tem (DDBMS) is a collection of sites in- 
terconnected by a network [DEPP76, 
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Figure 2. Incons i s ten t  retr ieval  anomaly .  

ROTH77]. Each site is a computer running 
one or both of the following software mod- 
ules: a transaction manager (TM) or a data 
manager (DM). TMs supervise interactions 
between users and the DDBMS while DMs 
manage the actual database. A network is 
a computer-to-computer communication 
system. The network is assumed to be per- 
fectly reliable: if site A sends a message to 
site B, site B is guaranteed to receive the 
message without error. In addition, we as- 
sume that  between any pair of sites the 
network delivers messages in the order they 
were sent. 

From a user's perspective, a database 
consists of a collection of logical data 
items, denoted X, Y, Z. We leave the gran- 
ularity of logical data items unspecified; in 
practice, they may be files, records, etc. A 
logical database state is an assignment of 
values to the logical data items composing 
a database. Each logical data item may be 
stored at any DM in the system or redun- 
dantly at several DMs. A stored copy of a 

logical data item is called a stored data 
item. (When no confusion is possible, we 
use the term data item for stored data 
item.) The stored copies of logical data item 
X are denoted xl . . . . .  Xm. We typically use 
x to denote an arbitrary stored data item. 
A stored database state is an assignment 
of values to the stored data items in a 
database. 

Users interact with the DDBMS by exe- 
cuting transactions. Transactions may be 
on-line queries expressed in a self-contained 
query language, or application programs 
written in a general-purpose programming 
language. The concurrency control algo- 
rithms we study pay no attention to the 
computations performed by transactions. 
Instead, these algorithms make all of their 
decisions on the basis of the data items a 
transaction reads and writes, and so details 
of the form of transactions are unimportant 
in our analysis. However we do assume that  
transactions represent complete and cor- 
rect computations; each transaction, if ex- 
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Figure 3. D D B M S  system architecture.  

ecuted alone on an initially consistent da- 
tabase, would terminate, produce correct 
results, and leave the database consistent. 
The logical readset (correspondingly, 
writeset) of a transaction is the set of logical 
data items the transaction reads (or writes). 
Similarly, stored readsets and stored 
writesets are the stored data items that  a 
transaction reads and writes. 

The correctness of a concurrency control 
algorithm is defined relative to users' ex- 
pectations regarding transaction execution. 
There are two correctness criteria: (1) users 
expect that  each transaction submitted to 
the system will eventually be executed; (2) 
users expect the computation performed by 
each transaction to be the same whether it 
executes alone in a dedicated system or in 
parallel with other transactions in a multi- 
programmed system. Realizing this expec- 
tation is the principal issue in concurrency 
control. 

A DDBMS contains four components 
(see Figure 3): transactions, TMs, DMs, 
and data. Transactions communicate with 
TMs, TMs communicate with DMs, and 

DMs manage the data. (TMs do not com- 
municate with other TMs, nor do DMs 
communicate with other DMs.) 

TMs supervise transactions. Each trans- 
action executed in the DDBMS is super- 
vised by a single TM, meaning that  the 
transaction issues all of its database oper- 
ations to that  TM. Any distributed com- 
putation that  is needed to execute the 
transaction is managed by the TM. 

Four operations are defined at the trans- 
action-TM interface. READ(X) returns 
the value of X (a logical data item) in the 
current logical database state. WRITE(X, 
new-value) creates a new logical database 
state in which X has the specified new 
value. Since transactions are assumed to 
represent complete computations, we use 
BEGIN and END operations to bracket 
transaction executions. 

DMs manage the stored database, func- 
tioning as backend database processors. In 
response to commands from transactions, 
TMs issue commands to DMs specifying 
stored data items to be read or written. The 
details of the TM-DM interface constitute 
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the core of our transaction-processing 
model and are discussed in Sections 1.2 and 
1.3. Section 1.2 describes the TM-DM in- 
teraction in a centralized database environ- 
ment, and Section 1.3 extends the discus- 
sion to a distributed database setting. 

1.2 Centralized Transaction-Processing 
Model 

A centralized DBMS consists of one TM 
and one DM executing at one site. A trans- 
action T accesses the DBMS by issuing 
BEGIN, READ, WRITE, and END oper- 
ations, which are processed as follows. 

BEGIN: The TM initializes for T a pri- 
vate workspace that  functions as a tempo- 
rary buffer for values read from and written 
into the database. 

READ(X): The TM looks for a copy of 
X in T's private workspace. If the copy 
exists, its value is returned to T. Otherwise 
the TM issues din-read(x) to the DM to 
retrieve a copy of X from the database, 
gives the retrieved value to T, and puts it 
into T's private workspace. 

WRITE(X, new-value): The TM again 
checks the private workspace for a copy of 
X. If it finds one, the value is updated to 
new-value; otherwise a copy of X with the 
new value is created in the workspace. The 
new value of X is not stored in the database 
at this time. 

END: The TM issues dm-write(x) for 
each logical data item X updated by T. 
Each dm-write(x) requests that  the DM 
update the value of X in the stored database 
to the value of X in T's local workspace. 
When all dm-writes are processed, T is 
finished executing, and its private work- 
space is discarded. 

The DBMS may restart T any time be- 
fore a din-write has been processed. The 
effect of restarting T is to obliterate its 
private workspace and to reexecute T from 
the beginning. As we will see, many concur- 
rency control algorithms use transaction 
restarts as a tactic for attaining correct 
executions. However, once a single dm- 
write has been processed, T cannot be re- 
started; each dm-write permanently installs 
an update into the database, and we cannot 
permit the database to reflect partial effects 
of transactions. 

A DBMS can avoid such partial results 
by having the property of atomic commit- 
ment, which requires that  either all of a 
transaction's din-writes are processed or 
none are. The "standard" implementation 
of atomic commitment is a procedure called 
two-phase commit [LAMP76, GRAY78]. 1 
Suppose T is updating data items X and Y. 
When T issues its END, the first phase of 
two-phase commit begins, during which the 
DM issues prewrite commands for X and 
Y. These commands instruct the DM to 
copy the values of X and Y from T's private 
workspace onto secure storage. If the 
DBMS fails during the first phase, no harm 
is done, since none of T's updates have yet 
been applied to the stored database. During 
the second phase, the TM issues din-write 
commands for X and Y which instruct the 
DM to copy the values of X and Y into the 
stored database. If the DBMS fails during 
the second phase, the database may contain 
incorrect information, but since the values 
of X and Y are stored on secure storage, 
this inconsistency can be rectified when the 
system recovers: the recovery procedure 
reads the values of X and Y from secure 
storage and resumes the commitment activ- 
ity. 

We emphasize that  this is a mathemati- 
cal model of transaction processing, an ap- 
proximation to the way DBMSs actually 
function. While the implementation details 
of atomic commitment are important in 
designing a DBMS, they are not central to 
an understanding of concurrency control. 
To explain concurrency control algorithms 
we need a model of transaction execution 
in which atomic commitment is visible, but 
not dominant. 

1.3 Distributed Transaction-Processing 
Model 

Our model of transaction processing in a 
distributed environment differs from that  
in a centralized one in two areas: handling 
private workspaces and implementing two- 
phase commit. 

The term "two-phase commit" is commonly used to 
denote the distributed version of this procedure. How- 
ever, since the centralized and distributed versions are 
identical in structure, we use "two-phase commit" to 
describe both. 
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In a centralized DBMS we assumed that 
(1) private workspaces were part of the TM, 
and (2) data could freely move between a 
transaction and its workspace, and between 
a workspace and the DM. These assump- 
tions are not appropriate in a DDBMS 
because TMs and DMs may run at different 
sites and the movement of data between a 
TM and a DM can be expensive. To reduce 
this cost, many DDBMSs employ query 
optimization procedures which regulate 
(and, it is hoped, reduce) the flow of data 
between sites. For example, in SDD-1 the 
private workspace for transaction T is dis- 
tributed across all sites at which T accesses 
data [BF.RN81]. The details of how T reads 
and writes data in these workspaces is a 
query optimization problem and has no di- 
rect effect on concurrency control. 

The problem of atomic commitment is 
aggravated in a DDBMS by the possibility 
of one site failing while the rest of the 
system continues to operate. Suppose T is 
updating x, y, z stored at DMx, DMy, DMz, 
and suppose T's TM fails after issuing dm- 
write(x), but before issuing the dm-writes 
for y and z. At this point the database is 
incorrect. In a centralized DBMS this phe- 
nomenon is not harmful because no trans- 
action can access the database until the 
TM recovers from the failure. However, in 
a DDBMS, other TMs remain operational 
and can access the incorrect database. 

To avoid this problem, prewrite com- 
mands must be modified slightly. In addi- 
tion to specifying data items to be copied 
onto secure storage, prewrites also specify 
which other DMs are involved in the com- 
mitment activity. Then if the TM fails dur- 
ing the second phase of two-phase commit, 
the DMs whose dm-writes were not issued 
can recognize the situation and consult the 
other DMs involved in the commitment. If 
any DM received a dm-write, the remaining 
ones act as if they had also received the 
command. The details of this procedure are 
complex and appear in HAMM80. 

As in a centralized DBMS, a transaction 
T accesses the system by issuing BEGIN, 
READ, WRITE, and END operations. In 
a DDBMS these are processed as follows. 

BEGIN: The TM creates a private work- 
space for T. We leave the location and 
organization of this workspace unspecified. 

READ(X): The TM checks T's private 

workspace to see if a copy of X is present. 
If so, that  copy's value is made available to 
T. Otherwise the TM selects some stored 
copy of X, say xi, and issues din-read(x,) to 
the DM at which x, is stored. The DM 
responds by retrieving the stored value of 
x, from the database, placing it in the pri- 
vate workspace. The TM returns this value 
to T. 

WRITE(X, new-value): The value of X in 
T's private workspace is updated to new- 
value, assuming the workspace contains a 
copy of X. Otherwise, a copy of X with the 
new value is created in the workspace. 

END: Two-phase commit begins. For 
each X updated by T, and for each stored 
copy x, of X, the TM issues a prewrite (x,) 
to the DM that  stores x,. The DM responds 
by copying the value of X from T's private 
workspace onto secure storage internal to 
the DM. After all prewrites are processed, 
the TM issues dm-writes for all copies of all 
logical data items updated by T. A DM 
responds to dm-write(x,) by copying the 
value of x, from secure storage into the 
stored database. After all dm-writes are 
installed, T's execution is finished. 

2. DECOMPOSITION OF THE CONCUR- 
RENCY CONTROL PROBLEM 

In this section we review concurrency con- 
trol theory with two objectives: to define 
"correct executions" in precise terms, and 
to decompose the concurrency control 
problem into more tractable subproblems. 

2.1 Serializability 

Let E denote an execution of transactions 
T1 . . . . .  T,. E is a serial execution if no 
transactions execute concurrently in E; that  
is, each transaction is executed to comple- 
tion before the next one begins. Every serial 
execution is defined to be correct, because 
the properties of transactions (see Section 
1.1) imply that  a serial execution terminates 
properly and preserves database consist- 
ency. An execution is serializable if it is 
computationally equivalent to a serial exe- 
cution, that  is, if it produces the same out- 
put and has the same effect on the database 
as some serial execution. Since serial exe- 
cutions are correct and every serializable 
execution is equivalent to a serial one, every 
serializable execution is also correct. The 
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Transachons Database 

T 1 • BEGIN; i----n ~ 
READ (X); WRITE(Y); END 

T 2 BEGIN; 
READ(Y), WRITE(Z); END 

T 3 . BEGIN,  

READ(Z), WRITE(X), END 

One possible execution of T1, T2, and T3 is represented by the 
following logs. (Note. r,[x] denotes the operation din-read(x) issued 
by T~; w,[x] denotes a din-write(x) issued by T,.) 

Log for DM A: rl[xl]wl[yl]r2[yl]w3[xl] 
Log for DM B: wl[y2]w2[z2] 
Log for DM C. w2[z3]r3[z3] 

Figure 4. Modeling executions as logs. 

• The execution modeled in Figure 4 is serial. Each 
log is itself serial; that is, there is no interleaving of 
operations from different transactions. At DM A, Ti 
precedes T~ precedes T3; at DM B, % precedes T~; 
and at DM C, T2 precedes T3. Therefore, TI, T2, T3 
is a total order satisfying the definition of serial. 

• The following execution is not serial. The logs them- 
selves are not serial. 

DM A: rl[xl]r2[ YllW3[Xl]Wl[ yl] 
DM B: w2[z2]wl[y2] 
DM C: w2[z3lr3[z3] 

• The following execution is also not serial Although 
each log is serial, there is no total order consistent 
with all logs. 

DM A: rl[x~]wl[yl]re[yl]w3[x~] 
DM B: w2[z2]wl[y2] 
DM C: w2[z3]r3[z3] 

Figure 5. Serial and nonserial loops. 

goal of database concurrency control is to 
ensure that  all executions are serializable. 

The only operations that access the 
stored database are din-read and din-write. 
Hence it is sufficient to model an execution 
of transactions by the execution of din- 
reads and din-writes at the various DMs of 
the DDBMS. In this spirit we formally 
model an execution of transactions by a set 
of logs, each of which indicates the order in 
which dm-reads and din-writes are proc- 
essed at one DM (see Figure 4). An execu- 
tion is serial if there is a total order of 
transactions such that  if T, precedes Tj in 

the total order, then all of T,'s operations 
precede all of Tfs  operations in every log 
where both appear (see Figure 5). Intui- 
tively, this says that  transactions execute 
serially and in the same order at all DMs. 

Two operations conflict if they operate 
on the same data item and one of the op- 
erations is a dm-write. The order in which 
operations execute is computationally sig- 
nificant if and only if the operations con- 
flict. To illustrate the notion of conflict, 
consider a data item x and transactions T, 
and Tj. If T, issues dm-read (x) and T~ 
issues dm-write(x), the value read by T, will 
(in general) differ depending on whether 
the dm-read precedes or follows the dm- 
write. Similarly, if both transactions issue 
dm-write(x) operations, the final value of x 
depends on which dm-write happens last. 
Those conflict situations are called read- 
write (rw) conflicts and write-write (ww) 
conflicts, respectively. 

