
Concurrency Control in Distributed Database Systems

PHILIP A. BERNSTEIN AND NATHAN GOODMAN

Computer Corporation of America, Cambridge, Massachusetts 02139

In this paper we survey, consolidate, and present the state of the art in distributed
database concurrency control. The heart of our analysts is a decomposition of the
concurrency control problem into two major subproblems: read-write and write-write
synchronization. We describe a series of synchromzation techniques for solving each
subproblem and show how to combine these techniques into algorithms for solving the
entire concurrency control problem. Such algorithms are called "concurrency control
methods." We describe 48 principal methods, including all practical algorithms that have
appeared m the literature plus several new ones. We concentrate on the structure and
correctness of concurrency control algorithms. Issues of performance are given only
secondary treatment.

Keywords and Phrases: concurrency control, deadlock, dtstnbuted database management
systems, locking, senahzability, synchromzation, tunestamp ordering, timestamps, two-
phase commit, two-phase locking

CR Categories: 4.33, 4.35

INTRODUCTION

The Concurrency Control Problem

Concurrency control is the act ivi ty of co-
ordinating concurrent accesses to a data-
base in a mul t iuser da tabase m a n a g e m e n t
sys tem (DBMS). Concurrency control per-
mits users to access a da tabase in a multi-
p r o g r a m m e d fashion while preserving the
illusion tha t each user is executing alone on
a dedicated system. T h e main technical
difficulty in a t ta ining this goal is to p revent
da tabase upda tes per formed by one user
f rom interfering with da tabase retr ievals
and upda tes per formed by another . T h e
concurrency control p rob lem is exacerbated
in a dis t r ibuted D B M S (DDBMS) because
(1) users m a y access da ta s tored in m a n y
different compute r s in a dis t r ibuted system,
and (2) a concurrency control mechan i sm
at one compute r cannot ins tantaneously
know about interact ions a t o ther com-
puters.

Concurrency control has been act ively
invest igated for the pas t several years, and
the p rob lem for nondis t r ibuted D B M S s is
well understood. A broad m a t h e m a t i c a l
theory has been developed to analyze the
problem, and one approach, called two-
p h a s e locking, has been accepted as a
s tandard solution. Curre.nt research on non-
dis t r ibuted concun 'ency control is focused
on evolut ionary i m p r o v e m e n t s to two-
phase locking, detai led pe r fo rmance analy-
sis and optimization, and extensions to the
ma thema t i ca l theory.

Dis t r ibuted concurrency control, by con-
trast , is in a s ta te of ex t reme turbulence.
More than 20 concurrency control algo-
rithms have been proposed for DDBMSs,
and several have been, or are being, imple-
mented. These algorithms are usually com-
plex, hard to understand, and difficult to
prove correct (indeed, many are incorrect).
Because they are described in different ter-
minologies and make different assumptions

Permission to copy without fee all or part of this material m granted provided that the coples are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by perrmssion of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1981 ACM 0010-4892/81/0600-0185 $00.75

Computing Surveys, Vol. 13, No. 2, June 1981

186 • P. A. Bernstein and N. Goodman

CONTENTS

INTRODUCTION
The Concurrency Control Problem
Examples of Concurrency Control Anomalies
Comparison to Mutual Exclnslon Problems

1. TRANSACTION-PROCESSING MODEL
1.1 Prelmunary Defimtmns and DDBMS Archi-

tecture
1.2 Centrahzed Transactmn-Processmg Model
1.3 Dmmbuted Transactmn-Processing Model

2 DECOMPOSITION OF THE CONCUR-
RENCY CONTROL PROBLEM
2 1 Selaallzabfllty
2.2 A Parachgm for Concurrency Control

3. SYNCHRONIZATION TECHNIQUES
BASED ON TWO-PHASE LOCKING
3.1 Basra 2PL Implementation
3.2 Primary Copy 2PL
3.3 Voting 2PL
3.4 Centrahzed 2PL
3.5 Deadlock Detection and Prevention

4 SYNCHRONIZATION TECHNIQUES
BASED ON TIMESTAMP ORDERING
4.1 Basic T/O Implementatmn
4.2 The Thomas Write Rule
4.3 MulUversion T/O
4.4 Conservative T/O
4 5 Tnnestamp Management

5 INTEGRATED CONCURRENCY CONTROL
METHODS
5 1 Pure 2PL Methods
5.2 Pure T/O Methods
5.3 MLxed 2PL and T/O Methods

6. CONCLUSION
APPENDIX. OTHER CONCURRENCY CON-
TROL METHODS

AI. Certifiers
A2. Thomas' MaJority Consensus Algorithm
A3. Ellis' Ring Algorithm

ACKNOWLEDGMENT
REFERENCES

v

about the underlying DDBMS environ-
ment, it is difficult to compare the many
proposed algorithms, even in qualitative
terms. Naturally each author proclaims his
or her approach as best, but there is little
compelling evidence to support the claims.

To survey the state of the art, we intro-
duce a standard terminology for describing
DDBMS concurrency control algorithms
and a standard model for the DDBMS en-
vironment. For analysis purposes we de-
compose the concurrency control problem
into two major subproblems, called read-
write and write-write synchronization. Ev-

cry concurrency control algorithm must in-
clude a subalgorithm to solve each subprob-
lem. The first step toward understanding a
concurrency control algorithm is to isolate
the subalgorithm employed for each sub-
problem.

After studying the large number of pro-
posed algorithms, we find that they are
compositions of only a few subalgorithms.
In fact, the subalgorithms used by all prac-
tical DDBMS concurrency control algo-
rithms are variations of just two basic tech-
niques: two-phase locking and timestamp
ordering; thus the state of the art is far
more coherent than a review of the litera-
ture would seem to indicate.

Examples of Concurrency Control Anomalies

The goal of concurrency control is to pre-
vent interference among users who are si-
multaneously accessing a database. Let us
illustrate the problem by presenting two
"canonical" examples of interuser interfer-
ence. Both are examples of an on-line
electronic funds transfer system accessed
via remote automated teller machines
(ATMs). In response to customer requests,
ATMs retrieve data from a database, per-
form computations, and store results back
into the database.

Anomaly 1: Lost Updates. Suppose two
customers simultaneously try to deposit
money into the same account. In the ab-
sence of concurrency control, these two ac-
tivities could interfere (see Figure 1). The
two ATMs handling the two customers
could read the account balance at approxi-
mately the same time, compute new bal-
ances in parallel, and then store the new
balances back into the database. The net
effect is incorrect: although two customers
deposited money, the database only reflects
one activity; the other deposit is lost by the
system.

Anomaly 2: Inconsistent Retrievals.
Suppose two customers simultaneously ex-
ecute the following transactions.

Customer 1: Move $1,000,000 from Acme
Corporation's savings ac-
count to its checking account.

Customer 2: Pr in t Acme Corporat ion 's
total balance in savings and
checking.

Computing Surveys, Vol. 13, No 2, June 1981

Execut,on of T I

READ bolonce

Add ~I,000,000

WRITE result
bock to dotobose

Concurrency Control in Database Systems

Dotobose Execution of T 2

I I , 00000] 0,000e
$1,500,000 [J $2~500,000] Add $21000,000

bock to dotobose

187

Figure 1. Lost update anomaly.

In the absence of concurrency control
these two transactions could interfere (see
Figure 2). The first transaction might read
the savings account balance, subtract
$1,000,000, and store the result back in the
database. Then the second transaction
might read the savings and checking ac-
count balances and print the total. Then
the first transaction might finish the funds
transfer by reading the checking account
balance, adding $1,000,000, and finally stor-
ing the result in the database. Unlike
Anomaly 1, the final values placed into the
database by this execution are correct. Still,
the execution is incorrect because the bal-
ance printed by Customer 2 is $1,000,000
short.

These two examples do not exhaust all
possible ways in which concurrent users
can interfere. However, these examples are
typical of the concurrency control problems
that arise in DBMSs.

Comparison to Mutual Exclusion Problems

The problem of database concurrency con-
trol is similar in some respects to that of
mutual exclusion in operating systems. The
latter problem is concerned with coordinat-
ing access by concurrent processes to sys-
tem resources such as memory, I/O devices,
and CPU. Many solution techniques have
been developed, including locks, sema-
phores, monitors, and serializers [BRIN73,
DIJK71, HEWI74, HOAR74].

The concurrency control and mutual ex-
clusion problems are similar in that both
are concerned with controlling concurrent

access to shared resources. However, con-
trol schemes that work for one do not nec-
essarily work for the other, as illustrated by
the following example. Suppose processes
P1 and P2 require access to resources R1
and R2 at different points in their execution.
In an operating system, the following inter-
leaved execution of these processes is per-
fectly acceptable: P1 uses R1, P2 uses R~, Pe
uses R2, P1 uses R2. In a database, however,
this execution is not always acceptable. As-
sume, for example, that P2 transfers funds
by debiting one account (RI), then crediting
another (R2). If P2 checks both balances, it
will see R~ after it has been debited, but see
R2 before it has been credited. Other differ-
ences between concurrency control and mu-
tual exclusion are discussed in CHAM74.

1. TRANSACTION-PROCESSING MODEL

To understand how a concurrency control
algorithm operates, one must understand
how the algorithm fits into an overall
DDBMS. In this section we present a sim-
ple model of a DDBMS, emphasizing how
the DDBMS processes user interactions.
Later we explain how concurrency control
algorithms operate in the context of this
model.

1.1 Preliminary Definitions and DDBMS
Architecture

A distributed database management sys-
tem (DDBMS) is a collection of sites in-
terconnected by a network [DEPP76,

Computing Surveys, Vol 13, No. 2, June 1981

188 • P. A. Bernstein and N. Goodman

Execut,on of T 1 Dolobose

READ sowngs bolonce

Subtroct $1,00O,OOO

WRITE result

READ checking bolonce

Add $1,OOO,OOO

WRITE result

1,2,ooo, oool

I .,ooo,ooo I

1,5oo,ooo. f
$1.500,000]

\
oo.o..ooo I
5Ol~,0OO

l
s u m "

St,SOD,ODD J

Execution of T 2

READ sov,ngs bolonce

READ check,ng bolonce

Print Sum

Figure 2. Incons i s ten t retr ieval anomaly .

ROTH77]. Each site is a computer running
one or both of the following software mod-
ules: a transaction manager (TM) or a data
manager (DM). TMs supervise interactions
between users and the DDBMS while DMs
manage the actual database. A network is
a computer-to-computer communication
system. The network is assumed to be per-
fectly reliable: if site A sends a message to
site B, site B is guaranteed to receive the
message without error. In addition, we as-
sume that between any pair of sites the
network delivers messages in the order they
were sent.

From a user's perspective, a database
consists of a collection of logical data
items, denoted X, Y, Z. We leave the gran-
ularity of logical data items unspecified; in
practice, they may be files, records, etc. A
logical database state is an assignment of
values to the logical data items composing
a database. Each logical data item may be
stored at any DM in the system or redun-
dantly at several DMs. A stored copy of a

logical data item is called a stored data
item. (When no confusion is possible, we
use the term data item for stored data
item.) The stored copies of logical data item
X are denoted xl Xm. We typically use
x to denote an arbitrary stored data item.
A stored database state is an assignment
of values to the stored data items in a
database.

Users interact with the DDBMS by exe-
cuting transactions. Transactions may be
on-line queries expressed in a self-contained
query language, or application programs
written in a general-purpose programming
language. The concurrency control algo-
rithms we study pay no attention to the
computations performed by transactions.
Instead, these algorithms make all of their
decisions on the basis of the data items a
transaction reads and writes, and so details
of the form of transactions are unimportant
in our analysis. However we do assume that
transactions represent complete and cor-
rect computations; each transaction, if ex-

Computing Surveys, Vol. 13, No 2, June 1981

Concurrency Control in Database Systems ° 189

tronsoctton,

t ransoct lon

t ronsact lon

tronsoctlon

tronsoctlon

tronsoctlon

/ X \

Figure 3. D D B M S system architecture.

ecuted alone on an initially consistent da-
tabase, would terminate, produce correct
results, and leave the database consistent.
The logical readset (correspondingly,
writeset) of a transaction is the set of logical
data items the transaction reads (or writes).
Similarly, stored readsets and stored
writesets are the stored data items that a
transaction reads and writes.

The correctness of a concurrency control
algorithm is defined relative to users' ex-
pectations regarding transaction execution.
There are two correctness criteria: (1) users
expect that each transaction submitted to
the system will eventually be executed; (2)
users expect the computation performed by
each transaction to be the same whether it
executes alone in a dedicated system or in
parallel with other transactions in a multi-
programmed system. Realizing this expec-
tation is the principal issue in concurrency
control.

A DDBMS contains four components
(see Figure 3): transactions, TMs, DMs,
and data. Transactions communicate with
TMs, TMs communicate with DMs, and

DMs manage the data. (TMs do not com-
municate with other TMs, nor do DMs
communicate with other DMs.)

TMs supervise transactions. Each trans-
action executed in the DDBMS is super-
vised by a single TM, meaning that the
transaction issues all of its database oper-
ations to that TM. Any distributed com-
putation that is needed to execute the
transaction is managed by the TM.

Four operations are defined at the trans-
action-TM interface. READ(X) returns
the value of X (a logical data item) in the
current logical database state. WRITE(X,
new-value) creates a new logical database
state in which X has the specified new
value. Since transactions are assumed to
represent complete computations, we use
BEGIN and END operations to bracket
transaction executions.

DMs manage the stored database, func-
tioning as backend database processors. In
response to commands from transactions,
TMs issue commands to DMs specifying
stored data items to be read or written. The
details of the TM-DM interface constitute

Computing Surveys, Vol. 13, No. 2, June 1981

190 • P. A. Bernstein and N. Goodman

the core of our transaction-processing
model and are discussed in Sections 1.2 and
1.3. Section 1.2 describes the TM-DM in-
teraction in a centralized database environ-
ment, and Section 1.3 extends the discus-
sion to a distributed database setting.

1.2 Centralized Transaction-Processing
Model

A centralized DBMS consists of one TM
and one DM executing at one site. A trans-
action T accesses the DBMS by issuing
BEGIN, READ, WRITE, and END oper-
ations, which are processed as follows.

BEGIN: The TM initializes for T a pri-
vate workspace that functions as a tempo-
rary buffer for values read from and written
into the database.

READ(X): The TM looks for a copy of
X in T's private workspace. If the copy
exists, its value is returned to T. Otherwise
the TM issues din-read(x) to the DM to
retrieve a copy of X from the database,
gives the retrieved value to T, and puts it
into T's private workspace.

WRITE(X, new-value): The TM again
checks the private workspace for a copy of
X. If it finds one, the value is updated to
new-value; otherwise a copy of X with the
new value is created in the workspace. The
new value of X is not stored in the database
at this time.

END: The TM issues dm-write(x) for
each logical data item X updated by T.
Each dm-write(x) requests that the DM
update the value of X in the stored database
to the value of X in T's local workspace.
When all dm-writes are processed, T is
finished executing, and its private work-
space is discarded.

The DBMS may restart T any time be-
fore a din-write has been processed. The
effect of restarting T is to obliterate its
private workspace and to reexecute T from
the beginning. As we will see, many concur-
rency control algorithms use transaction
restarts as a tactic for attaining correct
executions. However, once a single dm-
write has been processed, T cannot be re-
started; each dm-write permanently installs
an update into the database, and we cannot
permit the database to reflect partial effects
of transactions.

A DBMS can avoid such partial results
by having the property of atomic commit-
ment, which requires that either all of a
transaction's din-writes are processed or
none are. The "standard" implementation
of atomic commitment is a procedure called
two-phase commit [LAMP76, GRAY78]. 1
Suppose T is updating data items X and Y.
When T issues its END, the first phase of
two-phase commit begins, during which the
DM issues prewrite commands for X and
Y. These commands instruct the DM to
copy the values of X and Y from T's private
workspace onto secure storage. If the
DBMS fails during the first phase, no harm
is done, since none of T's updates have yet
been applied to the stored database. During
the second phase, the TM issues din-write
commands for X and Y which instruct the
DM to copy the values of X and Y into the
stored database. If the DBMS fails during
the second phase, the database may contain
incorrect information, but since the values
of X and Y are stored on secure storage,
this inconsistency can be rectified when the
system recovers: the recovery procedure
reads the values of X and Y from secure
storage and resumes the commitment activ-
ity.