The notion of conflict helps characterize 
the equivalence of executions. Two execu- 
tions are computationally equivalent if (1) 
each dm-read operation reads data item 
values that  were produced by the same dm- 
writes in both executions; and (2) the final 
dm-write on each data item is the same in 
both executions [PAPA77, PAPA79]. Condi- 
tion (1) ensures that  each transaction reads 
the same input in both executions (and 
therefore performs the same computation). 
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Combined with (2), it ensures that both 
executions leave the database in the same 
final state. 

From this we can characterize serializa- 
ble executions precisely. 

Theorem 1 [PAPA77, PAPA79, STEA76] 

Let T ffi (T1, ..., Tin} be a set of transac- 
tions and let E be an execution of  these 
transactions modeled by logs (Lb . . . .  
Lm}. E is serializable if  there exists a total 
ordering of T such that for each pair of 
conflicting operations O~ and Oj from dis- 
tinct transactions T, and Tj (respectively), 
O~ precedes Oj in any log L~ . . . . .  Lm if  and 
only if T~ precedes T~ in the total ordering. 

The total order hypothesized in Theorem 
1 is called a serialization order. If the 
transactions had executed serially in the 
serialization order, the computation per- 
formed by the transactions would have 
been identical to the computation repre- 
sented by E. 

To attain serializability, the DDBMS 
must guarantee that  all executions satisfy 
the condition of Theorem 1, namely, that 
conflicting dm-reads and dm-writes be 
processed in certain relative orders. Con- 
currency control is the activity of control- 
ling the relative order of conflicting opera- 
tions; an algorithm to perform such control 
is called a synchronization technique. To 
be correct, a DDBMS must incorporate 
synchronization techniques that  guarantee 
the conditions of Theorem 1. 

(3) T, --,ww Tj if in some log of E, T, writes 
into some data item into which T~ sub- 
sequently writes; 

(4) T, --,~w~ Tj if T, -*~  T~ or T, --*w~ Tj; 
(5) T~ --* Tj if Tj --*~ T~ or T~ --*ww 

% 

Intuitively, -* (with any subscript) 
means "in any serialization must precede." 
For example, T, --*~w Tj means "T, in any 
serialization must precede Tj." This inter- 
pretation follows from Theorem 1: If T, 
reads x before Tj writes into x, then the 
hypothetical serialization in Theorem 1 
must have T, preceding T~. 

Every conflict between operations in E is 
represented by an --, relationship. There- 
fore, we can restate Theorem 1 in terms of 
--,. According to Theorem 1, E is serializa- 
ble if there is a total order of transactions 
that  is consistent with -*. This latter con- 
dition holds if and only if --, is acyclic. (A 
relation, --*, is acyclic if there is no sequence 
T1 -* T2, T2 --* Ta . . . . .  Tn-1 --* Tn such that 
T1 ffi T~.) Let us decompose --, into its 
components, --*rwr and--* ww, and restate the 
theorem using them. 

Theorem 2 [BERNSOa] 

Let "-'>rwr and ---,ww be associated with exe- 
cution E. E is serializable if  (a) -'*rwr and 
"-'>w~ are acyclic, and (b) there is a total 
ordering of the transactions consistent 
with all - - ~  and all ---~w relationships. 

2.2 A Paradigm for Concurrency Control 

In Theorem 1, rw and ww conflicts are 
treated together under the general notion 
of conflict. However, we can decompose the 
concept of serializability by distinguishing 
these two types of conflict. Let E be an 
execution modeled by a set of logs. We 
define several binary relations on transac- 
tions in E, denoted by -* with various sub- 
scripts. For each pair of transactions, T~ 
and Tj 

(1) T~ --*~w Tj if in some log of E, T, reads 
some data item into which T~ subse- 
quently writes; 

(2) T~ --*~ T~ if in some log of E, T, writes 
into some data item that  Tj subse- 
quently reads; 

Theorem 2 is an immediate consequence 
of Theorem 1. (Indeed, part (b) of Theorem 
2 is essentially a restatement of the earlier 
theorem.) However, this way of character- 
izing serializability suggests a way of de- 
composing the problem into simpler parts. 
Theorem 2 implies that  rw and ww conflicts 
can be synchronized independently except 
insofar as there must be a total ordering of 
the transactions consistent with both types 
of conflicts. This suggests that  we can use 
one technique to guarantee an acyclic 
--*~w~ relation (which amounts to read-write 
synchronization) and a different technique 
to guarantee an acyclic --*~,~ relation 
(write-write synchronization). However, in 
addition to both - - . ~  and -*ww being 
acyclic, there must also be one serial order 
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consistent with all--, relations. This serial 
order is the cement that  binds together the 
rw and ww synchronization techniques. 

Decomposing serializability into rw and 
ww synchronization is the cornerstone of 
our paradigm for concurrency control. It  
will be important hereafter to distinguish 
algorithms that  attain either rw or ww syn- 
chronization from algorithms that  solve the 
entire distributed concurrency control 
problem. We use the term synchronization 
technique for the former type of algorithm, 
and concurrency control method for the 
latter. 

3. SYNCHRONIZATION TECHNIQUES 
BASED ON TWO-PHASE LOCKING 

Two-phase locking (2PL) synchronizes 
reads and writes by explicitly detecting and 
preventing conflicts between concurrent 
operations. Before reading data item x, 
a transaction must "own" a readlock on 
x. Before writing into x, it must "own" a 
writelock on x. The ownership of locks is 
governed by two rules: (1) different trans- 
actions cannot simultaneously own con- 
flicting locks; and (2) once a transaction 
surrenders ownership of a lock, it may never 
obtain additional locks. 

The definition of conflicting lock de- 
pends on the type of synchronization being 
performed: for rw synchronization two 
locks conflict if (a) both are locks on the 
same data item, and (b) one is a readlock 
and the other is a writelock; for ww syn- 
chronization two locks conflict if (a) both 
are locks on the same data item, and (b) 
both are writelocks. 

The second lock ownership rule causes 
every transaction to obtain locks in a two- 
phase manner. During the growing phase 
the transaction obtains locks without re- 
leasing any locks. By releasing a lock the 
transaction enters the shrinking phase. 
During this phase the transaction releases 
locks, and, by rule 2, is prohibited from 
obtaining additional locks. When the trans- 
action terminates (or aborts), all remaining 
locks are automatically released. 

A common variation is to require that  
transactions obtain all locks before begin- 
ning their main execution. This variation is 
called predeclaration. Some systems also 

require that  transactions hold all locks until 
termination 

Two-phase locking is a correct synchro- 
nization technique, meaning that  2PL 
attains an acyclic --*~ (--*~) relation 
when used for rw (ww) synchronization 
[BERs79b, EswA76, PAPA79]. The seriali- 
zation order attained by 2PL is determined 
by the order in which transactions obtain 
locks. The point at the end of the growing 
phase, when a transaction owns all the locks 
it ever will own, is called the locked point 
of the transaction [BERN79b]. Let E be an 
execution in which 2PL is used for rw (ww) 
synchronization. The --*~ (--*~) relation 
induced by E is identical to the relation 
induced by a serial execution E' in which 
every transaction executes at its locked 
point. Thus the locked points of E deter- 
mine a serialization order for E. 

3.1 Basic 2PL Implementation 

An implementation of 2PL amounts to 
building a 2PL scheduler, a software mod- 
ule that  receives lock requests and lock 
releases and processes them according to 
the 2PL specification. 

The basic way to implement 2PL in a 
distributed database is to distribute the 
schedulers along with the database, placing 
the scheduler for data item x at the DM 
were x is stored. In this implementation 
readlocks may be implicitly requested by 
din-reads and writelocks may be implicitly 
requested by prewrites. If the requested 
lock cannot be granted, the operation is 
placed on a waiting queue for the desired 
data item. (This can produce a deadlock, 
as discussed in Section 3.5.) Writelocks are 
implicitly released by din-writes. However, 
to release readlocks, special lock-release op- 
erations are required. These lock releases 
may be transmitted in parallel with the din- 
writes, since the dm-writes signal the start 
of the shrinking phase. When a lock is 
released, the operations on the waiting 
queue of that  data item are processed first- 
in/first-out (FIFO) order. 

Notice that  this implementation "auto- 
matically" handles redundant data cor- 
rectly. Suppose logical data item X has 
copies xl, . . . ,  xm. If basic 2PL is used for 
rw synchronization, a transaction may read 
any copy and need only obtain a readlock 
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on the copy of X it actually reads. However, 
if a transaction updates X, then it must 
update all copies of X, and so must obtain 
writelocks on all copies of X (whether basic 
2PL is used for rw or ww synchronization). 

3 2  Primary Copy 2PL 

Primary copy 2PL is a 2PL technique that 
pays attention to data redundancy 
[STos79]. One copy of each logical data 
item is designated the primary copy; before 
accessing any copy of the logical data item, 
the appropriate lock must be obtained on 
the primary copy. 

For readlocks this technique requires 
more communication than basic 2PL. Sup- 
pose xl is the primary copy of logical data 
item X, and suppose transaction T wishes 
to read some other copy, x,, of X. To read 
x,, T must communicate with two DMs, the 
DM where Xs is stored (so T can lock xl) 
and the DM where x, is stored. By contrast, 
under basic 2PL, T would only communi- 
cate with x,'s DM. For writelocks, however, 
primary copy 2PL does not incur extra com- 
munication. Suppose T wishes to update X. 
Under basic 2PL, T would issue prewrites 
to all copies of X (thereby requesting 
writelocks on these data items) and then 
issue dm-writes to all copies. Under pri- 
mary copy 2PL the same operations would 
be required, but only the prewrite (Xl) 
would request a writelock. That  is, pre- 
writes would be sent for xl, . . . ,  xm, but the 
prewrites for x2 . . . . .  xm would not implicitly 
request writelocks. 

3.3 Voting 2PL 

Voting 2PL (or majority consensus 2PL) is 
another 2PL implementation that exploits 
data redundancy. Voting 2PL is derived 
from the majority consensus technique of 
Thomas [THOM79] and is only suitable for 
ww synchronization. 

To understand voting, we must examine 
it in the context of two-phase commit. Sup- 
pose transaction T wants to write into X. 
Its TM sends prewrites to each DM holding 
a copy of X. For the voting protocol, the 
DM always responds immediately. It ac- 
knowledges receipt of the prewrite and says 
"lock set" or "lock blocked." (In the basic 
implementation it would not acknowledge 
at all until the lock is set.) After the TM 

receives acknowledgments from the DMs, 
it counts the number of"lock~set" responses: 
if the number constitutes a majority, then 
the TM behaves as if all locks were set. 
Otherwise, it waits for "lockset" operations 
from DMs that originally said "lock 
blocked." Deadlocks aside (see Section 3.5), 
it will eventually receive enough "lockset" 
operations to proceed. 

Since only one transaction can hold a 
majority of locks on X at a time, only one 
transaction writing into X can be in its 
second commit phase at any time. All cop- 
ies of X thereby have the same sequence of 
writes applied to them. A transaction's 
locked point occurs when it has obtained a 
majority of its writelocks on each data item 
in its writeset. When updating many data 
items, a transaction must obtain a majority 
of locks on every data item before it issues 
any dm-writes. 

In principle, voting 2PL could be adapted 
for rw synchronization. Before reading any 
copy of X a transaction requests readlocks 
on all copies of X; when a majority of locks 
are set, the transaction may read any copy. 
This technique works but  is overly strong: 
Correctness only requires that a single copy 
of X be locked--namely, the copy that is 
read--yet  this technique requests locks on 
all copies. For this reason we deem voting 
2PL to be inappropriate for rw synchroni- 
zation. 

3.4 Centralized 2PL 

Instead of distributing the 2PL schedulers, 
one can centralize the scheduler at a single 
site [ALsB76a, GARC79a]. Before accessing 
data at any site, appropriate locks must be 
obtained from the central 2PL scheduler. 
So, for example, to perform dm-read(x) 
where x is not stored at the central site, the 
TM must first request a readlock on x from 
the central site, walt for the central site to 
acknowledge that the lock has been set, 
then send dm-read(x) to the DM that holds 
x. (To save some communication, one can 
have the TM send both the lock request 
and dm-read (x) to the central site and let 
the central site directly forward dm-read(x) 
to x's DM; the DM then responds to the 
TM when dm-read (x) has been processed.) 
Like primary copy 2PL, this approach tends 
to require more communication than basic 
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Tronsochons Datobose 

T 1 : BEGIN; r---~ t<:;:~l 
READ (X); WRITE(Y); END 

T 2 BEGIN; 
READ(Y); WRITE(Z); END 

T 3 , BEGIN, 
READ(Z), WRITE(X), END 

• Suppose  t ransac t ions  execute  concurrent ly ,  wi th  each t ransac t ion  
issuing its READ before any transaction issues its END. 

• This partial execution could be represented by the following logs 

DM A: rl [xl] 
DM B: r~[y2] 
DM C: r3[z3] 

• At this point, T~ has readlock on xx 
T2 has readlock on y2 
T3 has readlock on z3 

• Before proceeding, all transactions must obtain wntelocks. 
% requires wntelocks on y~ and ye 
T2 requires writelocks on z2 and z3 
T3 requires writelock on Xl 

• But 

% cannot get writelock on y2, until T2 releases readlock 
T~ cannot get writelock on z3, until T3 releases readlock 
Ts cannot get wntelock on x~, until Tx releases readlock 

This is a deadlock 

Figure 6. Deadlock. 

2PL, since dm-reads  and prewri tes  usually 
cannot  implicit ly reques t  locks. 

3.5  Dead lock  Detect ion and Prevent ion 

T h e  preceding implementa t ions  of 2PL 
force t ransact ions  to wait  for unavai lable  
locks. I f  this  wait ing is uncontrol led,  dead- 
locks can arise (see Figure 6). 

Deadlock  si tuat ions can be character ized 
by  waits-for graphs [HOLT72, KING74], di- 
rected graphs  t ha t  indicate which t ransac-  
t ions are wait ing for which o ther  t ransac-  
tions. Nodes  of the  graph  represen t  t rans-  
actions, and edges represen t  the "waiting- 
for" relationship: an edge is d rawn f rom 
t ransact ion  T, to t ransact ion  Tj if T, is 
waiting for a lock current ly  owned by  T~. 
The re  is a deadlock in the  sys tem if and 
only if the  waits-for g raph  contains a cycle 
(see Figure 7). 

T w o  general  techniques  are available for 
deadlock resolution: deadlock prevention 
and deadlock detection. 

3.5.1 Deadlock Prevention 

Deadlock prevent ion  is a "caut ious"  
scheme in which a t ransact ion  is res ta r ted  
when the sys t em is "afra id"  tha t  deadlock 
might  occur. T o  imp lemen t  deadlock pre- 
vention,  2PL schedulers  are modif ied as 
follows. W h e n  a lock reques t  is denied, the  
scheduler  tes ts  the  request ing t ransac t ion  
(say T,) and the  t ransact ion  t ha t  current ly  
owns the  lock (say T~). I f  T, and  Tj pass  the  
test, T, is pe rmi t t ed  to wai t  for T~ as usual. 
Otherwise,  one of the  two is aborted.  I f  T, 
is res tar ted,  the  deadlock prevent ion  algo- 
r i t hm is called nonpreemptive; if T~ is re- 
s tar ted,  the a lgor i thm is called preemptive. 

T h e  tes t  applied by  the  scheduler  mus t  
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T 1 must walt for T 2 to 

release read-lock on Y2 

T~ . ' ~ ' r  a 

T3 must wa,t for Tl tO ~ / 1 " 2  must wa,t forT3tO 
release read-lock on x 1 - \ T 5  release read-look on Z 3 

Figure 7. Waits-for graph for Figure 6. 

• 1 9 7  

guarantee that if T, waits for Tj, then dead- 
lock cannot result. One simple approach is 
never to let T~ wait for Tj. This trivially 
prevents deadlock but forces many restarts. 

A better approach is to assign priorities 
to transactions and to test priorities to de- 
cide whether T, can wait for Tj. For exam- 
ple, we could let T, wait for Tj if T, has 
lower priority than Tj (if T~ and Tj have 
equal priorities, T, cannot wait for Tj, or 
vice versa). This test prevents deadlock 
because, for every edge (T ,  Tj) in the waits- 
for graph, T, has lower priority than Tj. 
Since a cycle is a path from a node to itself 
and since T, cannot have lower priority 
thCan itself, no cycle can exist. 

One problem with the preceding ap- 
proach is that cyclic restart is possible-- 
some unfortunate transaction could be con- 
tinually restarted without ever finishing. To 
avoid this problem, Rosenkrantz et al. 
[RosE78] propose using "timestamps" as 
priorities. Intuitively, a transaction's time- 
stamp is the time at which it begins execut- 
ing, so old transactions have higher priority 
than young ones. 

The technique of Ros~.78 requires that 
each transaction be assigned a unique 
timestamp by its TM. When a transaction 
begins, the TM reads the local clock time 
and appends a unique TM identifier to the 
low-order bits [THOM79]. The resulting 
number is the desired timestamp. The TM 
also agrees not to assign another timestamp 
until the next clock tick. Thus timestamps 
assigned by different TMs differ in their 
low-order bits (since different TMs have 
different identifiers), while timestamps as- 
signed by the same TM differ in their high- 
order bits (since the TM does not use the 
same clock time twice). Hence timestamps 
are unique throughout the system. Note 
that this algorithm does not require clocks 
at different sites to be precisely synchro- 
nized. 

Two timestamp-based deadlock preven- 
tion schemes are proposed in Rasp,78. 
Wait-Die is the nonpreemptive technique. 
Suppose transaction T, tries to wait for T~. 
If T, has lower priority than T~ (i.e., T, is 
younger than T~), then T, is permitted to 
wait. Otherwise, it is aborted ("dies") and 
forced to restart. It is important that T, not 
be assigned a new timestamp when it re- 
starts. Wound.Wait is the preemptive 
counterpart to Wait-Die. If T, has higher 
priority than Tj, then T, waits; otherwise Tj 
is aborted. 

Both Wait-Die and Wound-Wait avoid 
cyclic restart. However, in Wound-Wait an 
old transaction may be restarted many 
times, while in Wait-Die old transactions 
never restart. It is suggested in RosE78 that 
Wound-Wait induces fewer restarts in total. 

Care must be exercised in using preemp- 
tive deadlock prevention with two-phase 
commit: a transaction must not be aborted 
once the second phase of two-phase commit 
has begun. If a preemptive technique 
wishes to abort Tj, it checks with Tfs  TM 
and cancels the abort if Tj has entered the 
second phase. No deadlock can result be- 
cause if Tj is in the second phase, it cannot 
be waiting for any transactions. 

Preordering of resources is a deadlock 
avoidance technique that avoids restarts 
altogether. This technique requires prede- 
claration of locks (each transaction obtains 
all its locks before execution). Data items 
are numbered and each transaction re- 
quests locks one at a time in numeric order. 
The priority of a transaction is the number 
of the highest numbered lock it owns. Since 
a transaction can only wait for transactions 
with higher priority, no deadlocks can oc- 
cur. In addition to requiring predeclaration, 
a principal disadvantage of this technique 
is that it forces locks to be obtained sequen- 
tially, which tends to increase response 
time. 

Computing Surveys, Vol. 13, No. 2, June 1981 



198 • P. A. Bernstein and N. Goodman 

• Consider the execution illustrated in Figures 6 and 7. 
• Locks are requested at DMs in the following order: 

DM A DM B DM C 

readlock xl for T1 readlock y2 for T2 readlock z3 for % 
writelock yl for T~ writelock z2 for T2 

*writelock x~ for T3 *writelock y2 for T1 *writelock z3 for T2 
• None of the "starred" locks can be granted and the system is in deadlock. However, 

the waits-for graphs at each DM are acyclic. 

DM A DM B DM C 

® ,(9 © ® @ ,@ 
Figure 8. Multisite deadlock. 

3.5.2 Deadlock Detection 

In deadlock detection, transactions wait for 
each other in an uncontrolled manner and 
are only aborted if a deadlock actually oc- 
curs. Deadlocks are detected by explicitly 
constructing the waits-for graph and 
searching it for cycles. {Cycles in a graph 
can be found efficiently using, for example, 
Algorithm 5.2 in AHO75.) If a cycle is found, 
one transaction on the cycle, called the 
victim, is aborted, thereby breaking the 
deadlock. To minimize the cost of restarting 
the victim, victim selection is usually based 
on the amount of resources used by each 
transaction on the cycle. 

The principal difficulty in implementing 
deadlock detection in a distributed data- 
base is constructing the waits-for graph ef- 
ficiently. Each 2PL scheduler can easily 
construct the waits-for graph based on the 
waits-for relationships local to that  sched- 
uler. However, these local waits-for graphs 
are not sufficient to characterize all dead- 
locks in the distributed system (see Figure 
8). Instead, local waits-for graphs must be 
combined into a more "global" waits-for 
graph. (CentrAlized 2PL does not have this 
problem, since there is only one scheduler.} 
We describe two techniques for construct- 
ing global waits-for graphs: centralized and 
hierarchical deadlock detection. 

In the centralized approach, one site is 
designated the deadlock detector for the 
distributed system [GRAY78, STON79]. Pe- 
riodically (e.g., every few minutes) each 
scheduler sends its local waits-for graph to 
the deadlock detector. The deadlock detec- 
tor combines the local graphs into a system- 

wide waits-for graph by constructing the 
union of the local graphs. 

In the hierarchical approach, the data- 
base sites are organized into a hierarchy (or 
tree), with a deadlock detector at each node 
of the hierarchy [MENA79]. For example, 
one might group sites by region, then by 
country, then by continent. Deadlocks that  
are local to a single site are detected at that  
site; deadlocks involving two or more sites 
of the same region are detected by the 
regional deadlock detector; and so on. 

Although centralized and hierarchical 
deadlock detection differ in detail, both in- 
volve periodic transmission of local waits- 
for information to one or more deadlock 
detector sites. The periodic nature of the 
process introduces two problems. First, a 
deadlock may exist for several minutes 
without being detected, causing response- 
time degradation. The solution, executing 
the deadlock detector more frequently, in- 
creases the cost of deadlock detection. Sec- 
ond, a transaction T may be restarted for 
reasons other than concurrency control 
(e.g., its site crashed). Until T's restart 
propagates to the deadlock detector, the 
deadlock detector can find a cycle in the 
waits-for graph that  includes T. Such a 
cycle is called a phantom deadlock. When 
the deadlock detector discovers a phantom 
deadlock, it may unnecessarily restart a 
transaction other than T. Special precau- 
tions are also needed to avoid unnecessary 
restarts for deadlocks in voting 2PL. 2 

2 Suppose logical data item X has copies x~, x2, and x3, 
and suppose usmg voting 2PL T, owns write-locks on 
x] and x2 but T,'s lock request for x~ is blocked by Tj. 
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A major cost of deadlock detection is the 
restarting of partially executed transac- 
tions. Predeclaration can be used to reduce 
this cost. By obtaining a transaction's locks 
before it executes, the system will only re- 
start transactions that have not yet exe- 
cuted. Thus little work is wasted by the 
restart. 

4. SYNCHRONIZATION TECHNIQUES 
BASED ON TIMESTAMP ORDERING 

Timestamp ordering (T/O) is a technique 
whereby a serialization order is selected a 
priori and transaction execution is forced to 
obey this order. Each transaction is as- 
signed a unique timestamp by its TM. The 
TM attaches the timestamp to all dm-reads 
and dm-writes issued on behalf of the trans- 
action, and DMs are required to process 
conflicting operations in timestamp order. 
The timestamp of operation O is denoted 
ts(O). 

The definition of conflicting operations 
depends on the type of synchronization 
being performed and is analogous to con- 
flicting locks. For rw synchronization, two 
operations conflict if (a) both operate on 
the same data item, and (b) one is a dm- 
read and the other is a dm-write. For ww 
synchronization, two operations conflict if 
(a) both operate on the same data item, and 
(b) both are dm-writes. 

It is easy to prove that T /O attains an 
acyclic - - . ~  ( - .  ~w) relation when used for 
rw (ww) synchronization. Since each DM 
processes conflicting operations in time- 
stamp order, each edge of the --. ~w~ (-~ ww) 
relation is in timestamp order. Conse- 
quently, all paths in the relation are in 
timestamp order and, since all transactions 
have unique timestamps, no cycles are pos- 
sible. In addition, the timestamp order is a 
valid serialization order. 

4.1 Basic T /O Implementation 

An implementation of T /O amounts to 
building a T/O scheduler, a software mod- 
ule that receives dm-reads and dm-writes 

Insofar as xa's scheduler is concerned, T, is waitmg for 
%. However, since T, has a maJority of the copies 
locked, T, can proceed without waiting for Tj. This 
fact should be incorporated into the deadlock resolu- 
tion scheme to avoid unnecessary restarts. 
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and outputs these operations according to 
the T/O specification [SHAP77a, SHAP77b]. 
In practice, prewrites must also be proc- 
essed through the T /O scheduler for two- 
phase commit to operate properly. As was 
the case with 2PL, the basic T / O  imple- 
mentation distributes the schedulers along 
with the database [BEBN80a]. 

If we ignore two-phase commit, the basic 
T /O scheduler is quite simple. At each DM, 
and for each data item x stored at the DM, 
the scheduler records the largest timestamp 
of any dm-read(x) or din-write(x) that has 
been processed. These are denoted R-ts(x) 
and W-ts(x), respectively. For rw synchro- 
nization, scheduler S operates as follows. 
Consider a din-read(x) with timestamp TS. 
If TS < W-ts(x), S rejects the dm-read and 
aborts the issuing transaction. Otherwise S 
outputs the dm-read and sets R-ts(x) to 
max(R-ts(x)-,TS). For a dm-write(x) with 
timestamp TS, S rejects the dm-write if 
TS < R-ts(x); otherwise it outputs the dm- 
write and sets W-ts(x) to max(W-ts(x),TS). 
For ww synchronization, S rejects a dm- 
write(x) with timestamp TS if TS < W- 
ts(x); otherwise it outputs the dm-write and 
sets W-ts(x) to TS. 

When a transaction is aborted, it is as- 
signed a new and larger timestamp by its 
TM and is restarted. Restart  issues are 
discussed further below. 

Two-phase  commit is incorporated by 
timestamping prewrites and accepting or 
rejecting prewrites instead of dm-writes. 
Once a scheduler accepts a prewrite, it must 
guarantee to accept the corresponding dm- 
write no matter when the dm-write arrives. 
For rw (or ww) synchronization, once S 
accepts a prewrite(x) with timestamp TS it 
must not output any dm-read(x) (or dm- 
write(x)) with timestamp greater than TS 
until the dm-write(x) is output. The effect 
is similar to setting a writelock on x for the 
duration of two-phase commit.. 

To implement the above rules, S buffers 
dm-reads, dm-writes, and prewrites. Let 
min-R-ts(x) be the minimum timestamp of 
any buffered din-read(x), and define min- 
W-ts(x) and min-P-ts(x) analogously. Rw 
synchronization is accomplished as follows: 

1. Let R be a dm-read(x). If ts(R) < W- 
ts(x), R is rejected. Else if ts(R) > min- 
P-ts(x), R is buffered. Else R is output. 
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Let R ffi dm-read (x). 
Let W ffi rim-write (x). 
R is ready fli t  precedes the earliest prewrite request: 

ff ts(R) < min-P-ts(x). 
W is ready if it precedes the earliest din-read 

request: 
ifts (W) < min-R-ts(x). 