We emphasize that this is a mathemati-
cal model of transaction processing, an ap-
proximation to the way DBMSs actually
function. While the implementation details
of atomic commitment are important in
designing a DBMS, they are not central to
an understanding of concurrency control.
To explain concurrency control algorithms
we need a model of transaction execution
in which atomic commitment is visible, but
not dominant.

1.3 Distributed Transaction-Processing
Model

Our model of transaction processing in a
distributed environment differs from that
in a centralized one in two areas: handling
private workspaces and implementing two-
phase commit.

The term "two-phase commit" is commonly used to
denote the distributed version of this procedure. How-
ever, since the centralized and distributed versions are
identical in structure, we use "two-phase commit" to
describe both.

Computing Surveys, Vol 13, No. 2, June 1981

Concurrency Control in Database Systems • 191

In a centralized DBMS we assumed that
(1) private workspaces were part of the TM,
and (2) data could freely move between a
transaction and its workspace, and between
a workspace and the DM. These assump-
tions are not appropriate in a DDBMS
because TMs and DMs may run at different
sites and the movement of data between a
TM and a DM can be expensive. To reduce
this cost, many DDBMSs employ query
optimization procedures which regulate
(and, it is hoped, reduce) the flow of data
between sites. For example, in SDD-1 the
private workspace for transaction T is dis-
tributed across all sites at which T accesses
data [BF.RN81]. The details of how T reads
and writes data in these workspaces is a
query optimization problem and has no di-
rect effect on concurrency control.

The problem of atomic commitment is
aggravated in a DDBMS by the possibility
of one site failing while the rest of the
system continues to operate. Suppose T is
updating x, y, z stored at DMx, DMy, DMz,
and suppose T's TM fails after issuing dm-
write(x), but before issuing the dm-writes
for y and z. At this point the database is
incorrect. In a centralized DBMS this phe-
nomenon is not harmful because no trans-
action can access the database until the
TM recovers from the failure. However, in
a DDBMS, other TMs remain operational
and can access the incorrect database.

To avoid this problem, prewrite com-
mands must be modified slightly. In addi-
tion to specifying data items to be copied
onto secure storage, prewrites also specify
which other DMs are involved in the com-
mitment activity. Then if the TM fails dur-
ing the second phase of two-phase commit,
the DMs whose dm-writes were not issued
can recognize the situation and consult the
other DMs involved in the commitment. If
any DM received a dm-write, the remaining
ones act as if they had also received the
command. The details of this procedure are
complex and appear in HAMM80.

As in a centralized DBMS, a transaction
T accesses the system by issuing BEGIN,
READ, WRITE, and END operations. In
a DDBMS these are processed as follows.

BEGIN: The TM creates a private work-
space for T. We leave the location and
organization of this workspace unspecified.

READ(X): The TM checks T's private

workspace to see if a copy of X is present.
If so, that copy's value is made available to
T. Otherwise the TM selects some stored
copy of X, say xi, and issues din-read(x,) to
the DM at which x, is stored. The DM
responds by retrieving the stored value of
x, from the database, placing it in the pri-
vate workspace. The TM returns this value
to T.

WRITE(X, new-value): The value of X in
T's private workspace is updated to new-
value, assuming the workspace contains a
copy of X. Otherwise, a copy of X with the
new value is created in the workspace.

END: Two-phase commit begins. For
each X updated by T, and for each stored
copy x, of X, the TM issues a prewrite (x,)
to the DM that stores x,. The DM responds
by copying the value of X from T's private
workspace onto secure storage internal to
the DM. After all prewrites are processed,
the TM issues dm-writes for all copies of all
logical data items updated by T. A DM
responds to dm-write(x,) by copying the
value of x, from secure storage into the
stored database. After all dm-writes are
installed, T's execution is finished.

2. DECOMPOSITION OF THE CONCUR-
RENCY CONTROL PROBLEM

In this section we review concurrency con-
trol theory with two objectives: to define
"correct executions" in precise terms, and
to decompose the concurrency control
problem into more tractable subproblems.

2.1 Serializability

Let E denote an execution of transactions
T1 T,. E is a serial execution if no
transactions execute concurrently in E; that
is, each transaction is executed to comple-
tion before the next one begins. Every serial
execution is defined to be correct, because
the properties of transactions (see Section
1.1) imply that a serial execution terminates
properly and preserves database consist-
ency. An execution is serializable if it is
computationally equivalent to a serial exe-
cution, that is, if it produces the same out-
put and has the same effect on the database
as some serial execution. Since serial exe-
cutions are correct and every serializable
execution is equivalent to a serial one, every
serializable execution is also correct. The

Computing Surveys, Vol. 13, No. 2, June 1981

192 P. A. Bernstein and N. Goodman

Transachons Database

T 1 • BEGIN; i----n ~
READ (X); WRITE(Y); END

T 2 BEGIN;
READ(Y), WRITE(Z); END

T 3 . BEGIN,

READ(Z), WRITE(X), END

One possible execution of T1, T2, and T3 is represented by the
following logs. (Note. r,[x] denotes the operation din-read(x) issued
by T~; w,[x] denotes a din-write(x) issued by T,.)

Log for DM A: rl[xl]wl[yl]r2[yl]w3[xl]
Log for DM B: wl[y2]w2[z2]
Log for DM C. w2[z3]r3[z3]

Figure 4. Modeling executions as logs.

• The execution modeled in Figure 4 is serial. Each
log is itself serial; that is, there is no interleaving of
operations from different transactions. At DM A, Ti
precedes T~ precedes T3; at DM B, % precedes T~;
and at DM C, T2 precedes T3. Therefore, TI, T2, T3
is a total order satisfying the definition of serial.

• The following execution is not serial. The logs them-
selves are not serial.

DM A: rl[xl]r2[YllW3[Xl]Wl[yl]
DM B: w2[z2]wl[y2]
DM C: w2[z3lr3[z3]

• The following execution is also not serial Although
each log is serial, there is no total order consistent
with all logs.

DM A: rl[x~]wl[yl]re[yl]w3[x~]
DM B: w2[z2]wl[y2]
DM C: w2[z3]r3[z3]

Figure 5. Serial and nonserial loops.

goal of database concurrency control is to
ensure that all executions are serializable.

The only operations that access the
stored database are din-read and din-write.
Hence it is sufficient to model an execution
of transactions by the execution of din-
reads and din-writes at the various DMs of
the DDBMS. In this spirit we formally
model an execution of transactions by a set
of logs, each of which indicates the order in
which dm-reads and din-writes are proc-
essed at one DM (see Figure 4). An execu-
tion is serial if there is a total order of
transactions such that if T, precedes Tj in

the total order, then all of T,'s operations
precede all of Tfs operations in every log
where both appear (see Figure 5). Intui-
tively, this says that transactions execute
serially and in the same order at all DMs.

Two operations conflict if they operate
on the same data item and one of the op-
erations is a dm-write. The order in which
operations execute is computationally sig-
nificant if and only if the operations con-
flict. To illustrate the notion of conflict,
consider a data item x and transactions T,
and Tj. If T, issues dm-read (x) and T~
issues dm-write(x), the value read by T, will
(in general) differ depending on whether
the dm-read precedes or follows the dm-
write. Similarly, if both transactions issue
dm-write(x) operations, the final value of x
depends on which dm-write happens last.
Those conflict situations are called read-
write (rw) conflicts and write-write (ww)
conflicts, respectively.

The notion of conflict helps characterize
the equivalence of executions. Two execu-
tions are computationally equivalent if (1)
each dm-read operation reads data item
values that were produced by the same dm-
writes in both executions; and (2) the final
dm-write on each data item is the same in
both executions [PAPA77, PAPA79]. Condi-
tion (1) ensures that each transaction reads
the same input in both executions (and
therefore performs the same computation).

Computing Surveys, Vol. 13, No. 2, June 1981

Concurrency Control in Database Systems • 193

Combined with (2), it ensures that both
executions leave the database in the same
final state.

From this we can characterize serializa-
ble executions precisely.

Theorem 1 [PAPA77, PAPA79, STEA76]

Let T ffi (T1, ..., Tin} be a set of transac-
tions and let E be an execution of these
transactions modeled by logs (Lb
Lm}. E is serializable if there exists a total
ordering of T such that for each pair of
conflicting operations O~ and Oj from dis-
tinct transactions T, and Tj (respectively),
O~ precedes Oj in any log L~ Lm if and
only if T~ precedes T~ in the total ordering.

The total order hypothesized in Theorem
1 is called a serialization order. If the
transactions had executed serially in the
serialization order, the computation per-
formed by the transactions would have
been identical to the computation repre-
sented by E.

To attain serializability, the DDBMS
must guarantee that all executions satisfy
the condition of Theorem 1, namely, that
conflicting dm-reads and dm-writes be
processed in certain relative orders. Con-
currency control is the activity of control-
ling the relative order of conflicting opera-
tions; an algorithm to perform such control
is called a synchronization technique. To
be correct, a DDBMS must incorporate
synchronization techniques that guarantee
the conditions of Theorem 1.

(3) T, --,ww Tj if in some log of E, T, writes
into some data item into which T~ sub-
sequently writes;

(4) T, --,~w~ Tj if T, -*~ T~ or T, --*w~ Tj;
(5) T~ --* Tj if Tj --*~ T~ or T~ --*ww

%

Intuitively, -* (with any subscript)
means "in any serialization must precede."
For example, T, --*~w Tj means "T, in any
serialization must precede Tj." This inter-
pretation follows from Theorem 1: If T,
reads x before Tj writes into x, then the
hypothetical serialization in Theorem 1
must have T, preceding T~.

Every conflict between operations in E is
represented by an --, relationship. There-
fore, we can restate Theorem 1 in terms of
--,. According to Theorem 1, E is serializa-
ble if there is a total order of transactions
that is consistent with -*. This latter con-
dition holds if and only if --, is acyclic. (A
relation, --*, is acyclic if there is no sequence
T1 -* T2, T2 --* Ta Tn-1 --* Tn such that
T1 ffi T~.) Let us decompose --, into its
components, --*rwr and--* ww, and restate the
theorem using them.

Theorem 2 [BERNSOa]

Let "-'>rwr and ---,ww be associated with exe-
cution E. E is serializable if (a) -'*rwr and
"-'>w~ are acyclic, and (b) there is a total
ordering of the transactions consistent
with all - - ~ and all ---~w relationships.

2.2 A Paradigm for Concurrency Control

In Theorem 1, rw and ww conflicts are
treated together under the general notion
of conflict. However, we can decompose the
concept of serializability by distinguishing
these two types of conflict. Let E be an
execution modeled by a set of logs. We
define several binary relations on transac-
tions in E, denoted by -* with various sub-
scripts. For each pair of transactions, T~
and Tj

(1) T~ --*~w Tj if in some log of E, T, reads
some data item into which T~ subse-
quently writes;

(2) T~ --*~ T~ if in some log of E, T, writes
into some data item that Tj subse-
quently reads;

Theorem 2 is an immediate consequence
of Theorem 1. (Indeed, part (b) of Theorem
2 is essentially a restatement of the earlier
theorem.) However, this way of character-
izing serializability suggests a way of de-
composing the problem into simpler parts.
Theorem 2 implies that rw and ww conflicts
can be synchronized independently except
insofar as there must be a total ordering of
the transactions consistent with both types
of conflicts. This suggests that we can use
one technique to guarantee an acyclic
--*~w~ relation (which amounts to read-write
synchronization) and a different technique
to guarantee an acyclic --*~,~ relation
(write-write synchronization). However, in
addition to both - - . ~ and -*ww being
acyclic, there must also be one serial order

Computing Surveys, Vol. 13, No. 2, June 1981

194 • P . A . Bernstein and N. Goodman

consistent with all--, relations. This serial
order is the cement that binds together the
rw and ww synchronization techniques.

Decomposing serializability into rw and
ww synchronization is the cornerstone of
our paradigm for concurrency control. It
will be important hereafter to distinguish
algorithms that attain either rw or ww syn-
chronization from algorithms that solve the
entire distributed concurrency control
problem. We use the term synchronization
technique for the former type of algorithm,
and concurrency control method for the
latter.

3. SYNCHRONIZATION TECHNIQUES
BASED ON TWO-PHASE LOCKING

Two-phase locking (2PL) synchronizes
reads and writes by explicitly detecting and
preventing conflicts between concurrent
operations. Before reading data item x,
a transaction must "own" a readlock on
x. Before writing into x, it must "own" a
writelock on x. The ownership of locks is
governed by two rules: (1) different trans-
actions cannot simultaneously own con-
flicting locks; and (2) once a transaction
surrenders ownership of a lock, it may never
obtain additional locks.

The definition of conflicting lock de-
pends on the type of synchronization being
performed: for rw synchronization two
locks conflict if (a) both are locks on the
same data item, and (b) one is a readlock
and the other is a writelock; for ww syn-
chronization two locks conflict if (a) both
are locks on the same data item, and (b)
both are writelocks.

The second lock ownership rule causes
every transaction to obtain locks in a two-
phase manner. During the growing phase
the transaction obtains locks without re-
leasing any locks. By releasing a lock the
transaction enters the shrinking phase.
During this phase the transaction releases
locks, and, by rule 2, is prohibited from
obtaining additional locks. When the trans-
action terminates (or aborts), all remaining
locks are automatically released.

A common variation is to require that
transactions obtain all locks before begin-
ning their main execution. This variation is
called predeclaration. Some systems also

require that transactions hold all locks until
termination

Two-phase locking is a correct synchro-
nization technique, meaning that 2PL
attains an acyclic --*~ (--*~) relation
when used for rw (ww) synchronization
[BERs79b, EswA76, PAPA79]. The seriali-
zation order attained by 2PL is determined
by the order in which transactions obtain
locks. The point at the end of the growing
phase, when a transaction owns all the locks
it ever will own, is called the locked point
of the transaction [BERN79b]. Let E be an
execution in which 2PL is used for rw (ww)
synchronization. The --*~ (--*~) relation
induced by E is identical to the relation
induced by a serial execution E' in which
every transaction executes at its locked
point. Thus the locked points of E deter-
mine a serialization order for E.

3.1 Basic 2PL Implementation

An implementation of 2PL amounts to
building a 2PL scheduler, a software mod-
ule that receives lock requests and lock
releases and processes them according to
the 2PL specification.

The basic way to implement 2PL in a
distributed database is to distribute the
schedulers along with the database, placing
the scheduler for data item x at the DM
were x is stored. In this implementation
readlocks may be implicitly requested by
din-reads and writelocks may be implicitly
requested by prewrites. If the requested
lock cannot be granted, the operation is
placed on a waiting queue for the desired
data item. (This can produce a deadlock,
as discussed in Section 3.5.) Writelocks are
implicitly released by din-writes. However,
to release readlocks, special lock-release op-
erations are required. These lock releases
may be transmitted in parallel with the din-
writes, since the dm-writes signal the start
of the shrinking phase. When a lock is
released, the operations on the waiting
queue of that data item are processed first-
in/first-out (FIFO) order.

Notice that this implementation "auto-
matically" handles redundant data cor-
rectly. Suppose logical data item X has
copies xl, . . . , xm. If basic 2PL is used for
rw synchronization, a transaction may read
any copy and need only obtain a readlock

Coraputmg Surveys, Vol. 13, No. 2, June 1981

Concurrency Control in Database Systems • 195

on the copy of X it actually reads. However,
if a transaction updates X, then it must
update all copies of X, and so must obtain
writelocks on all copies of X (whether basic
2PL is used for rw or ww synchronization).

3 2 Primary Copy 2PL

Primary copy 2PL is a 2PL technique that
pays attention to data redundancy
[STos79]. One copy of each logical data
item is designated the primary copy; before
accessing any copy of the logical data item,
the appropriate lock must be obtained on
the primary copy.