When a din-write(x) arrives, do the following: 

I Bufferit,I 

es 

I Output all ready W's, and debuffer their ' 1 
prewrites. (This may increase min-P-t~(x) I and make some R's ready.) 

! 
i 

Output all ready R's. (This may increase | 
min-R-ts(x) and make some W's ready.) I 

I 
Figure 9. Buffer emptying for basic T /O rw synchromzation. 

2. Let P be a prewrite(x). If ts(P) < R- 
ts(x), P is rejected. Else P is buffered. 

3. Let W be a dm-write(x). W is never 
rejected. If ts(W) > min-R-ts(x), W is 
buffered. (If W were output it would 
cause a buffered dm-read(x) to be re- 
jected.) Else W is output. 

4. When W is output, the corresponding 
prewrite is debuffered. If this causes 
min-P-ts(x) to increase, the buffered din- 
reads are retested to see if any of them 
can be output. If this causes min-R-ts(x) 
to be increased, the buffered dm-writes 
are also retested, and so forth. This proc- 
ess is diagramed in Figure 9. 

Ww synchronization is accomplished as fol- 
lows: 

1. Let P be a prewrite(x). If ts(P) < W- 
ts(x), P is rejected; else P is buffered. 

2. Let W be a dm-write(x). W is never 

rejected. If ts(W) > min-P-ts(x), W is 
buffered; else W is output. 

3. When W is output, the corresponding 
prewrite is debuffered. If this causes 
min-P-ts(x) to be increased, the buffered 
dm-writes are retested to see if any can 
now be output. See Figure 10. 

As with 2PL, a common variation is to 
require that  transactions predeclare their 
readsets and writesets, issuing all dm-reads 
and prewrites before beginning their main 
execution. 3 If all operations are accepted, 

3 These prewrites are nonstandard relative to the def- 
inition in Section 1.4. Since new values for the data 
items in the writeset are not yet known, these pre- 
writes do not instruct DMs to store values on secure 
storage; instead, prewrite (x) merely "warns" the DM 
to expect a din-write (x) m the near future. However, 
these prewrites are processed by synchronization al- 
gorithms exactly as "standard" ones are. 
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When a din-write(x) arrives, do the followmg: 

I Bufferlt  ] 

es 

Output all ready W's and debuffer their 
prewrites. (This may increase min-P-ts(x) 
and make some W's ready.) 

I 
Figure 10. Buffer emptying for basic T/O ww synchronization. 

the transaction is guaranteed to execute 
without danger of restart. Another varia- 
tion is to delay the processing of operations 
to wait for operations with smaller time- 
stamps. The extreme version of this heuris- 
tic is conservative T/O, described in Sec- 
tion 4.4. 

4.2 The Thomas Write Rule 

For ww synchronization the basic T/O 
scheduler can be optimized using an obser- 
vation of THOM79. Let W be a dm-write(x), 
and suppose ts(W) < W-ts(x). Instead of 
rejecting W we can simply ignore it. We 
call this the Thomas Write Rule (TWR).  
Intuitively, TWR applies to a dm-write that 
tries to place obsolete information into the 
database. The rule guarantees that  the ef- 
fect of applying a set of dm-writes to x is 
identical to what would have happened had 
the dm-writes been applied in timestamp 
order. 

If TWR is used, there is no need to in- 
corporate two-phase commit into the ww 
synchronization algorithm; the ww sched- 
uler always accepts prewrites and never 
buffers dm-writes. 

4.3 Multiversion T /O 

For rw synchronization the basic T/O 
scheduler can be improved using multiver- 
sion data items [REED78]. For each data 
item x there is a set of R-ts's and a set of 

(W-ts, value) pairs, called versions. The R- 
ts's of x record the timestamps of all exe- 
cuted dm-read(x) operations, and the ver- 
sions record the timestamps and values of 
all executed dm-write(x) operations. (In 
practice one cannot store R-ts's and ver- 
sions forever; techniques for deleting old 
versions and timestamps are described in 
Sections 4.5 and 5.2.2.) 

Multiversion T/O accomplishes rw syn- 
chronization as follows (ignoring two-phase 
commit). Let R be a dm-read(x). R is proc- 
essed by reading the version of x with larg- 
est timestamp less than ts(R) and adding 
ts(R) to x's set of R-ts's; see Figure l la .  R 
is never rejected. Let W be a dm-write(x), 
and let interval(W) be the interval from 
ts(W) to the smallest W-ts(x) > ts(W); 4 
see Figure l lb .  If any R-ts(x) lies in 
interval(W), W is rejected; otherwise W is 
output and creates a new version of x with 
timestamp ts(W). 

To prove the correctness of multiversion 
T/O, we must show that  every execution is 
equivalent to a serial execution in time- 
stamp order [BERNS0b]. Let R be a dm- 
read(x) that is processed "out of order"; 
that  is, suppose R is executed after a dm- 
write(x) whose timestamp exceeds ts(R). 
Since R ignores all versions with time- 

4Interval(W) ffi (ts(W),oo) if no W-ts(x) > ts (W) 
exists. 
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(a) Let us represent the versions of a data item x on a "time line": 

Values V1 V2 V3 " ' "  Vn-1 V~ 

W-timestamps ~ 1~0 2~0 . . .  912 1[00 ~--~ 

To process a dm-read(x) with timestamp 95, find the biggest 
W-timestamp less than 95; in this case 92. That  is the version 
you read. So in this case, the value read by the din-read is V,.]. 

(b) Let us represent the R-timestamps of x similarly: 

R-timestamps ~ ~ ll5 . , .  9[2 915 

Values V I 1 V I ~  VI3 " " " V , , - 1 V .  
I lloo W-timestamps ~ 10 20 92 

Let W be din-write(x) with timestamp 93. Interval(W) ffi 
(93,100). 

To process W we create a new version of x with that timestamp. 

R-timestamps 1 I J I I 
5 7 15 92 95 

Values Vl V2 V3 . .  • Vn.1 V Vn 

I I I 912 913 1100 W-timestamps 5 10 20 • • • 

However, this new version "invalidates" the din-read of part (a), 
because if the din-read had arrived after the din-write, it would 
have read value V instead of Vn-1. Therefore, we must reject the 
din-write. 

Figure 11. Multiversion reading and writing. 

stamps greater than ts(R), the value read 
by R is identical to the value it would have 
read had it been processed in timestamp 
order. Now let W be a dm-write(x) that  is 
processed "out of order"; that  is, suppose it 
is executed after a dm-read(x) whose time- 
stamp exceeds ts(W). Since W was not 
rejected, there exists a version of x with 
timestamp TS such that  ts(W) < TS < 
ts(dm-read). Again the effect is identical to 
a timestamp-ordered execution. 

For ww synchronization, multiversion 
T/O is essentially an embellished version 
of TWR. A dm-write(x) always creates a 
new version of x with timestamp ts(dm- 
write) and is never rejected. 

Integrating two-phase commit requires 
that  dm-reads and prewrites (but not dm- 
writes) be buffered as in basic T/O. Let P 
be a buffered prewrite(x): interval(P) is the 
interval from ts(P) to the smallest W-ts(x) 

> ts(P). Rw synchronization is performed 
as follows: 

1. Let R be a dm-read(x). R is never rejected. 
If ts(R) lies in interval(prewrite(x)) 
for some buffered prewrite(x), then R is 
buffered. Else R is output. 

2. Let P be a prewrite(x). If some R-ts(x) 
lies in interval(P), P is rejected. Else P 
is buffered. 

3. Let W be a din-write(x). W is always 
output immediately. 

4. When W is output, its prewrite is debuf- 
fered, and the buffered din-reads are re- 
tested to see if they can now be output. 
See Figure 12. 

Two-phase commit is not an issue for ww 
synchronization, since dm-writes are never 
rejected for ww synchronization. 
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Let R ffi din-read(x). R is ready if ts(R) ~ interval 
(P), where P is any buffered 
prewrite(x). 

When a dm-write arrives do the following: 

Output It and debuffer its prewrite [ 

1 
I o t ut ready  's'l 

Figure 12. Buffer emptying for multiverslon T/O. 

4.4 Conservative T /O 

Conservative timestamp ordering is a tech- 
nique for eliminating restarts during T /O 
scheduling [BERN80a]. When a scheduler 
receives an operation O that might cause a 
future restart, the scheduler delays 0 until 
it is sure that no future restarts are possible. 

Conservative T /O requires that each 
scheduler receive dm-reads (or dm-writes) 
from each TM in timestamp order. For 
example, if scheduler Sj receives dm- 
read(x) followed by dm-read(y) from TM,, 
then ts(dm-read(x)) _ ts(dm-read(y)). 
Since the network is assumed to be a FIFO 
channel, this timestamp ordering is accom- 
plished by requiring that TM, send din- 
reads (or din-writes) to S: in timestamp 
order:  

Conservative T /O buffers din-reads and 
din-writes as part of its normal operation. 
When a scheduler buffers an operation, it 
remembers the TM that sent it. Let min-R- 
ts(TM,) be the minimum timestamp of any 
buffered din-read from TM~, with min-R- 
ts(TM,) ffi -oo if no such din-read is 

5 This can be implemented by requiring that  TMs 
process transactions serially Alternatively, we can 
require that  transactions issue all dm-reads before 
beginning their main executmn, and all dm-writes after 
terminating their main execution. Then transactions 
can execute concurrently, although they must  termi- 
nate in t imestamp order. 
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buffered. Define min-W-ts(TMi) analo- 
gously. 

Conservative T / O  performs rw synchro- 
nization as follows: 

1. Let R be a din-read(x). If ts(R) > min- 
W-ts(TM) for any TM in the system, R 
is buffered. Else R is output. 

2. Let W be  a dm-write(x). I f t s (W) :> min- 
R-ts(TM) for any TM, W is buffered. 
Else W is output. 

3. When R or W is output or buffered, this 
may increase min-R-ts(TM) or min-W- 
ts(TM); buffered operations are retested 
to see if they can now be output. 

The effect is that  R is output if and only 
if (a) the scheduler has a buffered din-write 
from every TM, and (b) ts(R) < minimum 
timestamp of any buffered dm-write. Simi- 
larly, W is output if and only if (a) there is 
a buffered din-read from every TM, and (b) 
ts(W) < minimum timestamp of any 
buffered din-read. Thus R (or W) is output 
ff and only if the scheduler has received 
every din-write (or din-read) with smaller 
timestamp that it will ever receive. 

Ww synchronization is accomplished as 
follows: 

1. Let W be  a din-write(x). I f t s (W) > min- 
W-ts(TM) for any TM in the system, W 
is buffered; else it is output. 

2. When W is buffered or output, this may 
increase min-W-ts(TM); buffered din- 
writes are retested accordingly. 

The effect is that the scheduler waits 
until it has a buffered din-write from every 
TM and then outputs the din-write with 
smallest timestamp. 

Two-phase commit need not be tightly 
integrated into conservative T / O  because 
dm-writes are never rejected. Although pre- 
writes must be issued for all data items 
updated, these operations are not processed 
by the conservative T /O schedulers. 

The above implementation of conserva- 
tive T /O suffers three major problems: (1) 
If some TM never sends an operation to 
some scheduler, the scheduler will "get 
stuck" and stop outputting. (2) To avoid 
the first problem, every TM must commu- 
nicate regularly with every scheduler; this 
is infeasible in large networks. (3) The im- 
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• A c lass  is defined by a readse t  and  a writeset.  For  
example,  

CI: r eadse t  ffi {xl}, wri teset  ffi {yl, Y2} 
C2: readse t  ffi {xl, y2}, wri teset  ffi {yl, y2, z2, z3} 
C3: readse t  ffi {y2, z3}, wri teset  --- {xl, z2, z3} 

• A t ransac t ion  is a m e m b e r  of a class if i ts  readse t  is 
a subse t  of  t he  class readse t  and  its wri teset  is a 
subse t  of  t he  class wntese t .  For  example ,  

Tl: r eadse t  ffi {xl}, wri teset  ffi {Yl, y2} 
T2: readse t  ffi (y2), wri teset  -- {z2, z3) 
Ts" readse t  ffi {z3}, wri teset  ffi {x~} 

• T~ is a m e m b e r  of C1 and  C2 
• T~ is a m e m b e r  of C2 and  C3 
• T3 Is a m e m b e r  of  C3 

Figure 13. T ransac t ion  classes. 

plementation is overly conservative; the ww 
algorithm, for instance, processes all dm- 
writes in timestamp order, not merely con- 
flicting ones. These problems are addressed 
below. 

Null Operations. To solve the first 
problem, TMs are required to periodically 
send timestamped null operations to each 
scheduler in the absence of "real" traffic. A 
null operation is a dm-read or dm-write 
whose sole purpose is to convey timestamp 
information and thereby unblock "real" 
dm-reads and prewrites. An impatient 
scheduler can prompt a TM for a null op- 
eration by sending a "request message." 
For example, for rw synchronization sup- 
pose scheduler S wants to process a dm- 
read with timestamp TS, but does not have 
a buffered dm-write from TM~. S can send 
a message to TM~ requesting a null-dm- 
write with timestamp greater than TS. 

A variation is to use null operations with 
very large (perhaps infinite) timestamps. 
For example, if TM~ rarely needs to issue 
dm-reads to S, TM, can send S a null-dm- 
read with infinite timestamp signifying that  
TM, does not intend to communicate with 
S until further notice. 

Transaction Classes. Transac t ion  
classes [BER~78a, BERN80d] is a technique 
for reducing communication in conserva- 
tive T/O and for supporting a less conserv- 
ative scheduling policy. As in predeclara- 
tion, assume that every transaction's read- 
set and writeset are known in advance. A 
class is defined by a readset and a writeset 
(see Figure 13). Transaction T is a member 

of class C if readset(T) is a subset of read- 
set(C) and writeset(T) is a subset of write- 
set(C). (Classes need not be disjoint.) 

Class definitions are not expected to 
change frequently during normal operation 
of the system. Changing a class definition 
is akin to changing the database schema 
and requires mechanisms beyond the scope 
of this paper. We assume that  class defini- 
tions are stored in static tables that  are 
available to any site requiring them. 

Classes are associated with TMs. Every 
transaction that  executes at a TM must be 
a member of a class associated with the 
TM. If a transaction is submitted to a TM 
that  has no class containing it, the trans- 
action is forwarded to another TM that  
does. We assume that  every class is associ- 
ated with exactly one TM, and vice versa. 
The class associated with TM, is denoted 
C,. To execute transactions that  are mem- 
bers of class C at two TMs, we define an- 
other class C' with the same definition as C 
and associate C with one TM and C' with 
the other. To execute transactions that  are 
members of two classes at one site, we 
multiprogram two TMs at that  site. 

Classes are exploited by conservative 
T/O schedulers as follows. Consider rw syn- 
chronization and suppose scheduler S 
wants to output a dm-read(x). Instead of 
waiting for dm-writes with smaller time- 
stamps from all TMs, S need only wait 
for dm-writes from those TMs whose class 
writeset contains x. Similarly, to process a 
dm-write (x), S need only wait for dm-reads 
with smaller timestamp from those TMs 
whose class readset contains x. Thus com- 
munication requirements are decreased, 
and the level of concurrency in the system 
is increased. Ww synchronization proceeds 
similarly. 

Conflict Graph Analysis. Conflict 
graph analysis is a technique for further 
improving the performance of conservative 
T/O with classes. A conflict graph is an 
undirected graph that  summarizes poten- 
tial conflicts between transactions in differ- 
ent classes. For each class C, the graph 
contains two nodes, denoted r~ and w,, 
which represent the readset and writeset of 
C,. The edges of the graph are defined as 
follows (see Figure 14): (1) For each class 
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Define C1, C2, Ca as in Figure 13. 

C1 readset  = {xl} C2 readset  = {x], y2} C3 readse t  ffi {Y2, za} 

C1 writeset  = {yl, y2} C2 writeset  = {yl, y2, z2, za} Ca wri teset  ffi {xl, z2, za} 

Figure 14. 

C~ there is a vertical edge between r~ and 
w~; (2) for each pair of classes C, and Cj 
(with i ~ j )  there is a horizontal edge 
between w~ and wj if and only if writeset(C~) 
intersects writeset(C~); (3) for each pair of 
classes C, and C~ (with i # j )  there is a 
diagonal edge between r~ and w~ if and only 
if readset(C~) intersects writeset(C~). 

Intuitively, a horizontal edge indicates 
that a scheduler S may be forced to delay 
dm-writes for purposes of ww synchroniza- 
tion. Suppose classes C~ and C~ are con- 
nected by a horizontal edge (w,, wj), indi- 
cating that their class writesets intersect. If 
S receives a dm-write from C,, it must delay 
the dm-write until it receives all dm-writes 
with smaller timestamps from Cj. Similarly, 
a diagonal edge indicates that S may need 
to delay operations for rw synchronization. 

Conflict graph analysis improves the sit- 
uation by identifying interclass conflicts 
that cannot cause nonserializable behavior. 
This corresponds to identifying horizontal 
and diagonal edges that do not require syn- 
chronization. In particular, schedulers need 
only synchronize dm-writes from C, and Cj 
if either (1) the horizontal edge between w~ 
and wj is embedded in a cycle of the conflict 
graph; or (2) portions of the intersection of 
C~'s writeset and C/s writeset are stored at 
two or more DMs [BERN80C]. That  is, if 
conditions (1) and (2) do not hold, schedu- 
ler S need not process dm-writes from C~ 
and Cj in timestamp order. Similarly, dm- 
reads from C, and dm-writes from Cj need 
only be processed in timestamp order if 
either (1) the diagonal edge between r, and 
wj is embedded in a cycle of the conflict 
graph; or (2) portions of the intersection of 
C,'s readset and Cj's writeset are stored at 
two or more DMs. 

Since classes are defined statically, con- 
flict graph analysis is also performed stati- 

Conflict graph. 

cally. The analysis produces a table indi- 
cating which horizontal and vertical edges 
require synchronization and which do not. 
This table, like class definitions, is distrib- 
uted in advance to all schedulers that 
need it. 

4.5 Timestamp Management 
A common criticism of T / O  schedulers is 
that too much memory is needed to store 
timestamps. This problem can be overcome 
by "forgetting" old timestamps. 

Timestamps are used in basic T /O to 
reject operations that "arrive late," for ex- 
ample, to reject a dm-read(x) with time- 
stamp TS1 that arrives after a dm-write(x) 
with timestamp TS2, where TS1 <: TS2. In 
principle, TS1 and TS2 can differ by an 
arbitrary amount. However, in practice it is 
unlikely that these timestamps will differ 
by more than a few minutes. Consequently, 
timestamps can be stored in small tables 
which are periodically purged. 

R-ts's are stored in the R-table with en- 
tries of the form (x, R-ts); for any data 
item x, there is at most one entry. In addi- 
tion, a variable, R-min, tells the maximum 
value of any timestamp that has been 
purged from the table. To find R-ts(x), a 
scheduler searches the R-table for an (x, 
TS) entry. If such an entry is found, R- 
ts(x) = TS; otherwise, R-ts(x) _ R-rain. To 
err on the side of safety, the scheduler 
assumes R-ts(x) ffi R-rain. To update R- 
ts(x), the scheduler modifies the (x, TS) 
entry, if one exists. Otherwise, a new entry 
is created and added to the table. When the 
R-table is full, the scheduler selects an ap- 
propriate value for R-rain and deletes all 
entries from the table with smaller time- 
stamp. W-ts's are managed similarly, and 
analogous techniques can be devised for 
multiversion databases. 
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Maintaining timestamps for conservative 
T /O  is even cheaper, since conservative 
T / O  requires only timestamped operations, 
not timestamped data. If conservative T / O  
is used for rw synchronization, the R-ts's of 
data items may be discarded. If conserva- 
tive T /O  is used for both rw and ww syn- 
chronization, W-ts's can be eliminated also. 

5. INTEGRATED CONCURRENCY CONTROL 
METHODS 

An integrated concurrency control method 
consists of two components--an rw and a 
ww synchronization technique--plus an in- 
terface between the components that  at- 
tains condition (b) of Theorem 2: a total 
ordering of the transactions consistent with 
all ---*~w~ and --*ww relationships. In this 
section we list 48 concurrency control meth- 
ods that  can be constructed using the tech- 
niques of Sections 3 and 4. 

Approximately 20 concurrency control 
methods have been described in the litera- 
ture. Virtually all of them use a single 
synchronization technique {either 2PL or 
T/O) for both rw and ww synchronization. 
Indeed, most methods use the same varia- 
tion of a single technique for both kinds of 
synchronization. However, such homoge- 
neity is neither necessary nor especially 
desirable. 

For example, the analysis of Section 3.2 
suggests that  using basic 2PL for rw syn- 
chronization and primary copy 2PL for ww 
synchronization might be superior to using 
basic 2PL (or primary copy 2PL) for both. 
More outlandish combinations may be even 
better. For example, one can combine basic 
2PL with TWR. In this method ww con- 
flicts never cause transactions to be delayed 
or restarted; multiple transactions can write 
into the same data items concurrently (see 
Section 5.3). 

In Sections 5.1 and 5.2 we describe meth- 
ods that  use 2PL and T / O  techniques for 
both rw and ww synchronization. The con- 
currency control methods in these sections 
are easy to describe given the material of 
Sections 3 and 4; the description of each 
method is little more than a description of 
each component technique. In Section 5.3 
we list 24 concurrency control methods that  
combine 2PL and T /O  techniques. As we 
show in Section 5.3, methods of this type 

have useful properties that  cannot be at- 
tained by pure 2PL or T /O  methods. 

5.1 Pure 2PL Methods 

The 2PL synchronization techniques of 
Section 3 can be integrated to form 12 
principal 2PL methods: 

Method rw techmque ww technique 

1 Basic 2PL Basic 2PL 
2 Basic 2PL Primary copy 2PL 
3 Basic 2PL Voting 2PL 
4 Basic 2PL Centralized 2PL 
5 Primary copy 2PL Basic 2PL 
6 Primary copy 2PL Primary copy 2PL 
7 Primary copy 2PL Voting 2PL 
8 Primary copy 2PL Centralized 2PL 
9 Centralized 2PL Basic 2PL 

10 Centralized 2PL Primary copy 2PL 
11 Centralized 2PL Voting 2PL 
12 Centralized 2PL Centralized 2PL 

Each method can be further refined by the 
choice of deadlock resolution technique 
(see Section 3.5). 

The interface between each 2PL rw tech- 
nique and each 2PL ww technique is 
straightforward. It  need only guarantee 
that  "two-phasedness" is preserved, mean- 
ing that  all locks needed for both the rw 
and ww technique must be obtained before 
any lock is released by either technique. 

5. 1.1 Methods Using Basic 2PL for rw 
Synchronization 

Methods 1-4 use basic 2PL for rw synchro- 
nization. Consider a logical data item X 
with copies xl, . . . ,  Xm. TO read X, a trans- 
action sends a dm-read to any DM that  
stores a copy of X. This dm-read implicitly 
requests a readlock on the copy of X at that  
DM. To write X, a transaction sends pre- 
writes to every DM that  stores a copy of X. 
These prewrites implicitly request write- 
locks on the corresponding copies of X. For 
all four methods, these writelocks conflict 
with readlocks on the same copy, and may 
also conflict with other writelocks on the 
same copy, depending on the specific ww 
synchronization technique used by the 
method. 

Since locking conflict rules for writelocks 
will vary from copy to copy, we distinguish 
three types. An rw writelock only conflicts 
with readlocks on the same data item. A 
ww writelock only conflicts with ww write- 
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locks on the  same data  item. And an rww 
writelock conflicts with readlocks,  ww 
writelocks, and rww writelocks. Thus ,  using 
basic 2PL for rw synchronization,  every 
prewri te  sets rw writelocks, and m a y  set  
s t ronger  locks depending on the ww tech- 
nique. 

Method 1: Basic 2PL for ww synchroni- 
zation. All writelocks are rww writelocks; 
tha t  is, for i ffi 1, . . . ,  m, a wri telock on x, 
conflicts with ei ther  a readlock or a write- 
lock on x ,  This  is the " s tandard"  distrib- 
u ted  implementa t ion  of 2PL. 

Method 2: Primary copy 2PL for ww 
synchronization. Writelocks only conflict 
on the p r imary  copy. An rww writelock is 
used on the p r imary  copy, while rw write- 
locks are used on the others.  

Method 3: Voting 2PL for ww synchro- 
nization. A D M  responds  to a prewrite(x,)  
by  attempting to set  an rww writelock on 
x ,  However ,  if ano ther  t ransact ion already 
owns an rww writelock on x,, the  D M  only 
sets an rw writelock and leaves a reques t  
for an rww writelock pending. A t ransact ion 
can write into any  copy of X af ter  it obtains  
rww writelocks on a major i ty  of  copies. Th is  
is similar to the me thod  proposed in 
GIFF79. 

Method 4: Centralized 2PL for ww syn- 
chronization. T o  write into X, a t ransact ion  
mus t  first explicitly request  a ww writelock 
on X f rom a centralized 2PL scheduler.  T h e  
rw writelocks set  by  prewri tes  never conflict 
with each other.  

In all four methods,  readlocks are explic- 
itly released by  lock releases while write- 
locks are implicitly released by  dm-writes.  
Lock releases m a y  be t r ansmi t t ed  in paral-  
lel with dm-writes.  In  Method  4, after all 
din-writes have  been  executed, addit ional  
lock releases mus t  be sent to the centralized 
scheduler  to release writelocks held there.  

5.1.2 Methods Using Primary Copy 2PL for rw 
Synchromzahon 

Methods  5-8 use p r imary  copy 2PL for rw 
synchronization.  Consider a logical da ta  
i tem X with copies xl . . . . .  xm, and assume 
xz is the  p r imary  copy. To  read  X, a t rans-  
act ion mus t  obta in  a readlock on x~. I t  m a y  
obtain  this lock by  issuing a dm-read(Xl).  
Alternatively,  the  t ransact ion  can send an 
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explicit lock reques t  to Xl'S DM; when  the  
lock is granted  the  t ransact ion  can read  any 
copy of X. 

To  write into X, a t ransac t ion  sends pre- 
wri tes to every D M  t h a t  s tores  a copy of X. 
A prewrite(xl)  implicit ly requests  an  rw 
writelock. Prewri tes  on o ther  copies of  X 
m a y  also reques t  writelocks depending on 
the ww technique.  

Method 5: Basic 2PL for ww synchroni- 
zation. For  i ffi 2 . . . .  , m, prewrite(x,)  re- 
quests a ww writelock. Since the  wri telock 
on xz mus t  also conflict wi th  readlocks on 
xl, prewrite(xl)  requests  an  rww writelock. 

Method 6: Primary copy 2PL for ww 
synchronization. Prewrite(xl)  reques ts  an 
rww writelock on xl. Prewri tes  on o ther  
copies do not  reques t  any  locks. Th is  
me thod  was originally proposed by  SToN79 
and is used in D i s t r ~ u t e d  I N G R E S  
[STOs77]. 

Method 7: Voting 2PL for ww synchro- 
nization. When  a scheduler  receives a pre- 
write(x,) for i ~ 1, i t  t r ies to set  a ww 
writelock on x,. W h e n  it  receives a pre-  
write(x1), it tr ies to set  an rww writelock on 
x~; if it cannot,  t hen  it sets  an  rw writelock 
on xz (if possible) before wait ing for the  
rww writelock. A t ransact ion  can write into 
every copy of X af ter  i t  obta ins  a ww (or 
rww) writelock on a major i ty  of  copies 
of X. 