For readlocks this technique requires
more communication than basic 2PL. Sup-
pose xl is the primary copy of logical data
item X, and suppose transaction T wishes
to read some other copy, x,, of X. To read
x,, T must communicate with two DMs, the
DM where Xs is stored (so T can lock xl)
and the DM where x, is stored. By contrast,
under basic 2PL, T would only communi-
cate with x,'s DM. For writelocks, however,
primary copy 2PL does not incur extra com-
munication. Suppose T wishes to update X.
Under basic 2PL, T would issue prewrites
to all copies of X (thereby requesting
writelocks on these data items) and then
issue dm-writes to all copies. Under pri-
mary copy 2PL the same operations would
be required, but only the prewrite (Xl)
would request a writelock. That is, pre-
writes would be sent for xl, . . . , xm, but the
prewrites for x2 xm would not implicitly
request writelocks.

3.3 Voting 2PL

Voting 2PL (or majority consensus 2PL) is
another 2PL implementation that exploits
data redundancy. Voting 2PL is derived
from the majority consensus technique of
Thomas [THOM79] and is only suitable for
ww synchronization.

To understand voting, we must examine
it in the context of two-phase commit. Sup-
pose transaction T wants to write into X.
Its TM sends prewrites to each DM holding
a copy of X. For the voting protocol, the
DM always responds immediately. It ac-
knowledges receipt of the prewrite and says
"lock set" or "lock blocked." (In the basic
implementation it would not acknowledge
at all until the lock is set.) After the TM

receives acknowledgments from the DMs,
it counts the number of"lock~set" responses:
if the number constitutes a majority, then
the TM behaves as if all locks were set.
Otherwise, it waits for "lockset" operations
from DMs that originally said "lock
blocked." Deadlocks aside (see Section 3.5),
it will eventually receive enough "lockset"
operations to proceed.

Since only one transaction can hold a
majority of locks on X at a time, only one
transaction writing into X can be in its
second commit phase at any time. All cop-
ies of X thereby have the same sequence of
writes applied to them. A transaction's
locked point occurs when it has obtained a
majority of its writelocks on each data item
in its writeset. When updating many data
items, a transaction must obtain a majority
of locks on every data item before it issues
any dm-writes.

In principle, voting 2PL could be adapted
for rw synchronization. Before reading any
copy of X a transaction requests readlocks
on all copies of X; when a majority of locks
are set, the transaction may read any copy.
This technique works but is overly strong:
Correctness only requires that a single copy
of X be locked--namely, the copy that is
read--yet this technique requests locks on
all copies. For this reason we deem voting
2PL to be inappropriate for rw synchroni-
zation.

3.4 Centralized 2PL

Instead of distributing the 2PL schedulers,
one can centralize the scheduler at a single
site [ALsB76a, GARC79a]. Before accessing
data at any site, appropriate locks must be
obtained from the central 2PL scheduler.
So, for example, to perform dm-read(x)
where x is not stored at the central site, the
TM must first request a readlock on x from
the central site, walt for the central site to
acknowledge that the lock has been set,
then send dm-read(x) to the DM that holds
x. (To save some communication, one can
have the TM send both the lock request
and dm-read (x) to the central site and let
the central site directly forward dm-read(x)
to x's DM; the DM then responds to the
TM when dm-read (x) has been processed.)
Like primary copy 2PL, this approach tends
to require more communication than basic

Computing Surveys, Vol. 13, No. 2, June 1981

196 P. A. Bernstein and N. Goodman

Tronsochons Datobose

T 1 : BEGIN; r---~ t<:;:~l
READ (X); WRITE(Y); END

T 2 BEGIN;
READ(Y); WRITE(Z); END

T 3 , BEGIN,
READ(Z), WRITE(X), END

• Suppose t ransac t ions execute concurrent ly , wi th each t ransac t ion
issuing its READ before any transaction issues its END.

• This partial execution could be represented by the following logs

DM A: rl [xl]
DM B: r~[y2]
DM C: r3[z3]

• At this point, T~ has readlock on xx
T2 has readlock on y2
T3 has readlock on z3

• Before proceeding, all transactions must obtain wntelocks.
% requires wntelocks on y~ and ye
T2 requires writelocks on z2 and z3
T3 requires writelock on Xl

• But

% cannot get writelock on y2, until T2 releases readlock
T~ cannot get writelock on z3, until T3 releases readlock
Ts cannot get wntelock on x~, until Tx releases readlock

This is a deadlock

Figure 6. Deadlock.

2PL, since dm-reads and prewri tes usually
cannot implicit ly reques t locks.

3.5 Dead lock Detect ion and Prevent ion

T h e preceding implementa t ions of 2PL
force t ransact ions to wait for unavai lable
locks. I f this wait ing is uncontrol led, dead-
locks can arise (see Figure 6).

Deadlock si tuat ions can be character ized
by waits-for graphs [HOLT72, KING74], di-
rected graphs t ha t indicate which t ransac-
t ions are wait ing for which o ther t ransac-
tions. Nodes of the graph represen t t rans-
actions, and edges represen t the "waiting-
for" relationship: an edge is d rawn f rom
t ransact ion T, to t ransact ion Tj if T, is
waiting for a lock current ly owned by T~.
The re is a deadlock in the sys tem if and
only if the waits-for g raph contains a cycle
(see Figure 7).

T w o general techniques are available for
deadlock resolution: deadlock prevention
and deadlock detection.

3.5.1 Deadlock Prevention

Deadlock prevent ion is a "caut ious"
scheme in which a t ransact ion is res ta r ted
when the sys t em is "afra id" tha t deadlock
might occur. T o imp lemen t deadlock pre-
vention, 2PL schedulers are modif ied as
follows. W h e n a lock reques t is denied, the
scheduler tes ts the request ing t ransac t ion
(say T,) and the t ransact ion t ha t current ly
owns the lock (say T~). I f T, and Tj pass the
test, T, is pe rmi t t ed to wai t for T~ as usual.
Otherwise, one of the two is aborted. I f T,
is res tar ted, the deadlock prevent ion algo-
r i t hm is called nonpreemptive; if T~ is re-
s tar ted, the a lgor i thm is called preemptive.

T h e tes t applied by the scheduler mus t

Computing Surveys, Vol. 13, No 2, June 1981

Concurrency Control in Database Systems

T 1 must walt for T 2 to

release read-lock on Y2

T~ . ' ~ ' r a

T3 must wa,t for Tl tO ~ / 1 " 2 must wa,t forT3tO
release read-lock on x 1 - \ T 5 release read-look on Z 3

Figure 7. Waits-for graph for Figure 6.

• 1 9 7

guarantee that if T, waits for Tj, then dead-
lock cannot result. One simple approach is
never to let T~ wait for Tj. This trivially
prevents deadlock but forces many restarts.

A better approach is to assign priorities
to transactions and to test priorities to de-
cide whether T, can wait for Tj. For exam-
ple, we could let T, wait for Tj if T, has
lower priority than Tj (if T~ and Tj have
equal priorities, T, cannot wait for Tj, or
vice versa). This test prevents deadlock
because, for every edge (T , Tj) in the waits-
for graph, T, has lower priority than Tj.
Since a cycle is a path from a node to itself
and since T, cannot have lower priority
thCan itself, no cycle can exist.

One problem with the preceding ap-
proach is that cyclic restart is possible--
some unfortunate transaction could be con-
tinually restarted without ever finishing. To
avoid this problem, Rosenkrantz et al.
[RosE78] propose using "timestamps" as
priorities. Intuitively, a transaction's time-
stamp is the time at which it begins execut-
ing, so old transactions have higher priority
than young ones.

The technique of Ros~.78 requires that
each transaction be assigned a unique
timestamp by its TM. When a transaction
begins, the TM reads the local clock time
and appends a unique TM identifier to the
low-order bits [THOM79]. The resulting
number is the desired timestamp. The TM
also agrees not to assign another timestamp
until the next clock tick. Thus timestamps
assigned by different TMs differ in their
low-order bits (since different TMs have
different identifiers), while timestamps as-
signed by the same TM differ in their high-
order bits (since the TM does not use the
same clock time twice). Hence timestamps
are unique throughout the system. Note
that this algorithm does not require clocks
at different sites to be precisely synchro-
nized.

Two timestamp-based deadlock preven-
tion schemes are proposed in Rasp,78.
Wait-Die is the nonpreemptive technique.
Suppose transaction T, tries to wait for T~.
If T, has lower priority than T~ (i.e., T, is
younger than T~), then T, is permitted to
wait. Otherwise, it is aborted ("dies") and
forced to restart. It is important that T, not
be assigned a new timestamp when it re-
starts. Wound.Wait is the preemptive
counterpart to Wait-Die. If T, has higher
priority than Tj, then T, waits; otherwise Tj
is aborted.

Both Wait-Die and Wound-Wait avoid
cyclic restart. However, in Wound-Wait an
old transaction may be restarted many
times, while in Wait-Die old transactions
never restart. It is suggested in RosE78 that
Wound-Wait induces fewer restarts in total.

Care must be exercised in using preemp-
tive deadlock prevention with two-phase
commit: a transaction must not be aborted
once the second phase of two-phase commit
has begun. If a preemptive technique
wishes to abort Tj, it checks with Tfs TM
and cancels the abort if Tj has entered the
second phase. No deadlock can result be-
cause if Tj is in the second phase, it cannot
be waiting for any transactions.

Preordering of resources is a deadlock
avoidance technique that avoids restarts
altogether. This technique requires prede-
claration of locks (each transaction obtains
all its locks before execution). Data items
are numbered and each transaction re-
quests locks one at a time in numeric order.
The priority of a transaction is the number
of the highest numbered lock it owns. Since
a transaction can only wait for transactions
with higher priority, no deadlocks can oc-
cur. In addition to requiring predeclaration,
a principal disadvantage of this technique
is that it forces locks to be obtained sequen-
tially, which tends to increase response
time.

Computing Surveys, Vol. 13, No. 2, June 1981

198 • P. A. Bernstein and N. Goodman

• Consider the execution illustrated in Figures 6 and 7.
• Locks are requested at DMs in the following order:

DM A DM B DM C

readlock xl for T1 readlock y2 for T2 readlock z3 for %
writelock yl for T~ writelock z2 for T2

*writelock x~ for T3 *writelock y2 for T1 *writelock z3 for T2
• None of the "starred" locks can be granted and the system is in deadlock. However,

the waits-for graphs at each DM are acyclic.

DM A DM B DM C

® ,(9 © ® @ ,@
Figure 8. Multisite deadlock.

3.5.2 Deadlock Detection

In deadlock detection, transactions wait for
each other in an uncontrolled manner and
are only aborted if a deadlock actually oc-
curs. Deadlocks are detected by explicitly
constructing the waits-for graph and
searching it for cycles. {Cycles in a graph
can be found efficiently using, for example,
Algorithm 5.2 in AHO75.) If a cycle is found,
one transaction on the cycle, called the
victim, is aborted, thereby breaking the
deadlock. To minimize the cost of restarting
the victim, victim selection is usually based
on the amount of resources used by each
transaction on the cycle.

The principal difficulty in implementing
deadlock detection in a distributed data-
base is constructing the waits-for graph ef-
ficiently. Each 2PL scheduler can easily
construct the waits-for graph based on the
waits-for relationships local to that sched-
uler. However, these local waits-for graphs
are not sufficient to characterize all dead-
locks in the distributed system (see Figure
8). Instead, local waits-for graphs must be
combined into a more "global" waits-for
graph. (CentrAlized 2PL does not have this
problem, since there is only one scheduler.}
We describe two techniques for construct-
ing global waits-for graphs: centralized and
hierarchical deadlock detection.

In the centralized approach, one site is
designated the deadlock detector for the
distributed system [GRAY78, STON79]. Pe-
riodically (e.g., every few minutes) each
scheduler sends its local waits-for graph to
the deadlock detector. The deadlock detec-
tor combines the local graphs into a system-

wide waits-for graph by constructing the
union of the local graphs.

In the hierarchical approach, the data-
base sites are organized into a hierarchy (or
tree), with a deadlock detector at each node
of the hierarchy [MENA79]. For example,
one might group sites by region, then by
country, then by continent. Deadlocks that
are local to a single site are detected at that
site; deadlocks involving two or more sites
of the same region are detected by the
regional deadlock detector; and so on.

Although centralized and hierarchical
deadlock detection differ in detail, both in-
volve periodic transmission of local waits-
for information to one or more deadlock
detector sites. The periodic nature of the
process introduces two problems. First, a
deadlock may exist for several minutes
without being detected, causing response-
time degradation. The solution, executing
the deadlock detector more frequently, in-
creases the cost of deadlock detection. Sec-
ond, a transaction T may be restarted for
reasons other than concurrency control
(e.g., its site crashed). Until T's restart
propagates to the deadlock detector, the
deadlock detector can find a cycle in the
waits-for graph that includes T. Such a
cycle is called a phantom deadlock. When
the deadlock detector discovers a phantom
deadlock, it may unnecessarily restart a
transaction other than T. Special precau-
tions are also needed to avoid unnecessary
restarts for deadlocks in voting 2PL. 2

2 Suppose logical data item X has copies x~, x2, and x3,
and suppose usmg voting 2PL T, owns write-locks on
x] and x2 but T,'s lock request for x~ is blocked by Tj.

Computing Surveys, Vol 13, No. 2, June 1981

Concurrency

A major cost of deadlock detection is the
restarting of partially executed transac-
tions. Predeclaration can be used to reduce
this cost. By obtaining a transaction's locks
before it executes, the system will only re-
start transactions that have not yet exe-
cuted. Thus little work is wasted by the
restart.

4. SYNCHRONIZATION TECHNIQUES
BASED ON TIMESTAMP ORDERING

Timestamp ordering (T/O) is a technique
whereby a serialization order is selected a
priori and transaction execution is forced to
obey this order. Each transaction is as-
signed a unique timestamp by its TM. The
TM attaches the timestamp to all dm-reads
and dm-writes issued on behalf of the trans-
action, and DMs are required to process
conflicting operations in timestamp order.
The timestamp of operation O is denoted
ts(O).

The definition of conflicting operations
depends on the type of synchronization
being performed and is analogous to con-
flicting locks. For rw synchronization, two
operations conflict if (a) both operate on
the same data item, and (b) one is a dm-
read and the other is a dm-write. For ww
synchronization, two operations conflict if
(a) both operate on the same data item, and
(b) both are dm-writes.

It is easy to prove that T /O attains an
acyclic - - . ~ (- . ~w) relation when used for
rw (ww) synchronization. Since each DM
processes conflicting operations in time-
stamp order, each edge of the --. ~w~ (-~ ww)
relation is in timestamp order. Conse-
quently, all paths in the relation are in
timestamp order and, since all transactions
have unique timestamps, no cycles are pos-
sible. In addition, the timestamp order is a
valid serialization order.

4.1 Basic T /O Implementation

An implementation of T /O amounts to
building a T/O scheduler, a software mod-
ule that receives dm-reads and dm-writes

Insofar as xa's scheduler is concerned, T, is waitmg for
%. However, since T, has a maJority of the copies
locked, T, can proceed without waiting for Tj. This
fact should be incorporated into the deadlock resolu-
tion scheme to avoid unnecessary restarts.

Control in Database Systems • 199

and outputs these operations according to
the T/O specification [SHAP77a, SHAP77b].
In practice, prewrites must also be proc-
essed through the T /O scheduler for two-
phase commit to operate properly. As was
the case with 2PL, the basic T / O imple-
mentation distributes the schedulers along
with the database [BEBN80a].

If we ignore two-phase commit, the basic
T /O scheduler is quite simple. At each DM,
and for each data item x stored at the DM,
the scheduler records the largest timestamp
of any dm-read(x) or din-write(x) that has
been processed. These are denoted R-ts(x)
and W-ts(x), respectively. For rw synchro-
nization, scheduler S operates as follows.
Consider a din-read(x) with timestamp TS.
If TS < W-ts(x), S rejects the dm-read and
aborts the issuing transaction. Otherwise S
outputs the dm-read and sets R-ts(x) to
max(R-ts(x)-,TS). For a dm-write(x) with
timestamp TS, S rejects the dm-write if
TS < R-ts(x); otherwise it outputs the dm-
write and sets W-ts(x) to max(W-ts(x),TS).
For ww synchronization, S rejects a dm-
write(x) with timestamp TS if TS < W-
ts(x); otherwise it outputs the dm-write and
sets W-ts(x) to TS.

When a transaction is aborted, it is as-
signed a new and larger timestamp by its
TM and is restarted. Restart issues are
discussed further below.

Two-phase commit is incorporated by
timestamping prewrites and accepting or
rejecting prewrites instead of dm-writes.
Once a scheduler accepts a prewrite, it must
guarantee to accept the corresponding dm-
write no matter when the dm-write arrives.
For rw (or ww) synchronization, once S
accepts a prewrite(x) with timestamp TS it
must not output any dm-read(x) (or dm-
write(x)) with timestamp greater than TS
until the dm-write(x) is output. The effect
is similar to setting a writelock on x for the
duration of two-phase commit..

To implement the above rules, S buffers
dm-reads, dm-writes, and prewrites. Let
min-R-ts(x) be the minimum timestamp of
any buffered din-read(x), and define min-
W-ts(x) and min-P-ts(x) analogously. Rw
synchronization is accomplished as follows:

1. Let R be a dm-read(x). If ts(R) < W-
ts(x), R is rejected. Else if ts(R) > min-
P-ts(x), R is buffered. Else R is output.

Computing Surveys, Vol. 13, No. 2, June 1981

200 P. A. Bernstein and N. Goodman

Let R ffi dm-read (x).
Let W ffi rim-write (x).
R is ready fli t precedes the earliest prewrite request:

ff ts(R) < min-P-ts(x).
W is ready if it precedes the earliest din-read

request:
ifts (W) < min-R-ts(x).

When a din-write(x) arrives, do the following:

I Bufferit,I

es

I Output all ready W's, and debuffer their ' 1
prewrites. (This may increase min-P-t~(x) I and make some R's ready.)

!
i

Output all ready R's. (This may increase |
min-R-ts(x) and make some W's ready.) I

I
Figure 9. Buffer emptying for basic T /O rw synchromzation.

2. Let P be a prewrite(x). If ts(P) < R-
ts(x), P is rejected. Else P is buffered.

3. Let W be a dm-write(x). W is never
rejected. If ts(W) > min-R-ts(x), W is
buffered. (If W were output it would
cause a buffered dm-read(x) to be re-
jected.) Else W is output.

4. When W is output, the corresponding
prewrite is debuffered. If this causes
min-P-ts(x) to increase, the buffered din-
reads are retested to see if any of them
can be output. If this causes min-R-ts(x)
to be increased, the buffered dm-writes
are also retested, and so forth. This proc-
ess is diagramed in Figure 9.

Ww synchronization is accomplished as fol-
lows:

1. Let P be a prewrite(x). If ts(P) < W-
ts(x), P is rejected; else P is buffered.

2. Let W be a dm-write(x). W is never

rejected. If ts(W) > min-P-ts(x), W is
buffered; else W is output.

3. When W is output, the corresponding
prewrite is debuffered. If this causes
min-P-ts(x) to be increased, the buffered
dm-writes are retested to see if any can
now be output. See Figure 10.

As with 2PL, a common variation is to
require that transactions predeclare their
readsets and writesets, issuing all dm-reads
and prewrites before beginning their main
execution. 3 If all operations are accepted,

3 These prewrites are nonstandard relative to the def-
inition in Section 1.4. Since new values for the data
items in the writeset are not yet known, these pre-
writes do not instruct DMs to store values on secure
storage; instead, prewrite (x) merely "warns" the DM
to expect a din-write (x) m the near future. However,
these prewrites are processed by synchronization al-
gorithms exactly as "standard" ones are.

CompuUng Surveys, Vol. 13, No. 2, June 1981

Concurrency Control in Database Systems • 201

When a din-write(x) arrives, do the followmg:

I Bufferlt]

es

Output all ready W's and debuffer their
prewrites. (This may increase min-P-ts(x)
and make some W's ready.)

I
Figure 10. Buffer emptying for basic T/O ww synchronization.

the transaction is guaranteed to execute
without danger of restart. Another varia-
tion is to delay the processing of operations
to wait for operations with smaller time-
stamps. The extreme version of this heuris-
tic is conservative T/O, described in Sec-
tion 4.4.

4.2 The Thomas Write Rule

For ww synchronization the basic T/O
scheduler can be optimized using an obser-
vation of THOM79. Let W be a dm-write(x),
and suppose ts(W) < W-ts(x). Instead of
rejecting W we can simply ignore it. We
call this the Thomas Write Rule (TWR).
Intuitively, TWR applies to a dm-write that
tries to place obsolete information into the
database. The rule guarantees that the ef-
fect of applying a set of dm-writes to x is
identical to what would have happened had
the dm-writes been applied in timestamp
order.

If TWR is used, there is no need to in-
corporate two-phase commit into the ww
synchronization algorithm; the ww sched-
uler always accepts prewrites and never
buffers dm-writes.

4.3 Multiversion T /O

For rw synchronization the basic T/O
scheduler can be improved using multiver-
sion data items [REED78]. For each data
item x there is a set of R-ts's and a set of

(W-ts, value) pairs, called versions. The R-
ts's of x record the timestamps of all exe-
cuted dm-read(x) operations, and the ver-
sions record the timestamps and values of
all executed dm-write(x) operations. (In
practice one cannot store R-ts's and ver-
sions forever; techniques for deleting old
versions and timestamps are described in
Sections 4.5 and 5.2.2.)

Multiversion T/O accomplishes rw syn-
chronization as follows (ignoring two-phase
commit). Let R be a dm-read(x). R is proc-
essed by reading the version of x with larg-
est timestamp less than ts(R) and adding
ts(R) to x's set of R-ts's; see Figure l la . R
is never rejected. Let W be a dm-write(x),
and let interval(W) be the interval from
ts(W) to the smallest W-ts(x) > ts(W); 4
see Figure l lb . If any R-ts(x) lies in
interval(W), W is rejected; otherwise W is
output and creates a new version of x with
timestamp ts(W).

To prove the correctness of multiversion
T/O, we must show that every execution is
equivalent to a serial execution in time-
stamp order [BERNS0b]. Let R be a dm-
read(x) that is processed "out of order";
that is, suppose R is executed after a dm-
write(x) whose timestamp exceeds ts(R).
Since R ignores all versions with time-

4Interval(W) ffi (ts(W),oo) if no W-ts(x) > ts (W)
exists.

Computing Surveys, Vol. 13, No. 2, June 1981

202 P. A. Bernstein and N. Goodman

(a) Let us represent the versions of a data item x on a "time line":

Values V1 V2 V3 " ' " Vn-1 V~

W-timestamps ~ 1~0 2~0 . . . 912 1[00 ~--~

To process a dm-read(x) with timestamp 95, find the biggest
W-timestamp less than 95; in this case 92. That is the version
you read. So in this case, the value read by the din-read is V,.].

(b) Let us represent the R-timestamps of x similarly:

R-timestamps ~ ~ ll5 . , . 9[2 915

Values V I 1 V I ~ VI3 " " " V , , - 1 V .
I lloo W-timestamps ~ 10 20 92

Let W be din-write(x) with timestamp 93. Interval(W) ffi
(93,100).

To process W we create a new version of x with that timestamp.

R-timestamps 1 I J I I
5 7 15 92 95

Values Vl V2 V3 . . • Vn.1 V Vn

I I I 912 913 1100 W-timestamps 5 10 20 • • •

However, this new version "invalidates" the din-read of part (a),
because if the din-read had arrived after the din-write, it would
have read value V instead of Vn-1. Therefore, we must reject the
din-write.

Figure 11. Multiversion reading and writing.

stamps greater than ts(R), the value read
by R is identical to the value it would have
read had it been processed in timestamp
order. Now let W be a dm-write(x) that is
processed "out of order"; that is, suppose it
is executed after a dm-read(x) whose time-
stamp exceeds ts(W). Since W was not
rejected, there exists a version of x with
timestamp TS such that ts(W) < TS <
ts(dm-read). Again the effect is identical to
a timestamp-ordered execution.

For ww synchronization, multiversion
T/O is essentially an embellished version
of TWR. A dm-write(x) always creates a
new version of x with timestamp ts(dm-
write) and is never rejected.

Integrating two-phase commit requires
that dm-reads and prewrites (but not dm-
writes) be buffered as in basic T/O. Let P
be a buffered prewrite(x): interval(P) is the
interval from ts(P) to the smallest W-ts(x)

> ts(P). Rw synchronization is performed
as follows:

1. Let R be a dm-read(x). R is never rejected.
If ts(R) lies in interval(prewrite(x))
for some buffered prewrite(x), then R is
buffered. Else R is output.

2. Let P be a prewrite(x). If some R-ts(x)
lies in interval(P), P is rejected. Else P
is buffered.

3. Let W be a din-write(x). W is always
output immediately.

4. When W is output, its prewrite is debuf-
fered, and the buffered din-reads are re-
tested to see if they can now be output.
See Figure 12.

Two-phase commit is not an issue for ww
synchronization, since dm-writes are never
rejected for ww synchronization.

Computing Surveys, Vol. 13, No. 2, June 1981

Concurrency Control in Database Systems

Let R ffi din-read(x). R is ready if ts(R) ~ interval
(P), where P is any buffered
prewrite(x).

When a dm-write arrives do the following:

Output It and debuffer its prewrite [

1
I o t ut ready 's'l

Figure 12. Buffer emptying for multiverslon T/O.

4.4 Conservative T /O

Conservative timestamp ordering is a tech-
nique for eliminating restarts during T /O
scheduling [BERN80a]. When a scheduler
receives an operation O that might cause a
future restart, the scheduler delays 0 until
it is sure that no future restarts are possible.

Conservative T /O requires that each
scheduler receive dm-reads (or dm-writes)
from each TM in timestamp order. For
example, if scheduler Sj receives dm-
read(x) followed by dm-read(y) from TM,,
then ts(dm-read(x)) _ ts(dm-read(y)).
Since the network is assumed to be a FIFO
channel, this timestamp ordering is accom-
plished by requiring that TM, send din-
reads (or din-writes) to S: in timestamp
order:

Conservative T /O buffers din-reads and
din-writes as part of its normal operation.
When a scheduler buffers an operation, it
remembers the TM that sent it. Let min-R-
ts(TM,) be the minimum timestamp of any
buffered din-read from TM~, with min-R-
ts(TM,) ffi -oo if no such din-read is

5 This can be implemented by requiring that TMs
process transactions serially Alternatively, we can
require that transactions issue all dm-reads before
beginning their main executmn, and all dm-writes after
terminating their main execution. Then transactions
can execute concurrently, although they must termi-
nate in t imestamp order.

• 203

buffered. Define min-W-ts(TMi) analo-
gously.

Conservative T / O performs rw synchro-
nization as follows:

1. Let R be a din-read(x). If ts(R) > min-
W-ts(TM) for any TM in the system, R
is buffered. Else R is output.

2. Let W be a dm-write(x). I f t s (W) :> min-
R-ts(TM) for any TM, W is buffered.
Else W is output.

3. When R or W is output or buffered, this
may increase min-R-ts(TM) or min-W-
ts(TM); buffered operations are retested
to see if they can now be output.

The effect is that R is output if and only
if (a) the scheduler has a buffered din-write
from every TM, and (b) ts(R) < minimum
timestamp of any buffered dm-write. Simi-
larly, W is output if and only if (a) there is
a buffered din-read from every TM, and (b)
ts(W) < minimum timestamp of any
buffered din-read. Thus R (or W) is output
ff and only if the scheduler has received
every din-write (or din-read) with smaller
timestamp that it will ever receive.

Ww synchronization is accomplished as
follows:

1. Let W be a din-write(x). I f t s (W) > min-
W-ts(TM) for any TM in the system, W
is buffered; else it is output.

2. When W is buffered or output, this may
increase min-W-ts(TM); buffered din-
writes are retested accordingly.

The effect is that the scheduler waits
until it has a buffered din-write from every
TM and then outputs the din-write with
smallest timestamp.

Two-phase commit need not be tightly
integrated into conservative T / O because
dm-writes are never rejected. Although pre-
writes must be issued for all data items
updated, these operations are not processed
by the conservative T /O schedulers.

The above implementation of conserva-
tive T /O suffers three major problems: (1)
If some TM never sends an operation to
some scheduler, the scheduler will "get
stuck" and stop outputting. (2) To avoid
the first problem, every TM must commu-
nicate regularly with every scheduler; this
is infeasible in large networks. (3) The im-

Computing Surveys, Vol. 13, No. 2, June 1981

204 ° P. A. Bernstein and N. Goodman

• A c lass is defined by a readse t and a writeset. For
example,

CI: r eadse t ffi {xl}, wri teset ffi {yl, Y2}
C2: readse t ffi {xl, y2}, wri teset ffi {yl, y2, z2, z3}
C3: readse t ffi {y2, z3}, wri teset --- {xl, z2, z3}

• A t ransac t ion is a m e m b e r of a class if i ts readse t is
a subse t of t he class readse t and its wri teset is a
subse t of t he class wntese t . For example ,

Tl: r eadse t ffi {xl}, wri teset ffi {Yl, y2}
T2: readse t ffi (y2), wri teset -- {z2, z3)
Ts" readse t ffi {z3}, wri teset ffi {x~}

• T~ is a m e m b e r of C1 and C2
• T~ is a m e m b e r of C2 and C3
• T3 Is a m e m b e r of C3

Figure 13. T ransac t ion classes.

plementation is overly conservative; the ww
algorithm, for instance, processes all dm-
writes in timestamp order, not merely con-
flicting ones. These problems are addressed
below.

Null Operations. To solve the first
problem, TMs are required to periodically
send timestamped null operations to each
scheduler in the absence of "real" traffic. A
null operation is a dm-read or dm-write
whose sole purpose is to convey timestamp
information and thereby unblock "real"
dm-reads and prewrites. An impatient
scheduler can prompt a TM for a null op-
eration by sending a "request message."
For example, for rw synchronization sup-
pose scheduler S wants to process a dm-
read with timestamp TS, but does not have
a buffered dm-write from TM~. S can send
a message to TM~ requesting a null-dm-
write with timestamp greater than TS.

A variation is to use null operations with
very large (perhaps infinite) timestamps.
For example, if TM~ rarely needs to issue
dm-reads to S, TM, can send S a null-dm-
read with infinite timestamp signifying that
TM, does not intend to communicate with
S until further notice.

Transaction Classes. Transac t ion
classes [BER~78a, BERN80d] is a technique
for reducing communication in conserva-
tive T/O and for supporting a less conserv-
ative scheduling policy. As in predeclara-
tion, assume that every transaction's read-
set and writeset are known in advance. A
class is defined by a readset and a writeset
(see Figure 13). Transaction T is a member

of class C if readset(T) is a subset of read-
set(C) and writeset(T) is a subset of write-
set(C). (Classes need not be disjoint.)

Class definitions are not expected to
change frequently during normal operation
of the system. Changing a class definition
is akin to changing the database schema
and requires mechanisms beyond the scope
of this paper. We assume that class defini-
tions are stored in static tables that are
available to any site requiring them.

Classes are associated with TMs. Every
transaction that executes at a TM must be
a member of a class associated with the
TM. If a transaction is submitted to a TM
that has no class containing it, the trans-
action is forwarded to another TM that
does. We assume that every class is associ-
ated with exactly one TM, and vice versa.
The class associated with TM, is denoted
C,. To execute transactions that are mem-
bers of class C at two TMs, we define an-
other class C' with the same definition as C
and associate C with one TM and C' with
the other. To execute transactions that are
members of two classes at one site, we
multiprogram two TMs at that site.