Method 8: Centralized 2PL for ww syn- 
chronization. Transac t ions  obtain  ww 
writelocks f rom a centralized 2PL schedu- 
ler. Thus  a prewrite(xl)  reques ts  an rw 
writelock on x~; for i ffi 2 , . . . ,  m, prewrite(x,)  
does not  reques t  any  lock. 

Lock releases for Methods  5-8 are han-  
dled as in Sect ion 5.1.1. 

5 1.3 Methods Using Centrahzed 2PL for rw 
Synchroniza tion 

The  remaining 2PL methods  use central-  
ized 2PL for rw synchronization.  Before 
reading (or writing) any  copy of logical da ta  
i tem X, a t ransact ion  mus t  obta in  a read- 
lock (or rw writelock) on X f rom a central-  
ized 2PL scheduler.  Before writ ing X, the  
t ransact ion  m u s t  also send prewri tes  to ev- 
ery D M  tha t  s tores  a copy of X. Some 
of these prewri tes  implicit ly reques t  ww 
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writelocks on copies of X, depending on the 
specific method. 

Method 9: Basic 2PL for ww synchro- 
nization. Every prewrite requests a ww 
writelock. 

Method 10: Primary copy 2PL for ww 
synchronization. If xl is the primary copy 
of X, a prewrite(xl) requests a ww writelock. 
Prewrites on other copies do not request 
any writelocks. 

Method 11: Voting 2PL for ww synchro- 
nization. Every prewrite attempts to set a 
ww writelock. A transaction can write into 
every copy of X after it obtains ww write- 
locks on a majority of copies of X. 

Method 12: Centralized 2PL for ww syn- 
chronization. All locks are obtained at the 
centralized 2PL scheduler. Before writing 
into any copy of X, an rww writelock on X 
is obtained from the centralized scheduler. 
Prewrites set no locks at all. Method 12 is 
the "standard" implementation of central- 
ized 2PL (called primary site in ALSB76a). 

Lock releases for Methods 9-12 are han- 
dled as in Section 5.1.1. 

5.2 Pure T / O  Methods 

The T/O synchronization techniques of 
Section 5 can also be integrated to form 12 
principal T /  O methods: 

Method rw technique ww technique 

1 Basic T /O Basic T /O 
2 Basic T /O Thomas Write Rule 

(TWR) 
3 Basic T /O Multiversion T /O 
4 Basic T /O Conservatwe T /O 
5 Multiversion T /O  Basic T /O 
6 Multiverslon T /O  TWR 
7 Multiversion T /O Multiversion T / O  
8 Multwersion T /O Conservative T /O 
9 Conservative T /O Basic T /O 

10 Conservative T /O TWR 
11 Conservative T /O Multiversion T /O 
12 Conservahve T /O Conservative T /O 

(That there are also 12 2PL methods is 
coincidental.) 

Each T/O method that  incorporates a 
conservative component can be refined by 
including classes and conflict graph analysis 
(see Sections 4.4.2 and 4.4.3). 

The interface between rw and ww syn- 
chronization techniques is even simpler for 
T/O methods than for 2PL. The only re- 

quirement is that  both techniques use the 
same timestamp for any given transaction. 

5.2.1 Methods Using Basic T/O for rw 
Synchronization 

Methods 1-4 use basic T/O for rw synchro- 
nization. All four methods require R-ts's for 
each data item. Methods 1, 2, and 4 require 
W-ts's, while in Method 3 each data item 
has a set of timestamped versions; for 
Method 3, let W-ts(x) denote x's largest 
timestamp. Each method buffers dm-reads 
and prewrites for two-phase commitment 
purposes; let min-R-ts(x) and min-P-ts(x) 
be the minimum timestamps of any 
buffered din-read(x) and prewrite(x), re- 
spectively. 

These methods can be described by the 
following steps. Let R be a din-read(x), P a 
prewrite(x), and W a din-write(x). 

1. If ts(R) < W-ts(x), R is rejected. Else 
if ts(R) > min-P-ts(x), R is buffered. 
Else R is output and R-ts(x) is set to 
max(R-ts(x), ts(R)). 
If ts(P) < R-ts(x) or condition (A) 6 
holds, P is rejected. Else P is buffered. 
If ts(W) > min-R-ts(x) or condition (B) 6 
holds, W is buffered. Else W is output 
and W-ts(x) is set to max(W-ts(x), 
ts(W)). For Method 3, a new version of 
x is created with timestamp ts(W). 
When W is output, its prewrite is debuf- 
fered and the buffered din-reads and din- 
writes are retested to see if any can now 
be output. 

Method 1: Basic T / O  for ww synchroni- 
zation. Condition (A) is ts(P) < W-ts(x) 
and condition (B) is ts(W) > min-P-ts(x). 
Note that  min-R-ts(x) > min-P-ts(x), since 
R is buffered only if ts(R) > min-P-ts(x). 
Also, when Wis  output, ts(W) > W-ts(x), 
since condition (B) forces dm-writes on a 
given x to be output in timestamp order. 
Thus step 3 simplifies to 

3. If ts(W) > min-P-ts(x), W is buffered. 
Else W is output and W-ts(x) is set to 
ts(W). 

Method 2: T W R  for ww synchronization. 
Conditions (A) and (B) are null. However, 

. 

3. 

. 

6 Conditions (A) and (B) are determmed by the new 
technique. See the following. 

Computing Surveys, Vol. 13, No 2, June 1981 



Concurrency Control in Database Systems • 209 

if ts(W) < W-ts(x), Whas  no effect on the 
database. 

Method 3: Multiversion T/O for ww syn- 
chronization. Like Method 2 except that  
W always creates a new version of x. 

Method 4: Conservative T /  O for ww syn- 
chronization. Condition (A) is null. For 
each TM, let min-W-ts(TM) be the mini- 
mum timestamp of any buffered dm-write 
from that  TM. Condition (B) is ts(W) > 
min-W-ts(TM) for some TM. As in Method 
1, this causes dm-writes on a given x to be 
output in timestamp order, and step 3 sim- 
plifies to 

3. If ts{W) > min-R-ts{x) or ts(W) > min- 
W-ts(TM) for some TM, W is buffered. 
Else W is output and W-ts(x) is set to 
ts(W). 

5.2.2 Methods Using Multiversion T/O for rw 
Synchronization 

Methods 5-8 use multiversion T/O for rw 
synchronization and require a set of R-ts's 
and a set of versions for each data item. 
These methods can be described by the 
following steps. Define R, P, W, min-R-ts, 
min-W-ts, and min-P-ts as above; let inter- 
val{P) be the interval from ts(P) to the 
smallest W-ts(x) > ts(P). 

1. R is never rejected. If ts(R) lies in 
interval(prewrite(x)) for some buffered 
prewrite(x), then R is buffered. Else R is 
output and ts(R) is added to x's set of 
R-ts's. 

2. If some R-ts(x) lies in interval(P) or 
condition (A) holds, then P is rejected. 
Else P is buffered. 

3. If condition (B) holds, W is buffered. 
Else W is output and creates a new 
version of x with timestamp ts(W). 

4. When W is output, its prewrite is debuf- 
feted, and buffered dm-reads and dm- 
writes are retested. 

Method 5: Basic T /O for ww synchron- 
ization. Condition (A) is ts(P) < max- 
W-ts(x) and condition (B) is ts(W) > 
min-P-ts(x). Condition (A) implies that 
interval(P) = (ts(P), ~); some R-ts(x) lies 
in that interval if and only if ts(P) < max- 
imum R-ts(x). Thus step 2 simplifies to 

2. If ts(P) < max W-ts(x) or ts(P) < max 

R-ts(x), then P is rejected. Else it is 
buffered. 

Because of this simplification, the method 
only requires that  the maximum R-ts(x) be 
stored. 

Condition (B) forces dm-writes on a 
given data item to be output in timestamp 
order. This supports a systematic technique 
for "forgetting" old versions. Let max-W- 
ts(x) be the maximum W-ts(x) and let min- 
ts be the minimum of max-W-ts(x) over all 
data items in the database. No dm-write 
with timestamp less than min-ts can be 
output in the future. Therefore, insofar as 
update transactions are concerned, we can 
safely forget all versions timestamped less 
than min-ts. TMs should be kept informed 
of the current value of min-ts and queries 
(read-only transactions) should be assigned 
timestamps greater than min-ts. Also, after 
a new min-ts is selected, older versions 
should not be forgotten immediately, so 
that active queries with smaller timestamps 
have an opportunity to finish. 

Method 6: T W R  for ww synchronization. 
This method is incorrect. TWR requires 
that  W be ignored if ts(W) < max W-ts(x). 
This may cause later dm-reads to be read 
incorrect data. See Figure 15. {Method 6 is 
the only incorrect method we will encoun- 
ter.) 

Method 7: Multiversion T /  O for ww syn- 
chronization. Conditions (A) and (B) are 
null. Note that this method, unlike all pre- 
vious ones, never buffers dm-writes. 

Method 8: Conservative T /O for ww syn- 
chronization. Condition (A) is null. Condi- 
tion (B) is ts(W) > min-W-ts(TM) for some 
TM. Condition (B) forces dm-writes to 
be output in timestamp order, implying 
interval(P) = (ts(P), oo). As in Method 5, 
this simplifies step 2: 

2. If ts(P) < max R-ts(x), P is rejected; else 
it is buffered. 

Like Method 5, this method only requires 
that  the maximum R-ts(x) be stored, and it 
supports systematic "forgetting" of old ver- 
sions described above. 

5.2.3 Methods Using Conservative T/O for rw 
Synchronization 

The remaining T/O methods use conserv- 
ative T/O for rw synchronization. Methods 

Computing Surveys, Vol. 13, No. 2, June 1981 



210 • P. A. Bernstein and N. Goodman 

• Consider data items x and y with the foUowmg 
versions: 

Values 0 

I 
W-tlmestamps 0 

Values 0 

y I 
W-timestamps 0 

100 
I 

lo0 
v 

r 

• Now suppose T has  t imestamp 50 and writes x := 
50, y := 50. Under  Method 6 the update to x is 
ignored, and the result  is 

Values 0 
x I 

W-tmaestamps 0 

Values 0 

y J 
W-timestamps 0 

5O 

I 
5O 

lo0 
I 

100 
v 

• Finally, suppose T'  has t imestamp 75 and reads x 
and y. The  values it will read are x = 0, y ffi 50, whmh 
is incorrect. T '  should read x - 50, y = 50. 

Figure 15.  Inconsistent retrievals in Method 6. 

9 and 10 require W-ts's for each data item, 
and Method 11 requires a set of versions for 
each data item. Method 12 needs no data 
item timestamps at all. Define R, P, W and 
min-P-ts as in Section 5.2.1; let min-R- 
ts(TM) (or min-W-ts(TM)) be the mini- 
mum timestamp of any buffered dm-read 
(or dm-write) from TM. 

1. If ts(R) > min-W-ts(TM) for any TM, R 
is buffered; else it is output. 

2. If condition (A) holds, P is rejected. Else 
P is buffered. 

3. I f t s (W) > min-R-ts(TM) for any TM or 
condition (B) holds, W is buffered. Else 
W is output. 

4. When W is output, its prewrite is debuf- 
fered. When R or W is output or 
buffered, buffered dm-reads and dm- 
writes are retested to see if any can now 
be output. 

Method 9: Basic T /O  for ww synchroni- 
zation. Condition (A) is ts(P) < W-ts(x), 
and condition (B) is ts(W) > min-P-ts(x). 

Method 10: T W R  for ww synchroniza- 
tion. Conditions (A) and (B) are null. How- 
ever, if ts(W) < W-ts(x), W has no effect 
on the database. 

This method is essentially the SDD-1 
concurrency control [BERN80d], although 
in SDD-1 the method is refined in several 
ways. SDD-1 uses classes and conflict graph 
analysis to reduce communication and 
increase the level of concurrency. Also, 
SDD-1 requires predeclaration of read-sets 
and only enforces the conservative sched- 
uling on dm-reads. By doing so, it forces 
dm-reads to wait for dm-writes, but does 
not insist that  dm-writes wait for all dm- 
reads with smaller timestamps. Hence dm- 
reads can be rejected in SDD-1. 

Method 11: Multiversion T / O  for ww 
synchronization. Conditions (A) and (B) 
are null. When W is output, it creates a 
new version of x with timestamp ts(W). 
When R is output it reads the version with 
largest timestamp less than ts(R). 

This method can be optimized by noting 
the multiversion T /O "automatically" pre- 
vents dm-reads from being rejected, and 
makes it unnecessary to buffer dm-writes. 
Thus step 3 can be simplified to 

3. W is output immediately. 

Method 12: Conservative T / O  for ww 
synchronization. Condition (A) is null; con- 
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dition (B) is ts(W) > min-W-ts(TM) for 
some TM. The effect is to output W if the 
scheduler has received all operations with 
timestamps less than ts(W) that it will ever 
receive. Method 12 has been proposed in 
CI~EN80, KANE79, and SHAP77a. 

5.3 Mixed 2PL and T /O  Methods 

The major difficulty in constructing meth- 
ods that combine 2PL and T/O lies in de- 
veloping the interface between the two 
techniques. Each technique guarantees an 
acyclic --*~ (or ---~) relation when used 
for rw (or ww) synchronization. The inter- 
face between a 2PL and a T/O technique 
must guarantee that  the combined --* rela- 
tion (i.e., --*~ U --->v,~) remains acyclic. That  
is, the interface must ensure that  the seri- 
alization order induced by the rw technique 
is consistent with that induced by the ww 
technique. In Section 5.3.1 we describe an 
interface that  makes this guarantee. Given 
such an interface, any 2PL technique can 
be integrated with any T/O technique. Sec- 
tions 5.3.2 and 5.3.3 describe such methods. 

5.3. 1 The Interface 

The serialization order induced by any 2PL 
technique is determined by the locked 
points of the transactions that have been 
synchronized (see Section 3). The seriali- 
zation order induced by any T/O technique 
is determined by the timestamps of the 
synchronized transactions. So to interface 
2PL and T/O we use locked points to in- 
duce timestamps [BERN80b]. 