Classes are exploited by conservative
T/O schedulers as follows. Consider rw syn-
chronization and suppose scheduler S
wants to output a dm-read(x). Instead of
waiting for dm-writes with smaller time-
stamps from all TMs, S need only wait
for dm-writes from those TMs whose class
writeset contains x. Similarly, to process a
dm-write (x), S need only wait for dm-reads
with smaller timestamp from those TMs
whose class readset contains x. Thus com-
munication requirements are decreased,
and the level of concurrency in the system
is increased. Ww synchronization proceeds
similarly.

Conflict Graph Analysis. Conflict
graph analysis is a technique for further
improving the performance of conservative
T/O with classes. A conflict graph is an
undirected graph that summarizes poten-
tial conflicts between transactions in differ-
ent classes. For each class C, the graph
contains two nodes, denoted r~ and w,,
which represent the readset and writeset of
C,. The edges of the graph are defined as
follows (see Figure 14): (1) For each class

Computing Surveys, Vol 13, No 2, June 1981

Concurrency Control in Database Systems • 205

Define C1, C2, Ca as in Figure 13.

C1 readset = {xl} C2 readset = {x], y2} C3 readse t ffi {Y2, za}

C1 writeset = {yl, y2} C2 writeset = {yl, y2, z2, za} Ca wri teset ffi {xl, z2, za}

Figure 14.

C~ there is a vertical edge between r~ and
w~; (2) for each pair of classes C, and Cj
(with i ~ j) there is a horizontal edge
between w~ and wj if and only if writeset(C~)
intersects writeset(C~); (3) for each pair of
classes C, and C~ (with i # j) there is a
diagonal edge between r~ and w~ if and only
if readset(C~) intersects writeset(C~).

Intuitively, a horizontal edge indicates
that a scheduler S may be forced to delay
dm-writes for purposes of ww synchroniza-
tion. Suppose classes C~ and C~ are con-
nected by a horizontal edge (w,, wj), indi-
cating that their class writesets intersect. If
S receives a dm-write from C,, it must delay
the dm-write until it receives all dm-writes
with smaller timestamps from Cj. Similarly,
a diagonal edge indicates that S may need
to delay operations for rw synchronization.

Conflict graph analysis improves the sit-
uation by identifying interclass conflicts
that cannot cause nonserializable behavior.
This corresponds to identifying horizontal
and diagonal edges that do not require syn-
chronization. In particular, schedulers need
only synchronize dm-writes from C, and Cj
if either (1) the horizontal edge between w~
and wj is embedded in a cycle of the conflict
graph; or (2) portions of the intersection of
C~'s writeset and C/s writeset are stored at
two or more DMs [BERN80C]. That is, if
conditions (1) and (2) do not hold, schedu-
ler S need not process dm-writes from C~
and Cj in timestamp order. Similarly, dm-
reads from C, and dm-writes from Cj need
only be processed in timestamp order if
either (1) the diagonal edge between r, and
wj is embedded in a cycle of the conflict
graph; or (2) portions of the intersection of
C,'s readset and Cj's writeset are stored at
two or more DMs.

Since classes are defined statically, con-
flict graph analysis is also performed stati-

Conflict graph.

cally. The analysis produces a table indi-
cating which horizontal and vertical edges
require synchronization and which do not.
This table, like class definitions, is distrib-
uted in advance to all schedulers that
need it.

4.5 Timestamp Management
A common criticism of T / O schedulers is
that too much memory is needed to store
timestamps. This problem can be overcome
by "forgetting" old timestamps.

Timestamps are used in basic T /O to
reject operations that "arrive late," for ex-
ample, to reject a dm-read(x) with time-
stamp TS1 that arrives after a dm-write(x)
with timestamp TS2, where TS1 <: TS2. In
principle, TS1 and TS2 can differ by an
arbitrary amount. However, in practice it is
unlikely that these timestamps will differ
by more than a few minutes. Consequently,
timestamps can be stored in small tables
which are periodically purged.

R-ts's are stored in the R-table with en-
tries of the form (x, R-ts); for any data
item x, there is at most one entry. In addi-
tion, a variable, R-min, tells the maximum
value of any timestamp that has been
purged from the table. To find R-ts(x), a
scheduler searches the R-table for an (x,
TS) entry. If such an entry is found, R-
ts(x) = TS; otherwise, R-ts(x) _ R-rain. To
err on the side of safety, the scheduler
assumes R-ts(x) ffi R-rain. To update R-
ts(x), the scheduler modifies the (x, TS)
entry, if one exists. Otherwise, a new entry
is created and added to the table. When the
R-table is full, the scheduler selects an ap-
propriate value for R-rain and deletes all
entries from the table with smaller time-
stamp. W-ts's are managed similarly, and
analogous techniques can be devised for
multiversion databases.

Computing Surveys, Vol. 13, No. 2, June 1981

206 • P. A. Bernstein and N. Goodman

Maintaining timestamps for conservative
T /O is even cheaper, since conservative
T / O requires only timestamped operations,
not timestamped data. If conservative T / O
is used for rw synchronization, the R-ts's of
data items may be discarded. If conserva-
tive T /O is used for both rw and ww syn-
chronization, W-ts's can be eliminated also.

5. INTEGRATED CONCURRENCY CONTROL
METHODS

An integrated concurrency control method
consists of two components--an rw and a
ww synchronization technique--plus an in-
terface between the components that at-
tains condition (b) of Theorem 2: a total
ordering of the transactions consistent with
all ---*~w~ and --*ww relationships. In this
section we list 48 concurrency control meth-
ods that can be constructed using the tech-
niques of Sections 3 and 4.

Approximately 20 concurrency control
methods have been described in the litera-
ture. Virtually all of them use a single
synchronization technique {either 2PL or
T/O) for both rw and ww synchronization.
Indeed, most methods use the same varia-
tion of a single technique for both kinds of
synchronization. However, such homoge-
neity is neither necessary nor especially
desirable.

For example, the analysis of Section 3.2
suggests that using basic 2PL for rw syn-
chronization and primary copy 2PL for ww
synchronization might be superior to using
basic 2PL (or primary copy 2PL) for both.
More outlandish combinations may be even
better. For example, one can combine basic
2PL with TWR. In this method ww con-
flicts never cause transactions to be delayed
or restarted; multiple transactions can write
into the same data items concurrently (see
Section 5.3).

In Sections 5.1 and 5.2 we describe meth-
ods that use 2PL and T / O techniques for
both rw and ww synchronization. The con-
currency control methods in these sections
are easy to describe given the material of
Sections 3 and 4; the description of each
method is little more than a description of
each component technique. In Section 5.3
we list 24 concurrency control methods that
combine 2PL and T /O techniques. As we
show in Section 5.3, methods of this type

have useful properties that cannot be at-
tained by pure 2PL or T /O methods.

5.1 Pure 2PL Methods

The 2PL synchronization techniques of
Section 3 can be integrated to form 12
principal 2PL methods:

Method rw techmque ww technique

1 Basic 2PL Basic 2PL
2 Basic 2PL Primary copy 2PL
3 Basic 2PL Voting 2PL
4 Basic 2PL Centralized 2PL
5 Primary copy 2PL Basic 2PL
6 Primary copy 2PL Primary copy 2PL
7 Primary copy 2PL Voting 2PL
8 Primary copy 2PL Centralized 2PL
9 Centralized 2PL Basic 2PL

10 Centralized 2PL Primary copy 2PL
11 Centralized 2PL Voting 2PL
12 Centralized 2PL Centralized 2PL

Each method can be further refined by the
choice of deadlock resolution technique
(see Section 3.5).

The interface between each 2PL rw tech-
nique and each 2PL ww technique is
straightforward. It need only guarantee
that "two-phasedness" is preserved, mean-
ing that all locks needed for both the rw
and ww technique must be obtained before
any lock is released by either technique.

5. 1.1 Methods Using Basic 2PL for rw
Synchronization

Methods 1-4 use basic 2PL for rw synchro-
nization. Consider a logical data item X
with copies xl, . . . , Xm. TO read X, a trans-
action sends a dm-read to any DM that
stores a copy of X. This dm-read implicitly
requests a readlock on the copy of X at that
DM. To write X, a transaction sends pre-
writes to every DM that stores a copy of X.
These prewrites implicitly request write-
locks on the corresponding copies of X. For
all four methods, these writelocks conflict
with readlocks on the same copy, and may
also conflict with other writelocks on the
same copy, depending on the specific ww
synchronization technique used by the
method.

Since locking conflict rules for writelocks
will vary from copy to copy, we distinguish
three types. An rw writelock only conflicts
with readlocks on the same data item. A
ww writelock only conflicts with ww write-

Computing Surveys, Vol 13, No. 2, June 1981

Concurrency

locks on the same data item. And an rww
writelock conflicts with readlocks, ww
writelocks, and rww writelocks. Thus , using
basic 2PL for rw synchronization, every
prewri te sets rw writelocks, and m a y set
s t ronger locks depending on the ww tech-
nique.

Method 1: Basic 2PL for ww synchroni-
zation. All writelocks are rww writelocks;
tha t is, for i ffi 1, . . . , m, a wri telock on x,
conflicts with ei ther a readlock or a write-
lock on x , This is the " s tandard" distrib-
u ted implementa t ion of 2PL.

Method 2: Primary copy 2PL for ww
synchronization. Writelocks only conflict
on the p r imary copy. An rww writelock is
used on the p r imary copy, while rw write-
locks are used on the others.

Method 3: Voting 2PL for ww synchro-
nization. A D M responds to a prewrite(x,)
by attempting to set an rww writelock on
x , However , if ano ther t ransact ion already
owns an rww writelock on x,, the D M only
sets an rw writelock and leaves a reques t
for an rww writelock pending. A t ransact ion
can write into any copy of X af ter it obtains
rww writelocks on a major i ty of copies. Th is
is similar to the me thod proposed in
GIFF79.

Method 4: Centralized 2PL for ww syn-
chronization. T o write into X, a t ransact ion
mus t first explicitly request a ww writelock
on X f rom a centralized 2PL scheduler. T h e
rw writelocks set by prewri tes never conflict
with each other.

In all four methods, readlocks are explic-
itly released by lock releases while write-
locks are implicitly released by dm-writes.
Lock releases m a y be t r ansmi t t ed in paral-
lel with dm-writes. In Method 4, after all
din-writes have been executed, addit ional
lock releases mus t be sent to the centralized
scheduler to release writelocks held there.

5.1.2 Methods Using Primary Copy 2PL for rw
Synchromzahon

Methods 5-8 use p r imary copy 2PL for rw
synchronization. Consider a logical da ta
i tem X with copies xl xm, and assume
xz is the p r imary copy. To read X, a t rans-
act ion mus t obta in a readlock on x~. I t m a y
obtain this lock by issuing a dm-read(Xl).
Alternatively, the t ransact ion can send an

Control in Database Systems • 207

explicit lock reques t to Xl'S DM; when the
lock is granted the t ransact ion can read any
copy of X.

To write into X, a t ransac t ion sends pre-
wri tes to every D M t h a t s tores a copy of X.
A prewrite(xl) implicit ly requests an rw
writelock. Prewri tes on o ther copies of X
m a y also reques t writelocks depending on
the ww technique.

Method 5: Basic 2PL for ww synchroni-
zation. For i ffi 2 , m, prewrite(x,) re-
quests a ww writelock. Since the wri telock
on xz mus t also conflict wi th readlocks on
xl, prewrite(xl) requests an rww writelock.

Method 6: Primary copy 2PL for ww
synchronization. Prewrite(xl) reques ts an
rww writelock on xl. Prewri tes on o ther
copies do not reques t any locks. Th is
me thod was originally proposed by SToN79
and is used in D i s t r ~ u t e d I N G R E S
[STOs77].

Method 7: Voting 2PL for ww synchro-
nization. When a scheduler receives a pre-
write(x,) for i ~ 1, i t t r ies to set a ww
writelock on x,. W h e n it receives a pre-
write(x1), it tr ies to set an rww writelock on
x~; if it cannot, t hen it sets an rw writelock
on xz (if possible) before wait ing for the
rww writelock. A t ransact ion can write into
every copy of X af ter i t obta ins a ww (or
rww) writelock on a major i ty of copies
of X.

Method 8: Centralized 2PL for ww syn-
chronization. Transac t ions obtain ww
writelocks f rom a centralized 2PL schedu-
ler. Thus a prewrite(xl) reques ts an rw
writelock on x~; for i ffi 2 , . . . , m, prewrite(x,)
does not reques t any lock.

Lock releases for Methods 5-8 are han-
dled as in Sect ion 5.1.1.

5 1.3 Methods Using Centrahzed 2PL for rw
Synchroniza tion

The remaining 2PL methods use central-
ized 2PL for rw synchronization. Before
reading (or writing) any copy of logical da ta
i tem X, a t ransact ion mus t obta in a read-
lock (or rw writelock) on X f rom a central-
ized 2PL scheduler. Before writ ing X, the
t ransact ion m u s t also send prewri tes to ev-
ery D M tha t s tores a copy of X. Some
of these prewri tes implicit ly reques t ww

Computing Surveys, Vol. 13, No. 2, June 1981

208 • P. A. Bernstein and N. Goodman

writelocks on copies of X, depending on the
specific method.

Method 9: Basic 2PL for ww synchro-
nization. Every prewrite requests a ww
writelock.

Method 10: Primary copy 2PL for ww
synchronization. If xl is the primary copy
of X, a prewrite(xl) requests a ww writelock.
Prewrites on other copies do not request
any writelocks.

Method 11: Voting 2PL for ww synchro-
nization. Every prewrite attempts to set a
ww writelock. A transaction can write into
every copy of X after it obtains ww write-
locks on a majority of copies of X.

Method 12: Centralized 2PL for ww syn-
chronization. All locks are obtained at the
centralized 2PL scheduler. Before writing
into any copy of X, an rww writelock on X
is obtained from the centralized scheduler.
Prewrites set no locks at all. Method 12 is
the "standard" implementation of central-
ized 2PL (called primary site in ALSB76a).

Lock releases for Methods 9-12 are han-
dled as in Section 5.1.1.

5.2 Pure T / O Methods

The T/O synchronization techniques of
Section 5 can also be integrated to form 12
principal T / O methods:

Method rw technique ww technique

1 Basic T /O Basic T /O
2 Basic T /O Thomas Write Rule

(TWR)
3 Basic T /O Multiversion T /O
4 Basic T /O Conservatwe T /O
5 Multiversion T /O Basic T /O
6 Multiverslon T /O TWR
7 Multiversion T /O Multiversion T / O
8 Multwersion T /O Conservative T /O
9 Conservative T /O Basic T /O

10 Conservative T /O TWR
11 Conservative T /O Multiversion T /O
12 Conservahve T /O Conservative T /O

(That there are also 12 2PL methods is
coincidental.)

Each T/O method that incorporates a
conservative component can be refined by
including classes and conflict graph analysis
(see Sections 4.4.2 and 4.4.3).

The interface between rw and ww syn-
chronization techniques is even simpler for
T/O methods than for 2PL. The only re-

quirement is that both techniques use the
same timestamp for any given transaction.

5.2.1 Methods Using Basic T/O for rw
Synchronization

Methods 1-4 use basic T/O for rw synchro-
nization. All four methods require R-ts's for
each data item. Methods 1, 2, and 4 require
W-ts's, while in Method 3 each data item
has a set of timestamped versions; for
Method 3, let W-ts(x) denote x's largest
timestamp. Each method buffers dm-reads
and prewrites for two-phase commitment
purposes; let min-R-ts(x) and min-P-ts(x)
be the minimum timestamps of any
buffered din-read(x) and prewrite(x), re-
spectively.

These methods can be described by the
following steps. Let R be a din-read(x), P a
prewrite(x), and W a din-write(x).

1. If ts(R) < W-ts(x), R is rejected. Else
if ts(R) > min-P-ts(x), R is buffered.
Else R is output and R-ts(x) is set to
max(R-ts(x), ts(R)).
If ts(P) < R-ts(x) or condition (A) 6
holds, P is rejected. Else P is buffered.
If ts(W) > min-R-ts(x) or condition (B) 6
holds, W is buffered. Else W is output
and W-ts(x) is set to max(W-ts(x),
ts(W)). For Method 3, a new version of
x is created with timestamp ts(W).
When W is output, its prewrite is debuf-
fered and the buffered din-reads and din-
writes are retested to see if any can now
be output.