Associated with each data item is a lock 
timestamp, L-ts(x). When a transaction T 
sets a lock of x, it simultaneously retrieves 
L-ts(x). When T reaches its locked point it 
is assigned a timestamp, ts(T), greater than 
any L-ts it retrieved. When T releases 
its lock on x, it updates L-ts(x) to be 
max(L-ts(x), ts(T)). 

Timestamps generated in this way are 
consistent with the serialization order in- 
duced by 2PL. That is, ts(Tj) < ts(Tk) if Tj 
must precede Tk in any serialization in- 
duced by 2PL. To see this, let T1 and Tn be 
a pair of transactions such that  T~ must 
precede T,  in any serialization. Thus there 
exist transactions T1, T2 . . . .  T,q, T ,  such 
that for i = 1 . . . .  , n-1 (a) T,'s locked point 
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precedes T,+l's locked point, and (b) T, 
released a lock on some data item x before 
T,+I obtained a lock on x. Let L be the L- 
ts(x) retrieved by TI+I. Then ts(T,) < L < 
ts(T,+~), and by induction ts(Ta) < ts(Tn). 

5.3.2 Mixed Methods Using 2PL for rw Syn- 
chrontzation 

There are 12 principal methods in which 
2PL is used for rw synchronization and 
T/O is used for ww synchronization: 

Method rw technique ww technique 

1 Basic 2PL Basic T /O 
2 Basic 2PL TWR 
3 Basic 2PL Multiversion T /O 
4 Basic 2PL Conservative T /O 
5 Primary copy 2PL Basic T /O  
6 Prnnary copy 2PL TWR 
7 Primary copy 2PL Multiversion T /O 
8 Primary copy 2PL Conservative T /O 
9 Centrahzed 2PL Basic T /O 

10 Centralized 2PL TWR 
11 Centrahzed 2PL Multiversion T /O 
12 Centralized 2PL Conservatwe T /O 

Method 2 best exemplifies this class of 
methods, and it is the only one we describe 
in detail. Method 2 requires that  every 
stored data item have an L-ts and a W-ts. 
(One timestamp can serve both roles, but 
we do not consider this optimization here.) 

Let X be a logical data item with copies 
xl . . . .  , xm. To read X, transaction T issues 
a dm-read on any copy of X, say x,. This 
dm-read implicitly requests a readlock on 
x,  and when the readlock is granted, L- 
ts(x,) is returned to T. To write into X, T 
issues prewrites on every copy of X. These 
prewrites implicitly request rw writelocks 
on the corresponding copies, and as each 
writelock is granted, the corresponding L-ts 
is returned to T. When T has obtained all 
of its locks, ts(T) is calculated as in Section 
5.3.1. T attaches ts(T) to its dm-writes, 
which are then sent. 

Dm-writes are processed using TWR. Let 
W be dm-write(xj). If ts(W) > W-ts(xj), 
the dm-write is processed as usual (xj is 
updated). If, however, ts(W) < W-ts(xj), W 
is ignored. 

The interesting property of this method 
is that  writelocks never conflict with write- 
locks. The writelocks obtained by prewrites 
are only used for rw synchronization, and 
only conflict with readlocks. This permits 
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transactions to execute concurrently to 
completion even if their writesets intersect. 
Such concurrency is never possible in a 
pure 2PL method. 

5.3,3 Mixed Methods Using T/O for rw Syn- 
chronizatton 

There are also 12 principal methods that 
use T/O for rw synchronization and 2PL 
for ww synchronization: 

Method rw technique ww technique 

13 Basic T /O Basic 2PL 
14 Basic T /O Primary copy 2PL 
15 Basic T /O  Voting 2PL 
16 Basic T /O Centralized 2PL 
17 Multiversion T /O Basic 2PL 
18 Multiversion T /O Primary copy 2PL 
19 Multlversion T /O Voting 2PL 
20 Multiversion T /O Centralized 2PL 
21 Conservative T /O  Basic 2PL 
22 Conservative T /O Primary copy 2PL 
23 Conservative T /O Voting 2PL 
24 Conservative T /O Centralized 2PL 

These methods all require predec lara t ion  
o f  writelocks.  Since T/O is used for rw 
synchronization, transactions must be as- 
signed timestamps before they issue dm- 
reads. However, the timestamp generation 
technique of Section 5.3.1 requires that  a 
transaction be at its locked point before it 
is assigned its timestamp. Hence every 
transaction must be at its locked point be- 
fore it issues any dm-reads; in other words, 
every transaction must obtain all of its 
writelocks before it begins its main execu- 
tion. 

To illustrate these methods, we describe 
Method 17. This method requires that  each 
stored data item have a set of R-ts's and a 
set of (W-ts, value) pairs (i.e., versions). 
The L-ts of any data item is the maximum 
of its R-ts's and W-ts's. 

Before beginning its main execution, 
transaction T issues prewrites on every 
copy of every data item in its writeset. 7 
These prewrites play a role in ww synchro- 
nization, rw synchronization, and the inter- 
face between these techniques. 

Let P be a prewrite(x). The ww role of P 

7 Since new values for the data items in the writeset 
are not yet known, these prewrites do not instruct 
DMs to store values on secure storage, they merely 
"warn" DMs to "expect" the corresponding dm-wntes 
See footnote 3. 

is to request a ww writelock on x. When the 
lock is granted, L-ts(x) is returned to T; 
this is the interface role of P. Also when the 
lock is granted, P is buffered and the rw 
synchronization mechanism is informed 
that a dm-write with timestamp greater 
than L-ts(x) is pending. This is its rw role. 

When T has obtained all of its writelocks, 
ts(T) is calculated as in Section 5.3.1 and T 
begins its main execution. T attaches ts(T) 
to its dm-reads and dm-writes and rw syn- 
chronization is performed by multiversion 
T/O, as follows: 

1. Let R be a dm-read(x). If there is a 
buffered prewrite(x) (other than one is- 
sued by T), and if L-ts(x) < ts(T), then 
R is buffered. Else R is output and reads 
the version of x with largest timestamp 
less than ts(T). 

2. Let W be a din-write(x). W is output 
immediately and creates a new version 
of x with timestamp ts(T). 

3. When W is output, its prewrite is debuf- 
fered, and its writelock on x is released. 
This causes L-ts(x) to be updated to 
max(L-ts(x), ts(T)) -- ts(T). 

One interesting property of this method 
is that  restarts are needed only to prevent 
or break deadlocks caused by ww synchro- 
nization; rw conflicts never cause restarts. 
This property cannot be attained by a pure 
2PL method. It can be attained by pure 
T/O methods, but only if conservative T/O 
is used for rw synchronization; in many 
cases conservative T/O introduces exces- 
sive delay or is otherwise infeasible. 

The behavior of this method for queries 
is also interesting. Since queries set no 
writelocks, the timestamp generation rule 
does not apply to them. Hence the sys tem 
is free to ass ign any  t imes tamp it wishes  to 
a query. It may assign a small timestamp, 
in which case the query will read old data 
but is unlikely to be delayed by buffered 
prewrites; or it may assign a large time- 
stamp, in which case the query will read 
current data but is more likely to be de- 
layed. No matter which timestamp is se- 
lected, however, a query  can never  cause 
an  update  to be rejected. This property 
cannot be easily attained by any pure 2PL 
or T/O method. 

We also observe that  this method creates 
versions in timestamp order, and so sys- 
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tematic forgetting of old versions is possible 
(see Section 5.2.2). In addition, the method 
requires only maximum R-ts's; smaller ones 
may be instantly forgotten. 

CONCLUSION 

We have presented a framework for the 
design and analysis of distributed database 
concurrency control algorithms. The frame- 
work has two main components: (1) a sys- 
tem model that provides common termi- 
nology and concepts for describing a variety 
of concurrency control algorithms, and (2) 
a problem decomposition that decomposes 
concurrency control algorithms into read- 
write and write-write synchronization sub- 
algorithms. 

We have considered synchronization sub- 
algorithms outside the context of specific 
concurrency control algorithms. Virtually 
all known database synchronization algo- 
rithms are variations of two basic tech- 
niques- two-phase locking (2PL) and 
timestamp ordering (T/O). We have de- 
scribed the principal variations of each 
technique, though we do not claim to have 
exhausted all possible variations. In addi- 
tion, we have described ancillary problems 
{e.g., deadlock resolution) that must be 
solved to make each variation effective. 

We have shown how to integrate the 
described techniques to form complete con- 
currency control algorithms. We have listed 
47 concurrency control algorithms, describ- 
ing 25 in detail. This list includes almost all 
concurrency control algorithms described 
previously in the literature, plus several 
new ones. This extreme consolidation of the 
state of the art is possible in large part 
because of our framework set up earlier. 

The focus of this paper has primarily 
been the structure and correctness of syn-, 
chronization techniques and concurrency 
control algorithms. We have left open a 
very important issue, namely, performance. 

The main performance metrics for con- 
currency control algorithms are system 
throughput and transaction response time. 
Four cost factors influence these metrics: 
intersite communication, local processing, 
transaction restarts, and transaction block- 
ing. The impact of each cost factor on sys- 
tem throughput and response time varies 

from algorithm to algorithm, system to sys- 
tem, and application to application. This 
impact is not understood in detail, and a 
comprehensive quantitative analysis of per- 
formance is beyond the state of the art. 
Recent theses by Garcia-Mo!ina [GARc79a] 
and Reis [REm79a] have taken first steps 
toward such an analysis but  there clearly 
remains much to be done. 

We hope, and indeed recommend, that 
future work on distributed concurrency 
control will concentrate on the performance 
of algorithms. There are, as we have seen, 
many known methods; the question now is 
to determine which are best. 

APPENDIX. OTHER CONCURRENCY 
CONTROL METHODS 

In this appendix we describe three concur- 
rency control methods that  do not fit the 
framework of Sections 3-5: the certifier 
methods of Badal [BADA79], Bayer et al. 
[BAYE80], and Casanova [CASA79], the ma- 
jority consensus algorithm of Thomas 
[THoM79], and the ring algorithm of Ellis 
[ELLI77]. We argue that these methods are 
not practical in DDBMSs. The certifier 
methods look promising for centralized 
DBMSs, but  severe technical problems 
must be overcome before these methods 
can be extended correctly to distributed 
systems. The Thomas and Ellis algorithms, 
by contrast, are among the earliest algo- 
rithms proposed for DDBMS concurrency 
control. These algorithms introduced sev- 
eral important techniques into the field but, 
as we will see, have been surpassed by 
recent developments. 

A1. Certifiers 

A 1.1 The Certification Approach 

In the certification approach, din-reads and 
prewrites are processed by DMs first-come/ 
first-served, with no synchronization what- 
soever. DMs do maintain summary infor- 
mation about rw and ww conflicts, which 
they update every time an operation is 
processed. However, din-reads and pre- 
writes are never blocked or rejected on the 
basis of the discovery of such a conflict. 

Synchronization occurs when a transac- 
tion attempts to terminate. When a trans- 
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action T issues its END, the DBMS decides 
whether or not to certify, and thereby com- 
mit, T. 

To understand how this decision is made, 
we must distinguish between "total" and 
"committed" executions. A total execution 
of transactions includes the execution of all 
operations processed by the system up to a 
particular moment. The committed execu- 
tion is the portion of the total execution 
that  only includes din-reads and din-writes 
processed on behalf of committed transac- 
tions. That  is, the committed execution is 
the total execution that would result from 
aborting all active transactions (and not 
restarting them). 

When T issues its END, the system tests 
whether the committed execution aug- 
mented by T's execution is serializable, that  
is, whether after committing T the resulting 
committed execution would still be serial- 
izable. If so, T is committed; otherwise T is 
restarted. 

There are two properties of certification 
that distinguish it from other approaches. 
First, synchronization is accomplished en- 
tirely by restarts, never by blocking. And 
second, the decision to restart or not is 
made after the transaction has finished ex- 
ecuting. No concurrency control method 
discussed in Sections 3-5 satisifies both 
these properties. 

The rationale for certification is based on 
an optimistic assumption regarding run- 
time conflicts: if very few run-time conflicts 
are expected, assume that  most executions 
are serializable. By processing din-reads 
and prewrites without synchronization, the 
concurrency control method never delays a 
transaction while it is being processed. Only 
a (fast, it is hoped) certification test when 
the transaction terminates is required. 
Given optimistic transaction behavior, the 
test will usually result in committing the 
transaction, so there are very few restarts. 
Therefore certification simultaneously 
avoids blocking and restarts in optimistic 
situations. 

A certification concurrency control 
method must include a summarization al- 
gorithm for storing information about dm- 
reads and prewrites when they are proc- 
essed and a certification algorithm for us- 
ing that  information to certify transactions 

when they terminate. The main problem in 
the summarization algorithm is avoiding 
the need to store information about al- 
ready-certified transactions. The main 
problem in the certification algorithm is 
obtaining a consistent copy of the summary 
information. To do so the certification al- 
gorithm often must perform some synchro- 
nization of its own, the cost of which must 
be included in the cost of the entire method. 

A1.2 Certificatton Using the--~ Relatton 

One certification method is to construct the 
---) relation as dm-reads and prewrites are 
processed. To certify a transaction, the sys- 
tem checks that  ---> is acyclic [BADA79, 
BAYE80, CASA79]. s 

To construct --% each site remembers the 
most recent transaction that  read or wrote 
each data item. Suppose transactions T, 
and T~ were the last transactions to (re- 
spectively) read and write data item x. If 
transaction Tk now issues a din-read(x), 
Tj --* Tk is added to the summary infor- 
mation for the site and Tk replaces T, as 
the last transaction to have read x. Thus 
pieces of--* are distributed among the sites, 
reflecting run-time conflicts at each site. 

To certify a transaction, the system must 
check that  the transaction does not lie on 
a cycle in --* (see Theorem 2, Section 2). 
Guaranteeing acyclicity is sufficient to 
guarantee serializability. 