Method 1: Basic T / O for ww synchroni-
zation. Condition (A) is ts(P) < W-ts(x)
and condition (B) is ts(W) > min-P-ts(x).
Note that min-R-ts(x) > min-P-ts(x), since
R is buffered only if ts(R) > min-P-ts(x).
Also, when Wis output, ts(W) > W-ts(x),
since condition (B) forces dm-writes on a
given x to be output in timestamp order.
Thus step 3 simplifies to

3. If ts(W) > min-P-ts(x), W is buffered.
Else W is output and W-ts(x) is set to
ts(W).

Method 2: T W R for ww synchronization.
Conditions (A) and (B) are null. However,

.

3.

.

6 Conditions (A) and (B) are determmed by the new
technique. See the following.

Computing Surveys, Vol. 13, No 2, June 1981

Concurrency Control in Database Systems • 209

if ts(W) < W-ts(x), Whas no effect on the
database.

Method 3: Multiversion T/O for ww syn-
chronization. Like Method 2 except that
W always creates a new version of x.

Method 4: Conservative T / O for ww syn-
chronization. Condition (A) is null. For
each TM, let min-W-ts(TM) be the mini-
mum timestamp of any buffered dm-write
from that TM. Condition (B) is ts(W) >
min-W-ts(TM) for some TM. As in Method
1, this causes dm-writes on a given x to be
output in timestamp order, and step 3 sim-
plifies to

3. If ts{W) > min-R-ts{x) or ts(W) > min-
W-ts(TM) for some TM, W is buffered.
Else W is output and W-ts(x) is set to
ts(W).

5.2.2 Methods Using Multiversion T/O for rw
Synchronization

Methods 5-8 use multiversion T/O for rw
synchronization and require a set of R-ts's
and a set of versions for each data item.
These methods can be described by the
following steps. Define R, P, W, min-R-ts,
min-W-ts, and min-P-ts as above; let inter-
val{P) be the interval from ts(P) to the
smallest W-ts(x) > ts(P).

1. R is never rejected. If ts(R) lies in
interval(prewrite(x)) for some buffered
prewrite(x), then R is buffered. Else R is
output and ts(R) is added to x's set of
R-ts's.

2. If some R-ts(x) lies in interval(P) or
condition (A) holds, then P is rejected.
Else P is buffered.

3. If condition (B) holds, W is buffered.
Else W is output and creates a new
version of x with timestamp ts(W).

4. When W is output, its prewrite is debuf-
feted, and buffered dm-reads and dm-
writes are retested.

Method 5: Basic T /O for ww synchron-
ization. Condition (A) is ts(P) < max-
W-ts(x) and condition (B) is ts(W) >
min-P-ts(x). Condition (A) implies that
interval(P) = (ts(P), ~); some R-ts(x) lies
in that interval if and only if ts(P) < max-
imum R-ts(x). Thus step 2 simplifies to

2. If ts(P) < max W-ts(x) or ts(P) < max

R-ts(x), then P is rejected. Else it is
buffered.

Because of this simplification, the method
only requires that the maximum R-ts(x) be
stored.

Condition (B) forces dm-writes on a
given data item to be output in timestamp
order. This supports a systematic technique
for "forgetting" old versions. Let max-W-
ts(x) be the maximum W-ts(x) and let min-
ts be the minimum of max-W-ts(x) over all
data items in the database. No dm-write
with timestamp less than min-ts can be
output in the future. Therefore, insofar as
update transactions are concerned, we can
safely forget all versions timestamped less
than min-ts. TMs should be kept informed
of the current value of min-ts and queries
(read-only transactions) should be assigned
timestamps greater than min-ts. Also, after
a new min-ts is selected, older versions
should not be forgotten immediately, so
that active queries with smaller timestamps
have an opportunity to finish.

Method 6: T W R for ww synchronization.
This method is incorrect. TWR requires
that W be ignored if ts(W) < max W-ts(x).
This may cause later dm-reads to be read
incorrect data. See Figure 15. {Method 6 is
the only incorrect method we will encoun-
ter.)

Method 7: Multiversion T / O for ww syn-
chronization. Conditions (A) and (B) are
null. Note that this method, unlike all pre-
vious ones, never buffers dm-writes.

Method 8: Conservative T /O for ww syn-
chronization. Condition (A) is null. Condi-
tion (B) is ts(W) > min-W-ts(TM) for some
TM. Condition (B) forces dm-writes to
be output in timestamp order, implying
interval(P) = (ts(P), oo). As in Method 5,
this simplifies step 2:

2. If ts(P) < max R-ts(x), P is rejected; else
it is buffered.

Like Method 5, this method only requires
that the maximum R-ts(x) be stored, and it
supports systematic "forgetting" of old ver-
sions described above.

5.2.3 Methods Using Conservative T/O for rw
Synchronization

The remaining T/O methods use conserv-
ative T/O for rw synchronization. Methods

Computing Surveys, Vol. 13, No. 2, June 1981

210 • P. A. Bernstein and N. Goodman

• Consider data items x and y with the foUowmg
versions:

Values 0

I
W-tlmestamps 0

Values 0

y I
W-timestamps 0

100
I

lo0
v

r

• Now suppose T has t imestamp 50 and writes x :=
50, y := 50. Under Method 6 the update to x is
ignored, and the result is

Values 0
x I

W-tmaestamps 0

Values 0

y J
W-timestamps 0

5O

I
5O

lo0
I

100
v

• Finally, suppose T' has t imestamp 75 and reads x
and y. The values it will read are x = 0, y ffi 50, whmh
is incorrect. T ' should read x - 50, y = 50.

Figure 15. Inconsistent retrievals in Method 6.

9 and 10 require W-ts's for each data item,
and Method 11 requires a set of versions for
each data item. Method 12 needs no data
item timestamps at all. Define R, P, W and
min-P-ts as in Section 5.2.1; let min-R-
ts(TM) (or min-W-ts(TM)) be the mini-
mum timestamp of any buffered dm-read
(or dm-write) from TM.

1. If ts(R) > min-W-ts(TM) for any TM, R
is buffered; else it is output.

2. If condition (A) holds, P is rejected. Else
P is buffered.

3. I f t s (W) > min-R-ts(TM) for any TM or
condition (B) holds, W is buffered. Else
W is output.

4. When W is output, its prewrite is debuf-
fered. When R or W is output or
buffered, buffered dm-reads and dm-
writes are retested to see if any can now
be output.

Method 9: Basic T /O for ww synchroni-
zation. Condition (A) is ts(P) < W-ts(x),
and condition (B) is ts(W) > min-P-ts(x).

Method 10: T W R for ww synchroniza-
tion. Conditions (A) and (B) are null. How-
ever, if ts(W) < W-ts(x), W has no effect
on the database.

This method is essentially the SDD-1
concurrency control [BERN80d], although
in SDD-1 the method is refined in several
ways. SDD-1 uses classes and conflict graph
analysis to reduce communication and
increase the level of concurrency. Also,
SDD-1 requires predeclaration of read-sets
and only enforces the conservative sched-
uling on dm-reads. By doing so, it forces
dm-reads to wait for dm-writes, but does
not insist that dm-writes wait for all dm-
reads with smaller timestamps. Hence dm-
reads can be rejected in SDD-1.

Method 11: Multiversion T / O for ww
synchronization. Conditions (A) and (B)
are null. When W is output, it creates a
new version of x with timestamp ts(W).
When R is output it reads the version with
largest timestamp less than ts(R).

This method can be optimized by noting
the multiversion T /O "automatically" pre-
vents dm-reads from being rejected, and
makes it unnecessary to buffer dm-writes.
Thus step 3 can be simplified to

3. W is output immediately.

Method 12: Conservative T / O for ww
synchronization. Condition (A) is null; con-

Computing Surveys, Vol. 13, No 2, June 1981

Concurrency

dition (B) is ts(W) > min-W-ts(TM) for
some TM. The effect is to output W if the
scheduler has received all operations with
timestamps less than ts(W) that it will ever
receive. Method 12 has been proposed in
CI~EN80, KANE79, and SHAP77a.

5.3 Mixed 2PL and T /O Methods

The major difficulty in constructing meth-
ods that combine 2PL and T/O lies in de-
veloping the interface between the two
techniques. Each technique guarantees an
acyclic --*~ (or ---~) relation when used
for rw (or ww) synchronization. The inter-
face between a 2PL and a T/O technique
must guarantee that the combined --* rela-
tion (i.e., --*~ U --->v,~) remains acyclic. That
is, the interface must ensure that the seri-
alization order induced by the rw technique
is consistent with that induced by the ww
technique. In Section 5.3.1 we describe an
interface that makes this guarantee. Given
such an interface, any 2PL technique can
be integrated with any T/O technique. Sec-
tions 5.3.2 and 5.3.3 describe such methods.

5.3. 1 The Interface

The serialization order induced by any 2PL
technique is determined by the locked
points of the transactions that have been
synchronized (see Section 3). The seriali-
zation order induced by any T/O technique
is determined by the timestamps of the
synchronized transactions. So to interface
2PL and T/O we use locked points to in-
duce timestamps [BERN80b].

Associated with each data item is a lock
timestamp, L-ts(x). When a transaction T
sets a lock of x, it simultaneously retrieves
L-ts(x). When T reaches its locked point it
is assigned a timestamp, ts(T), greater than
any L-ts it retrieved. When T releases
its lock on x, it updates L-ts(x) to be
max(L-ts(x), ts(T)).

Timestamps generated in this way are
consistent with the serialization order in-
duced by 2PL. That is, ts(Tj) < ts(Tk) if Tj
must precede Tk in any serialization in-
duced by 2PL. To see this, let T1 and Tn be
a pair of transactions such that T~ must
precede T, in any serialization. Thus there
exist transactions T1, T2 T,q, T , such
that for i = 1 , n-1 (a) T,'s locked point

Control in Database Systems . 211

precedes T,+l's locked point, and (b) T,
released a lock on some data item x before
T,+I obtained a lock on x. Let L be the L-
ts(x) retrieved by TI+I. Then ts(T,) < L <
ts(T,+~), and by induction ts(Ta) < ts(Tn).

5.3.2 Mixed Methods Using 2PL for rw Syn-
chrontzation

There are 12 principal methods in which
2PL is used for rw synchronization and
T/O is used for ww synchronization:

Method rw technique ww technique

1 Basic 2PL Basic T /O
2 Basic 2PL TWR
3 Basic 2PL Multiversion T /O
4 Basic 2PL Conservative T /O
5 Primary copy 2PL Basic T /O
6 Prnnary copy 2PL TWR
7 Primary copy 2PL Multiversion T /O
8 Primary copy 2PL Conservative T /O
9 Centrahzed 2PL Basic T /O

10 Centralized 2PL TWR
11 Centrahzed 2PL Multiversion T /O
12 Centralized 2PL Conservatwe T /O

Method 2 best exemplifies this class of
methods, and it is the only one we describe
in detail. Method 2 requires that every
stored data item have an L-ts and a W-ts.
(One timestamp can serve both roles, but
we do not consider this optimization here.)

Let X be a logical data item with copies
xl , xm. To read X, transaction T issues
a dm-read on any copy of X, say x,. This
dm-read implicitly requests a readlock on
x, and when the readlock is granted, L-
ts(x,) is returned to T. To write into X, T
issues prewrites on every copy of X. These
prewrites implicitly request rw writelocks
on the corresponding copies, and as each
writelock is granted, the corresponding L-ts
is returned to T. When T has obtained all
of its locks, ts(T) is calculated as in Section
5.3.1. T attaches ts(T) to its dm-writes,
which are then sent.

Dm-writes are processed using TWR. Let
W be dm-write(xj). If ts(W) > W-ts(xj),
the dm-write is processed as usual (xj is
updated). If, however, ts(W) < W-ts(xj), W
is ignored.

The interesting property of this method
is that writelocks never conflict with write-
locks. The writelocks obtained by prewrites
are only used for rw synchronization, and
only conflict with readlocks. This permits

Computing Sm~zeys, Vol. 13, No. 2, June 1981

212 . P. A. Berns te in a n d N. Goodman

transactions to execute concurrently to
completion even if their writesets intersect.
Such concurrency is never possible in a
pure 2PL method.

5.3,3 Mixed Methods Using T/O for rw Syn-
chronizatton

There are also 12 principal methods that
use T/O for rw synchronization and 2PL
for ww synchronization:

Method rw technique ww technique

13 Basic T /O Basic 2PL
14 Basic T /O Primary copy 2PL
15 Basic T /O Voting 2PL
16 Basic T /O Centralized 2PL
17 Multiversion T /O Basic 2PL
18 Multiversion T /O Primary copy 2PL
19 Multlversion T /O Voting 2PL
20 Multiversion T /O Centralized 2PL
21 Conservative T /O Basic 2PL
22 Conservative T /O Primary copy 2PL
23 Conservative T /O Voting 2PL
24 Conservative T /O Centralized 2PL

These methods all require predec lara t ion
o f writelocks. Since T/O is used for rw
synchronization, transactions must be as-
signed timestamps before they issue dm-
reads. However, the timestamp generation
technique of Section 5.3.1 requires that a
transaction be at its locked point before it
is assigned its timestamp. Hence every
transaction must be at its locked point be-
fore it issues any dm-reads; in other words,
every transaction must obtain all of its
writelocks before it begins its main execu-
tion.

To illustrate these methods, we describe
Method 17. This method requires that each
stored data item have a set of R-ts's and a
set of (W-ts, value) pairs (i.e., versions).
The L-ts of any data item is the maximum
of its R-ts's and W-ts's.

Before beginning its main execution,
transaction T issues prewrites on every
copy of every data item in its writeset. 7
These prewrites play a role in ww synchro-
nization, rw synchronization, and the inter-
face between these techniques.

Let P be a prewrite(x). The ww role of P

7 Since new values for the data items in the writeset
are not yet known, these prewrites do not instruct
DMs to store values on secure storage, they merely
"warn" DMs to "expect" the corresponding dm-wntes
See footnote 3.

is to request a ww writelock on x. When the
lock is granted, L-ts(x) is returned to T;
this is the interface role of P. Also when the
lock is granted, P is buffered and the rw
synchronization mechanism is informed
that a dm-write with timestamp greater
than L-ts(x) is pending. This is its rw role.

When T has obtained all of its writelocks,
ts(T) is calculated as in Section 5.3.1 and T
begins its main execution. T attaches ts(T)
to its dm-reads and dm-writes and rw syn-
chronization is performed by multiversion
T/O, as follows:

1. Let R be a dm-read(x). If there is a
buffered prewrite(x) (other than one is-
sued by T), and if L-ts(x) < ts(T), then
R is buffered. Else R is output and reads
the version of x with largest timestamp
less than ts(T).

2. Let W be a din-write(x). W is output
immediately and creates a new version
of x with timestamp ts(T).

3. When W is output, its prewrite is debuf-
fered, and its writelock on x is released.
This causes L-ts(x) to be updated to
max(L-ts(x), ts(T)) -- ts(T).

One interesting property of this method
is that restarts are needed only to prevent
or break deadlocks caused by ww synchro-
nization; rw conflicts never cause restarts.
This property cannot be attained by a pure
2PL method. It can be attained by pure
T/O methods, but only if conservative T/O
is used for rw synchronization; in many
cases conservative T/O introduces exces-
sive delay or is otherwise infeasible.

The behavior of this method for queries
is also interesting. Since queries set no
writelocks, the timestamp generation rule
does not apply to them. Hence the sys tem
is free to ass ign any t imes tamp it wishes to
a query. It may assign a small timestamp,
in which case the query will read old data
but is unlikely to be delayed by buffered
prewrites; or it may assign a large time-
stamp, in which case the query will read
current data but is more likely to be de-
layed. No matter which timestamp is se-
lected, however, a query can never cause
an update to be rejected. This property
cannot be easily attained by any pure 2PL
or T/O method.

We also observe that this method creates
versions in timestamp order, and so sys-

Computing Surveys, Vol 13, No 2, June 1981

Concurrency Control in Database Systems • 213

tematic forgetting of old versions is possible
(see Section 5.2.2). In addition, the method
requires only maximum R-ts's; smaller ones
may be instantly forgotten.

CONCLUSION

We have presented a framework for the
design and analysis of distributed database
concurrency control algorithms. The frame-
work has two main components: (1) a sys-
tem model that provides common termi-
nology and concepts for describing a variety
of concurrency control algorithms, and (2)
a problem decomposition that decomposes
concurrency control algorithms into read-
write and write-write synchronization sub-
algorithms.

We have considered synchronization sub-
algorithms outside the context of specific
concurrency control algorithms. Virtually
all known database synchronization algo-
rithms are variations of two basic tech-
niques- two-phase locking (2PL) and
timestamp ordering (T/O). We have de-
scribed the principal variations of each
technique, though we do not claim to have
exhausted all possible variations. In addi-
tion, we have described ancillary problems
{e.g., deadlock resolution) that must be
solved to make each variation effective.

We have shown how to integrate the
described techniques to form complete con-
currency control algorithms. We have listed
47 concurrency control algorithms, describ-
ing 25 in detail. This list includes almost all
concurrency control algorithms described
previously in the literature, plus several
new ones. This extreme consolidation of the
state of the art is possible in large part
because of our framework set up earlier.

The focus of this paper has primarily
been the structure and correctness of syn-,
chronization techniques and concurrency
control algorithms. We have left open a
very important issue, namely, performance.

The main performance metrics for con-
currency control algorithms are system
throughput and transaction response time.
Four cost factors influence these metrics:
intersite communication, local processing,
transaction restarts, and transaction block-
ing. The impact of each cost factor on sys-
tem throughput and response time varies

from algorithm to algorithm, system to sys-
tem, and application to application. This
impact is not understood in detail, and a
comprehensive quantitative analysis of per-
formance is beyond the state of the art.
Recent theses by Garcia-Mo!ina [GARc79a]
and Reis [REm79a] have taken first steps
toward such an analysis but there clearly
remains much to be done.

We hope, and indeed recommend, that
future work on distributed concurrency
control will concentrate on the performance
of algorithms. There are, as we have seen,
many known methods; the question now is
to determine which are best.

APPENDIX. OTHER CONCURRENCY
CONTROL METHODS

In this appendix we describe three concur-
rency control methods that do not fit the
framework of Sections 3-5: the certifier
methods of Badal [BADA79], Bayer et al.
[BAYE80], and Casanova [CASA79], the ma-
jority consensus algorithm of Thomas
[THoM79], and the ring algorithm of Ellis
[ELLI77]. We argue that these methods are
not practical in DDBMSs. The certifier
methods look promising for centralized
DBMSs, but severe technical problems
must be overcome before these methods
can be extended correctly to distributed
systems. The Thomas and Ellis algorithms,
by contrast, are among the earliest algo-
rithms proposed for DDBMS concurrency
control. These algorithms introduced sev-
eral important techniques into the field but,
as we will see, have been surpassed by
recent developments.

A1. Certifiers

A 1.1 The Certification Approach

In the certification approach, din-reads and
prewrites are processed by DMs first-come/
first-served, with no synchronization what-
soever. DMs do maintain summary infor-
mation about rw and ww conflicts, which
they update every time an operation is
processed. However, din-reads and pre-
writes are never blocked or rejected on the
basis of the discovery of such a conflict.

Synchronization occurs when a transac-
tion attempts to terminate. When a trans-

Computing Surveys, Vo|. 13, No. 2, June 1981

214 • P. A. Bernstein and N. Goodman

action T issues its END, the DBMS decides
whether or not to certify, and thereby com-
mit, T.

To understand how this decision is made,
we must distinguish between "total" and
"committed" executions. A total execution
of transactions includes the execution of all
operations processed by the system up to a
particular moment. The committed execu-
tion is the portion of the total execution
that only includes din-reads and din-writes
processed on behalf of committed transac-
tions. That is, the committed execution is
the total execution that would result from
aborting all active transactions (and not
restarting them).

When T issues its END, the system tests
whether the committed execution aug-
mented by T's execution is serializable, that
is, whether after committing T the resulting
committed execution would still be serial-
izable. If so, T is committed; otherwise T is
restarted.

There are two properties of certification
that distinguish it from other approaches.
First, synchronization is accomplished en-
tirely by restarts, never by blocking. And
second, the decision to restart or not is
made after the transaction has finished ex-
ecuting. No concurrency control method
discussed in Sections 3-5 satisifies both
these properties.

The rationale for certification is based on
an optimistic assumption regarding run-
time conflicts: if very few run-time conflicts
are expected, assume that most executions
are serializable. By processing din-reads
and prewrites without synchronization, the
concurrency control method never delays a
transaction while it is being processed. Only
a (fast, it is hoped) certification test when
the transaction terminates is required.
Given optimistic transaction behavior, the
test will usually result in committing the
transaction, so there are very few restarts.
Therefore certification simultaneously
avoids blocking and restarts in optimistic
situations.

A certification concurrency control
method must include a summarization al-
gorithm for storing information about dm-
reads and prewrites when they are proc-
essed and a certification algorithm for us-
ing that information to certify transactions

when they terminate. The main problem in
the summarization algorithm is avoiding
the need to store information about al-
ready-certified transactions. The main
problem in the certification algorithm is
obtaining a consistent copy of the summary
information. To do so the certification al-
gorithm often must perform some synchro-
nization of its own, the cost of which must
be included in the cost of the entire method.

A1.2 Certificatton Using the--~ Relatton

One certification method is to construct the
---) relation as dm-reads and prewrites are
processed. To certify a transaction, the sys-
tem checks that ---> is acyclic [BADA79,
BAYE80, CASA79]. s

To construct --% each site remembers the
most recent transaction that read or wrote
each data item. Suppose transactions T,
and T~ were the last transactions to (re-
spectively) read and write data item x. If
transaction Tk now issues a din-read(x),
Tj --* Tk is added to the summary infor-
mation for the site and Tk replaces T, as
the last transaction to have read x. Thus
pieces of--* are distributed among the sites,
reflecting run-time conflicts at each site.

To certify a transaction, the system must
check that the transaction does not lie on
a cycle in --* (see Theorem 2, Section 2).
Guaranteeing acyclicity is sufficient to
guarantee serializability.

There are two problems with this ap-
proach. First, it is in general not correct to
delete a certified transaction from --), even
if all of its updates have been committed.
For example, if T, --) Tj and T, is active but
Tj is committed, it is still possible for Tj ---)
T, to develop; deleting Tj would then cause
the cycle T, --~ Tj ---) T, to go unnoticed
when T, is certified. However, it is ob-
viously not feasible to allow ---) to grow
indefinitely. This problem is solved by Ca-
sanova [CASA79] by a method of encoding
information about committed transactions
in space proportional to the number of ac-
tive transactions.

A second problem is that all sites must
be checked to certify any transaction. Even

8 In BAYE80 certification is only used for rw synchro-
nization whereas 2PL is used for ww synchronization.

Computing Surveys, Vol. 13, No. 2, June 1981

Concurrency Control in Database Systems ° 215

sites at which the t ransact ion never ac-
cessed data must part icipate in the cycle
checking of--*. For example, suppose we
want to certify t ransact ion T. T might be
involved in a cycle T --. T1 --) T2 --) . . . --*
Tn-1 --> Tn ---> T, where each conflict Tk --)
Tk+l occurred at a different site. Possibly T
only accessed data at one site; ye t the --)
relation must be examined at n sites to
certify T. This problem is current ly un-
solved, as far as we know. T h a t is, any
correct certifier based on this approach of
checking cycles in --) must access the --~
relation at all sites to certify each and every
transaction. Until this problem is solved,
we judge the certification approach to be
impractical in a distr ibuted environment.

A2. Thomas' Majority Consensus Algorithm

A2.1 The Algorithm

One of the first published algorithms for
distr ibuted concurrency control is a certifi-
cation method described in THOM79.
Thomas introduced several impor tan t syn-
chronization techniques in tha t algorithm,
including the Thomas Write Rule (Section
3.2.3), majori ty voting (Section 3.1.1), and
certification (Appendix A1). Although
these techniques are valuable when consid-
ered in isolation, we argue tha t the overall
Thomas algori thm is not suitable for dis-
t r ibuted databases. We first describe the
algorithm and then comment on its appli-
cation to distr ibuted databases.

Thomas ' algori thm assumes a fully re-
dundant database, with every logical data
i tem stored at every site. Each copy carries
the t imestamp of the last t ransact ion tha t
wrote into it.

Transact ions execute in two phases. In
the first phase each t ransact ion executes
locally at one site called the transaction's
home site. Since the database is fully re-
dundant , any site can serve as the home
site for any transaction. The t ransact ion is
assigned a unique t imestamp when it begins
executing. During execution it keeps a rec-
ord of the t imestamp of each data i tem it
reads and, when its executes a write on a
data item, processes the write by recording
the new value in an update list. Note tha t
each transact ion must read a copy of a data
i tem before it writes into it. When the trans-

action terminates, the system augments the
update list with the. list of data items read
and their timestamps at the time they were
read. In addition, the timestamp of the
transaction itself is added to the update list.
This completes the first phase of execution.

In the second phase the update list is
sent to every site. Each site (including the
site that produced the update list) votes on
the update list. Intuitively speaking, a site
votes yes on an update list if it can certify
the transaction that produced it. After a
site votes yes, the update list is said to be
pending at that site. To cast the vote, the
site sends a message to the transaction's
home site, which, when it receives a major-
ity of yes or no votes, informs all sites of
the outcome. If a majority voted yes, then
all sites are required to commit the update,
which is then installed using TWR. If a
majority voted no, all sites are told to dis-
card the update, and the transaction is re-
started.

The rule that determines when a site may
vote "yes" on a transaction is pivotal to the
correctness of the algorithm. To vote on an
update list U, a site compares the time-
stamp of each data item in the readset of U
with the timestamp of that same data item
in the site's local database. If any data item
has a timestamp in the database different
from that in U, the site votes no. Otherwise,
the site compares the readset and writeset
of U with the readset and writeset of each
pending update list at that site, and if there
is no rw conflict between U and any of the
pending update lists, it votes yes. If there is
an rw conflict between U and one of those
pending requests, the site votes pass (ab-
stain) if U's timestamp is larger than that
of all pending update lists with which it
conflicts. If there is an rw conflict but U's
timestamp is smaller than that of the con-
flicting pending update list, then it sets U
aside on a wait queue and tries again when
the conflicting request has either been com-
mitted or aborted at that site.

The voting rule is essentially a certifica-
tion procedure. By making the timestamp
comparison, a site is checking that the read-
set was not written into since the transac-
tion read it. If the comparisons are satisfied,
the si tuation is as if the t ransact ion had
locked its readset a t tha t site and held the
locks until i t voted. T h e voting rule is

Computing Stttw~ys, Vgl. 13, N% 2, June 1981

216 • P. A. Berns te in a n d N. Goodman

thereby guaranteeing rw synchronization
with a certification rule approximating rw
2PL. (This fact is proved precisely in
BEm~79b.)

The second part of the voting rule, in
which U is checked for rw conflicts against
pending update lists, guarantees that con-
flicting requests are not certified concur-
rently. An example illustrates the problem.
Suppose T1 reads X and Y, and writes Y,
while T2 reads X and Y, and writes X.
Suppose T1 and T2 execute at sites A and
B, respectively, and X and Y have time-
stamps of 0 at both sites. Assume that T1
and T~ execute concurrently and produce
update lists ready for voting at about the
same time. Either T~ or T2 must be re-
started, since neither read the other's out-
put; if they were both committed, the result
would be nonserializable. However both
Tl's and T2's update lists will (concurrently)
satisfy the timestamp comparison at both
A and B. What stops them from both ob-
taining unanimous yes votes is the second
part of the voting rule. After a site votes on
one of the transactions, it is prevented from
voting on the other transaction until the
first is no longer pending. Thus it is not
possible to certify conflicting transactions
concurrently. (We note that this problem
of concurrent certification exists in the al-
gorithms of Section A1.2, too. This is yet
another technical difficulty with the certi-
fication approach in a distributed environ-
ment.)

With the second part of the voting rule,
the algorithm behaves as if the certification
step were atomically executed at a primary
site. If certification were centralized at a
primary site, the certification step at the
primary site would serve the same role as
the majority decision in the voting case.

A2.2 Correctness

No simple proof of the serializability of
Thomas' algorithm has ever been demon-
strated, although Thomas provided a de-
tailed "plausibility" argument in THOM79.
The first part of the voting rule can cor-
rectly be used in a centralized concurrency
control method since it implies 2PL
[BERN79b], and a centralized method based
on this approach was proposed in KUNG81.

The second part of the voting rule guaran-
tees that for every pair of conflicting trans-
actions that received a majority of yes
votes, all sites that voted yes on both trans-
actions voted on the two transactions in the
same order. This makes the certification
step behave just as it would if it were cen-
tralized, thereby avoiding the problem ex-
emplified in the previous paragraph.

A2.3 Partially Redundant Databases

For the majority consensus algorithm to be
useful in a distributed database environ-
ment, it must be generalized to operate
correctly when the database is only par-
tially redundant. There is reason to doubt
that such a generalization can be accom-
plished without either serious degradation
of performance or a complete change in the
set of techniques that are used.

First, the majority consensus decision
rule apparently must be dropped, since the
voting algorithm depends on the fact that
all sites perform exactly the same certifi-
cation test. In a partially redundant data-
base, each site would only be comparing
the timestamps of the data items stored at
that site, and the significance of the major-
ity vote would vanish.

If majority voting cannot be used to syn-
chronize concurrent certification tests, ap-
parently some kind of mutual exclusion
mechanism must be used instead. Its pur-
pose would be to prevent the concurrent,
and therefore potentially incorrect, certifi-
cation of two conflicting transactions, and
would amount to locking. The use of locks
for synchronizing the certification step is
not in the spirit of Thomas' algorithm, since
a main goal of the algorithm was to avoid
locking. However, it is worth examining
such a locking mechanism to see how cer-
tification can be correctly accomplished in
a partially redundant database.

To process a transaction T, a site pro-
duces an update list as usual. However,
since the database is partially redundant, it
may be necessary to read portions of T's
readset from other sites. After T termi-
nates, its update list is sent to every site
that contains part of T's readset or writeset.
To certify an update list, a site first sets
local locks on the readset and writeset, and
then (as in the fully redundant case) it

Computing Surveys, Vol. 13, No 2, June 1981

Concurrency

compares the update list's timestamps with
the database's timestamps. If they are iden-
tical, it votes yes; otherwise it votes no. A
unanimous vote of yes is needed to commit
the updates. Local locks cannot be released
until the voting decision is completed.

While this version of Thomas' algorithm
for partially redundant data works cor-
rectly, its performance is inferior to stand-
ard 2PL. This algorithm requires that the
same locks be set as in 2PL, and the same
deadlocks can arise. Yet the probability of
restart is higher than in 2PL, because even
after all locks are obtained the certification
step can still vote no (which cannot happen
in 2PL).

One can improve this algorithm by des-
ignating a primary copy of each data item
and only performing the timestamp com-
parison against the primary copy, making
it analogous to primary copy 2PL. How-
ever, for the same reasons as above, we
would expect primary copy 2PL to outper-
form this version of Thomas' algorithm too.

We therefore must leave open the prob-
lem of producing an efficient version of
Thomas' algorithm for a partially redun-
dant database.

A2.4 Performance

Even in the fully redundant case, the per-
formance of the majority consensus algo-
rithm is not very good. First, repeating the
certification and conflict detection at each
site is more than is needed to obtain seri-
alizability: a centralized certifier would
work just as well and would only require
that certification be performed at one site.
Second, the algorithm is quite prone to
restarts when there are run-time conflicts,
since restarts are the only tactic available
for synchronizing transactions, and so will
only perform well under the most optimistic
circumstances. Finally, even in optimistic
situations, the analysis in GARC79a indi-
cates that centralized 2PL outperforms the
majority consensus algorithm.