There are two problems with this ap- 
proach. First, it is in general not correct to 
delete a certified transaction from --), even 
if all of its updates have been committed. 
For example, if T, --) Tj and T, is active but 
Tj is committed, it is still possible for Tj ---) 
T, to develop; deleting Tj would then cause 
the cycle T, --~ Tj ---) T, to go unnoticed 
when T, is certified. However, it is ob- 
viously not feasible to allow ---) to grow 
indefinitely. This problem is solved by Ca- 
sanova [CASA79] by a method of encoding 
information about committed transactions 
in space proportional to the number of ac- 
tive transactions. 

A second problem is that  all sites must 
be checked to certify any transaction. Even 

8 In BAYE80 certification is only used for rw synchro- 
nization whereas 2PL is used for ww synchronization. 
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sites at  which the t ransact ion never  ac- 
cessed data  must  part icipate in the cycle 
checking of--*.  For  example, suppose we 
want to certify t ransact ion T. T might  be 
involved in a cycle T --. T1 --) T2 --) . . .  --* 
Tn-1 --> Tn ---> T, where each conflict Tk --) 
Tk+l occurred at  a different site. Possibly T 
only accessed data  at  one site; ye t  the --) 
relation must  be examined at n sites to 
certify T. This  problem is current ly un- 
solved, as far as we know. T h a t  is, any 
correct certifier based on this approach of 
checking cycles in --) must  access the --~ 
relation at all sites to certify each and every 
transaction. Until this problem is solved, 
we judge the certification approach to be 
impractical in a distr ibuted environment.  

A2. Thomas' Majority Consensus Algorithm 

A2.1 The Algorithm 

One of the first published algorithms for 
distr ibuted concurrency control  is a certifi- 
cation method  described in THOM79. 
Thomas  introduced several impor tan t  syn- 
chronization techniques in tha t  algorithm, 
including the Thomas  Write  Rule (Section 
3.2.3), majori ty voting (Section 3.1.1), and 
certification (Appendix A1). Although 
these techniques are valuable when consid- 
ered in isolation, we argue tha t  the overall 
Thomas  algori thm is not  suitable for dis- 
t r ibuted databases. We first describe the 
algorithm and then  comment  on its appli- 
cation to distr ibuted databases. 

Thomas '  algori thm assumes a fully re- 
dundant  database, with every logical data  
i tem stored at  every site. Each copy carries 
the t imestamp of the last t ransact ion tha t  
wrote into it. 

Transact ions  execute in two phases. In 
the first phase each t ransact ion executes 
locally at  one site called the transaction's  
home site. Since the database is fully re- 
dundant ,  any site can serve as the home 
site for any transaction. The  t ransact ion is 
assigned a unique t imestamp when it begins 
executing. During execution it keeps a rec- 
ord of the t imestamp of each data  i tem it 
reads and, when its executes a write on a 
data  item, processes the write by recording 
the new value in an update list. Note  tha t  
each transact ion must  read a copy of a data  
i tem before it writes into it. When  the trans- 

action terminates, the system augments the 
update list with the. list of data items read 
and their timestamps at the time they were 
read. In addition, the timestamp of the 
transaction itself is added to the update list. 
This completes the first phase of execution. 

In the second phase the update list is 
sent to every site. Each site (including the 
site that produced the update list) votes on 
the update list. Intuitively speaking, a site 
votes yes on an update list if it can certify 
the transaction that produced it. After a 
site votes yes, the update list is said to be 
pending at that site. To cast the vote, the 
site sends a message to the transaction's 
home site, which, when it receives a major- 
ity of yes or no votes, informs all sites of 
the outcome. If a majority voted yes, then 
all sites are required to commit the update, 
which is then installed using TWR. If a 
majority voted no, all sites are told to dis- 
card the update, and the transaction is re- 
started. 

The rule that determines when a site may 
vote "yes" on a transaction is pivotal to the 
correctness of the algorithm. To vote on an 
update list U, a site compares the time- 
stamp of each data item in the readset of U 
with the timestamp of that same data item 
in the site's local database. If any data item 
has a timestamp in the database different 
from that in U, the site votes no. Otherwise, 
the site compares the readset and writeset 
of U with the readset and writeset of each 
pending update list at that site, and if there 
is no rw conflict between U and any of the 
pending update lists, it votes yes. If there is 
an rw conflict between U and one of those 
pending requests, the site votes pass (ab- 
stain) if U's timestamp is larger than that 
of all pending update lists with which it 
conflicts. If there is an rw conflict but U's 
timestamp is smaller than that of the con- 
flicting pending update list, then it sets U 
aside on a wait queue and tries again when 
the conflicting request has either been com- 
mitted or aborted at that site. 

The voting rule is essentially a certifica- 
tion procedure. By making the timestamp 
comparison, a site is checking that the read- 
set was not written into since the transac- 
tion read it. If  the comparisons are satisfied, 
the si tuation is as if the  t ransact ion had  
locked its readset  a t  tha t  site and held the 
locks until  i t  voted. T h e  voting rule is 
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thereby guaranteeing rw synchronization 
with a certification rule approximating rw 
2PL. (This fact is proved precisely in 
BEm~79b.) 

The second part of the voting rule, in 
which U is checked for rw conflicts against 
pending update lists, guarantees that con- 
flicting requests are not certified concur- 
rently. An example illustrates the problem. 
Suppose T1 reads X and Y, and writes Y, 
while T2 reads X and Y, and writes X. 
Suppose T1 and T2 execute at sites A and 
B, respectively, and X and Y have time- 
stamps of 0 at both sites. Assume that T1 
and T~ execute concurrently and produce 
update lists ready for voting at about the 
same time. Either T~ or T2 must be re- 
started, since neither read the other's out- 
put; if they were both committed, the result 
would be nonserializable. However both 
Tl's and T2's update lists will (concurrently) 
satisfy the timestamp comparison at both 
A and B. What stops them from both ob- 
taining unanimous yes votes is the second 
part of the voting rule. After a site votes on 
one of the transactions, it is prevented from 
voting on the other transaction until the 
first is no longer pending. Thus it is not 
possible to certify conflicting transactions 
concurrently. (We note that this problem 
of concurrent certification exists in the al- 
gorithms of Section A1.2, too. This is yet 
another technical difficulty with the certi- 
fication approach in a distributed environ- 
ment.) 

With the second part of the voting rule, 
the algorithm behaves as if the certification 
step were atomically executed at a primary 
site. If certification were centralized at a 
primary site, the certification step at the 
primary site would serve the same role as 
the majority decision in the voting case. 

A2.2 Correctness 

No simple proof of the serializability of 
Thomas' algorithm has ever been demon- 
strated, although Thomas provided a de- 
tailed "plausibility" argument in THOM79. 
The first part of the voting rule can cor- 
rectly be used in a centralized concurrency 
control method since it implies 2PL 
[BERN79b], and a centralized method based 
on this approach was proposed in KUNG81. 

The second part of the voting rule guaran- 
tees that for every pair of conflicting trans- 
actions that received a majority of yes 
votes, all sites that voted yes on both trans- 
actions voted on the two transactions in the 
same order. This makes the certification 
step behave just as it would if it were cen- 
tralized, thereby avoiding the problem ex- 
emplified in the previous paragraph. 

A2.3 Partially Redundant Databases 

For the majority consensus algorithm to be 
useful in a distributed database environ- 
ment, it must be generalized to operate 
correctly when the database is only par- 
tially redundant. There is reason to doubt 
that such a generalization can be accom- 
plished without either serious degradation 
of performance or a complete change in the 
set of techniques that are used. 

First, the majority consensus decision 
rule apparently must be dropped, since the 
voting algorithm depends on the fact that 
all sites perform exactly the same certifi- 
cation test. In a partially redundant data- 
base, each site would only be comparing 
the timestamps of the data items stored at 
that site, and the significance of the major- 
ity vote would vanish. 

If majority voting cannot be used to syn- 
chronize concurrent certification tests, ap- 
parently some kind of mutual exclusion 
mechanism must be used instead. Its pur- 
pose would be to prevent the concurrent, 
and therefore potentially incorrect, certifi- 
cation of two conflicting transactions, and 
would amount to locking. The use of locks 
for synchronizing the certification step is 
not in the spirit of Thomas' algorithm, since 
a main goal of the algorithm was to avoid 
locking. However, it is worth examining 
such a locking mechanism to see how cer- 
tification can be correctly accomplished in 
a partially redundant database. 

To process a transaction T, a site pro- 
duces an update list as usual. However, 
since the database is partially redundant, it 
may be necessary to read portions of T's 
readset from other sites. After T termi- 
nates, its update list is sent to every site 
that contains part of T's readset or writeset. 
To certify an update list, a site first sets 
local locks on the readset and writeset, and 
then (as in the fully redundant case) it 
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compares the update list's timestamps with 
the database's timestamps. If they are iden- 
tical, it votes yes; otherwise it votes no. A 
unanimous vote of yes is needed to commit 
the updates. Local locks cannot be released 
until the voting decision is completed. 

While this version of Thomas' algorithm 
for partially redundant data works cor- 
rectly, its performance is inferior to stand- 
ard 2PL. This algorithm requires that the 
same locks be set as in 2PL, and the same 
deadlocks can arise. Yet the probability of 
restart is higher than in 2PL, because even 
after all locks are obtained the certification 
step can still vote no (which cannot happen 
in 2PL). 

One can improve this algorithm by des- 
ignating a primary copy of each data item 
and only performing the timestamp com- 
parison against the primary copy, making 
it analogous to primary copy 2PL. How- 
ever, for the same reasons as above, we 
would expect primary copy 2PL to outper- 
form this version of Thomas' algorithm too. 

We therefore must leave open the prob- 
lem of producing an efficient version of 
Thomas' algorithm for a partially redun- 
dant database. 

A2.4 Performance 

Even in the fully redundant case, the per- 
formance of the majority consensus algo- 
rithm is not very good. First, repeating the 
certification and conflict detection at each 
site is more than is needed to obtain seri- 
alizability: a centralized certifier would 
work just as well and would only require 
that certification be performed at one site. 
Second, the algorithm is quite prone to 
restarts when there are run-time conflicts, 
since restarts are the only tactic available 
for synchronizing transactions, and so will 
only perform well under the most optimistic 
circumstances. Finally, even in optimistic 
situations, the analysis in GARC79a indi- 
cates that centralized 2PL outperforms the 
majority consensus algorithm. 

A2.5 Rehablhty 

Despite the performance problems of the 
majority consensus algorithm, one can try 
to justify the algorithms on reliability 
grounds. As long as a majority of sites are 
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correctly running, the algorithm runs 
smoothly. Thus, handling a site failure is 
free, insofar as the voting procedure is con- 
cerned. 

However, from current knowledge, this 
justification is not compelling for several 
reasons. First, although there is no cost 
when a site fails, substantial effort may be 
required when a site recovers. A centralized 
algorithm using backup sites, as in 
ALSB76a, lacks the symmetry of Thomas' 
algorithm, but  may well be more efficient 
due to the simplicity of site recovery. In 
addition, the majority consensus algorithm 
does not consider the problem of atomic 
commitment and it is unclear how one 
would integrate two-phase commit into the 
algorithm. 

Overall, the reliability threats that are 
handled by the majority consensus algo- 
rithm have not been explicitly listed, and 
alternative solutions have not been ana- 
lyzed. While voting is certainly a possible 
technique for obtaining a measure of relia- 
bility, the circumstances under which it is 
cost-effective are unknown. 

A3. Ellis' Ring Algorithm 

Another early solution to the problem of 
distributed database concurrency control is 
the ring algorithm [ELLI77]. Ellis was prin- 
cipally interested in a proof technique, 
called L systems, for proving the correct- 
ness of concurrent algorithms. He devel- 
oped his concurrency control method pri- 
marily as an example to illustrate L-system 
proofs, and never made claims about its 
performance. Because the algorithm was 
only intended to illustrate mathematical 
techniques, Ellis imposed a number of re- 
strictions on the algorithm for mathemati- 
cal convenience, which make it infeasible in 
practice. Nonetheless, the algorithm has 
received considerable attention in the lit- 
erature, and in the interest of completeness, 
we briefly discuss it. 

Ellis' algorithm solves the distributed 
concurrency control problem with the fol- 
lowing restrictions: 

(1) The database must be fully redundant. 
(2) The communication medium must be 

a ring, so each site can only communi- 
cate with its successor on the ring. 
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(3) Each site-to-site communication link is ALSB76a 
pipelined. 

(4) Each site can supervise no more than 
one active update transaction at a time. 

(5) To update any copy of the database, a 
transaction must first obtain a lock on 
the entire database at all sites. 

The effect of restriction 5 is to force all 
BADA78 

transactions to execute serially; no concur- 
rent  processing is ever possible. For this 
reason alone, the algorithm is fundamen- 
tally impractical. 

To execute, an update transaction mi- 
grates around the ring, (essentially) obtain- BADA79 
ing a lock on the entire da tabase  at  each 
site. However, the lock conflict rules are 
nonstandard. A lock request from a trans- 

BADAS0 
action that originated at site A conflicts at 
site C with a lock held by a transaction that 
originated from site B if B = C and either 
A ffi B or A's priority < B's priority. The 
daisy-chain communication induced by the BAYE80 

ring combined with this locking rule pro- 
duces a deadlock-free algorithm that does 
not require deadlock detection and never BZLP76 
induces restarts. A detailed description of 
the algorithm appears in GARC79a. 

There are several problems with this al- 
gorithm in a distributed database environ- 
ment. First, as mentioned above, it forces 
transactions to execute serially. Second, it 
only applies to a fully redundant database. 
And third, the daily-chain communication 
requires that each transaction obtain its 
lock at one site at a time, which causes 
communication delay to be (at least) lin- 
early proportional to the number of sites in 
the system. 

A modified version of Ellis' algorithm 
that mitigates the first problem is proposed 
in GARC79a. Even with this improvement, 
performance analysis indicates that the ring 
algorithm is inferior to centralized 2PL. 
And, of course, the modified algorithm still 
suffers from the last two problems. 
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