A2.5 Rehablhty

Despite the performance problems of the
majority consensus algorithm, one can try
to justify the algorithms on reliability
grounds. As long as a majority of sites are

Control in Database Systems * 217

correctly running, the algorithm runs
smoothly. Thus, handling a site failure is
free, insofar as the voting procedure is con-
cerned.

However, from current knowledge, this
justification is not compelling for several
reasons. First, although there is no cost
when a site fails, substantial effort may be
required when a site recovers. A centralized
algorithm using backup sites, as in
ALSB76a, lacks the symmetry of Thomas'
algorithm, but may well be more efficient
due to the simplicity of site recovery. In
addition, the majority consensus algorithm
does not consider the problem of atomic
commitment and it is unclear how one
would integrate two-phase commit into the
algorithm.

Overall, the reliability threats that are
handled by the majority consensus algo-
rithm have not been explicitly listed, and
alternative solutions have not been ana-
lyzed. While voting is certainly a possible
technique for obtaining a measure of relia-
bility, the circumstances under which it is
cost-effective are unknown.

A3. Ellis' Ring Algorithm

Another early solution to the problem of
distributed database concurrency control is
the ring algorithm [ELLI77]. Ellis was prin-
cipally interested in a proof technique,
called L systems, for proving the correct-
ness of concurrent algorithms. He devel-
oped his concurrency control method pri-
marily as an example to illustrate L-system
proofs, and never made claims about its
performance. Because the algorithm was
only intended to illustrate mathematical
techniques, Ellis imposed a number of re-
strictions on the algorithm for mathemati-
cal convenience, which make it infeasible in
practice. Nonetheless, the algorithm has
received considerable attention in the lit-
erature, and in the interest of completeness,
we briefly discuss it.

Ellis' algorithm solves the distributed
concurrency control problem with the fol-
lowing restrictions:

(1) The database must be fully redundant.
(2) The communication medium must be

a ring, so each site can only communi-
cate with its successor on the ring.

Computing Surveys, Vol. 13, No 2, June 1981

218 • P. A. Bernstein and N. Goodman

(3) Each site-to-site communication link is ALSB76a
pipelined.

(4) Each site can supervise no more than
one active update transaction at a time.

(5) To update any copy of the database, a
transaction must first obtain a lock on
the entire database at all sites.

The effect of restriction 5 is to force all
BADA78

transactions to execute serially; no concur-
rent processing is ever possible. For this
reason alone, the algorithm is fundamen-
tally impractical.

To execute, an update transaction mi-
grates around the ring, (essentially) obtain- BADA79
ing a lock on the entire da tabase at each
site. However, the lock conflict rules are
nonstandard. A lock request from a trans-

BADAS0
action that originated at site A conflicts at
site C with a lock held by a transaction that
originated from site B if B = C and either
A ffi B or A's priority < B's priority. The
daisy-chain communication induced by the BAYE80

ring combined with this locking rule pro-
duces a deadlock-free algorithm that does
not require deadlock detection and never BZLP76
induces restarts. A detailed description of
the algorithm appears in GARC79a.

There are several problems with this al-
gorithm in a distributed database environ-
ment. First, as mentioned above, it forces
transactions to execute serially. Second, it
only applies to a fully redundant database.
And third, the daily-chain communication
requires that each transaction obtain its
lock at one site at a time, which causes
communication delay to be (at least) lin-
early proportional to the number of sites in
the system.

A modified version of Ellis' algorithm
that mitigates the first problem is proposed
in GARC79a. Even with this improvement,
performance analysis indicates that the ring
algorithm is inferior to centralized 2PL.
And, of course, the modified algorithm still
suffers from the last two problems.

ACKNOWLEDGMENT
This work was supported by Rome Air Development
Center under contract F30602-79-C-0191.

AHO75

REFERENCES
AHO, A. V., HOPCROFT, E., AND ULLMAN,
J. D. The design and analysts of com-
puter algorithms, Addison-Wesley, Read-
ing, Mass., 1975.

ALSB76b

BERN78a

BERN79a

BERN79b

BERN80a

BERN80b

BERNS0c

ALSBERG, P. A, AND DAY, J .D. "A prin-
ciple for resilient sharing of distributed
resources," in Proc. 2nd Int. Conf. Soft-
ware Eng., Oct. 1976, pp. 562-570.
ALSBERG, P. A., BELFORD, G.C., DAY, J.
D., AND GRAPLA, E. "Multi-copy resil-
iency techniques," Center for Advanced
Computation, AC Document No. 202,
Univ. Illinois at Urbana-Champaign, May
1976.
BADAL, D. Z., AND POPEK, G.J . "A pro-
posal for distributed concurrency control
for partially redundant distributed data
base system," in Pron. 3rd Berkeley
Workshop D~str~buted Data Manage-
ment and Computer Networks, 1978, pp.
273-288
BADAL, D. Z. "Correctness of concur-
rency control and implications in distrib-
uted databases," in Proc COMPSAC 79
Conf., Chicago, Ill., Nov. 1979.
BADAL, D.Z. "On the degree of concur-
rency provided by concurrency control
mechanisms for distributed databases," in
Proc. Int Symp. D~stributed Databases,
Versailles, France, March 1980.
BAYER, R., HELLER, H., AND REISER,
A. "Parallelism and recovery in data-
base systems," ACM Trans. Database
Syst. 5, 2 (June 1980), 139-156.
BELFORD, G. C., SCHWARTZ, P. M., AND
SLUIZER, S. "The effect of back-up
strategy on database availability," CAC
Document No. 181, CCTCWAD Docu-
ment No. 5515, Center for Advanced
Computation, Univ. Ilhnom at Urbana-
Champaign, Urbana, Feb. 1976.
BERNSTEIN, P. A., GOODMAN, N., ROTH-
NXE, J B., AND PAPADIMITRIOU, C.
A. "The concurrency control mecha-
nism of SDD-I: A system for dmtributed
databases (the fully redundant case),"
IEEE Trans. Softw. Eng. SE-4, 3 (May
1978), 154-168.
BERNSTEIN, P. A., AND GOODMAN,
N. "Approaches to concurrency control
in dmtributed databases," in Pron. 1979
Natl. Computer Conf., AFIPS Press, Ar-
lington, Va., June 1979.
BERNSTEIN, P. A., SHIPMAN, D. W., AND
WONO, W.S . "Formal Aspects of Sen-
alizability in Database Concurrency Con-
trol," IEEE Trans. Softw Eng. SE-5, 3
(May 1979), 203-215.
BERNSTEIN, P. A., AND GOODMAN,
N. "Timestamp based algorithms for
concurrency control in distributed data-
base systems," Proc 6th Int. Conf. Very
Large Data Bases, Oct. 1980.
BERNSTEIN, P. A., GOODMAN, N., AND
LAI, M.Y. "Two Part Proof Schema for
Database Concurrency Control," in Proc
5th Berkeley Workshop D~str~buted Data
Management and Computer Networks,
Feb. 1980.
BERNSTEIN, P. A , AND SHIPMAN, D.
W "The correctness of concurrency

Computing Surveys, Vol. 13, No. 2, June 1981

C o n c u r r e n c y Con t ro l in D a t a b a s e S y s t e m s • 219

BERN80d

BERN81

BREI79

BRIN73

CASA79

CHAM74

CHEN80

DEPP76

DIJK71

ELLI77

ESWA76

GARC78

GARC79a

GARc79b

control mechanisms in a system for dis-
tributed databases (SDD-1)," in ACM
Trans. Database Syst. 5, 1 (March 1980),
52-68.
BERNSTEIN, P, SHIPMAN, D. W., AND
ROTHNIE, J.B. "Concurrency control m
a system for distributed databases (SDD-
1)," in ACM Trans. Database Syst 5, 1
(March 1980), 18-51.
BERNSTEIN, P. A, GOODMAN, N., WONG, GARD77
E, REEVE, C. L., AND ROTHNIE, J.
B. "Query processing m SDD-I," ACM
Trans. Database Syst. 6, 2, to appear.
BREITWIESER, H., AND KERSTEN,
U. "Transaction and catalog manage- GELE78
merit of the distributed file management
system DISCO," in Proc. Very Large
Data Bases, Rm de Janerio, 1979
BRINCH-HANSEN, P. Operating system
pnnc~ples, Prentice-Hall, Englewood GIFF79
Cliffs, N. J., 1973.
CASANOVA, M. A. "The concurrency
control problem for database systems," GRAY75
Ph.D. dissertation, Harvard Univ., Tech.
Rep. TR-17-79, Center for Research in
Computmg Technology, 1979.
CHAMBERLIN, D. D., BOYCE, R. F., AND
TRAIGER, I.L. "A deadlock-free scheme GRAY78
for resource allocation in a database en-
wronment," Info. Proc. 74, North-Hol-
land, Amsterdam, 1974.
CHENG, W. K., AND BELFORD, G.
C. "Update Synchromzation in Distrib-
uted Databases," in Proc. 6th Int. Conf.
Very Large Data Bases, Oct. 1980.
DEPPE, M. E., AND FRY, J.
P. "Distributed databases' A summary
of research," in Computer networks, vol. HEWI74
1, no. 2, North-Holland, Amsterdam,
Sept. 1976.
DIJKSTRA, E.W. "Hmrarchical ordering
of sequential processes," Acta Inf. 1, 2 HOAR74
(1971), 115-138.
ELLIS, C.A. "A robust algorithm for up-
dating duphcate databases," in Proe 2nd HOLT72
Berkeley Workshop D~str~buted Data-
bases and Computer Networks, May
1977. KANE79
ESWARAN, K. P., GRAY, J. N., LORIE, R.
A., AND TRAIGER, I.L. "The notions of
consistency and predicate locks in a da-
tabase system." Commun. ACM 19, 11
(Nov. 1976), 624-633.
GARCIA-MOLINA, H "Performance
comparisons of two update algorithms for
distributed databases," in Proc. 3rd
Berkeley Workshop D~stmbuted Data-
bases and Computer Networks, Aug.
1978. KING74
GARCIA-MOLINA, H. "Performance of
update algorithms for replicated data in a
distributed database," Ph.D. dlssertatmn,
Computer Science Dept., Stanford Umv.,
Stanford, Calif., June 1979.
GARCIA-MOLINA, H. "A concurrency KUNG79
control mechanism for distributed data
bases winch use centralized locking con-

GARC79C

HAMM80

KAWA79

trollers," in Proe. 4th Berkeley Workshop
D~stnbuted Databases and Computer
Networks, Aug. 1979.
GARCIA-MOLINA, H. "Centrahzed con-
trol update algorithms for fully redundant
distributed databases," in Proe. 1st Int.
Conf. D~stributed Computing Systems
(IEEE), New York, Oct. 1979, pp. 699-
705.
GARDARIN, G., AND LEBAUX, P. "Sched-
uling algorithms for avoiding inconsis-
tency in large databases," in Proc. 1977
Int. Conf. Very Large Data Bases
(IEEE), New York, pp. 501-516.
GELEMBE, E., AND SEVCIE, K. "Analysis
of update synchronization for multiple
copy databases," in Proc. 3rd Berkeley
Workshop Distributed Databases and
Computer Networks, Aug. 1978.
GIFFORD, D. K. "Weighted voting for
rephcated data," in Proc. 7th Syrup. Op-
erating Systems Principles, Dec. 1979.
GRAY, J. N., LORIE, R. A., PUTZULO, G.
R., AND TRAIGER, I.L. "Granularity of
locks and degrees of consistency in a
shared database," IBM Res. Rep. RJ1654,
Sept. 1975.
GRAY, J .N. "Notes on database oper-
ating systems," in Operating Systems: An
Advanced Course, vol. 60, Lecture Notes
in Computer Science, Springer-Verlag,
New York, 1978, pp. 393-481.
HAMMER, M. M., AND SHIPMAN, D.
W. "Reliability mechanisms for SDD-I:
A system for distributed databases," ACM
Trans. Database Syst. 5, 4 (Dec. 1980),
431-466.
HEWITT, C.E. "Protection and synchro-
nization in actor systems," Working Paper
No. 83, M.I.T. Artificial Intelligence Lab.,
Cambridge, Mass., Nov. 1974.
HOARE, C. A.R. "Monitors. An operat-
ing system structuring concept," Com-
mun. ACM 17, 10 (Oct. 1974), 549-557.
HOLT, R.C. "Some deadlock propemes
of computer systems," Comput. Surv. 4, 3
(Dec. 1972) 179-195.
KANEKO, A., NISHIHARA, Y., TSURUOKA,
K., AND HATTORI, M. "Logical clock
synchronization method for duplicated
database control," in Proe. 1st Int. Conf.
D~stributed Computing Systems (IEEE),
New York, Oct. 1979, pp. 601-611.
KAWAZU, S, MINAMI, ITOH, S., AND TER-
ANAKA, K. "Two-phase deadlock detec-
tion algorithm in distributed databases,"
in Proc. 1979 Int. Conf. Very Large Data
Bases (IEEE), New York.
KING, P. P., AND COLLMEYER, A
J. "Database sharing--an efficient
method for supporting concurrent pro-
cesses," in Proc. 1974 Nat. Computer
Conf., vol. 42, AFIPS Press, Arlington,
Va., 1974.
KUNG, H. T , AND PAPADIMITRIOU, C.
H. "An optimality theory of concur-
rency control for databases," in Proe. 1979

Computing Surveys, VoL 13, No. 2, June 1981

220

KUNG81

LAMP76

LAMP78

LELA78

hN79

MENA79

MENAS0

MINO78

MINO79

MONT78

PAPA77

PAPA79

RAHI79

RAMI79

• P . A . Berns te in and N. Goodman

ACM-SIGMOD Int. Conf Management
of Data, June 1979.
KUNG, H. T., AND ROBINSON, J.T. "On
optimistic methods for concurrency con- REED78
trol," ACM Trans. Database Syst. 6, 2,
(June 81), 213-226.
LAMPSON, B., AND STURGIS, H. "Crash
recovery in a chstnbuted data storage sys-
tem," Tech. Rep., Computer Science Lab.,
Xerox Palo Alto Research Center, Palo
Alto, Calif., 1976.
LAMPORT, L. "Time, clocks and ordering
of events in a distributed system," Com-
mun. ACM 21, 7 (July 1978), 558-565.
LELANN, G. "Algorithms for distributed
data-sharing sytems which use tickets," m
Proe. 3rd Berkeley Workshop Distrib-
uted Databases and Computer Networks,
Aug. 1978.
LIN, W. K. "Concurrency control in RosE79
multiple copy distributed data base sys-
tem," in Proc 4th Berkeley Workshop
Distributed Data Management and Com-
puter Networks, Aug. 1979.
MENASCE, D. A., AND MUNTZ, R.
R. "Locking and deadlock detection in
chstributed databases," IEEE Trans. ROSE78
Softw. Eng. SE-5, 3 (May 1979), 195-202.
MENASCE, D. A., POPEK, G. J., AND
MUNTZ, R . R . "A locking protocol for
resource coordination in distributed da-
tabases," ACM Trans. Database Syst. 5, ROTH77
2 (June 1980), 103-138.
MINOURA, T. "Maximally concurrent
transaction processing," in Proc. 3rd
Berkeley Workshop D~str~buted Data-
bases and Computer Networks, Aug. SCHL78
1978.
MINOURA, T. "A new concurrency con-
trol algorithm for distributed data base SEQU79
systems," in Proc. 4th Berkeley Work-
shop D~stributed Data Management and
Computer Networks, Aug. 1979.
MONTGOMERY, W. A. "Robust concur-
rency control for a distributed informa-
tion system," Ph.D. dissertation, Lab. for
Computer Science, M.I.T., Cambridge,
Mass, Dee. 1978.
PAPADIMITRIOU, C. H., BERNSTEIN, P A ,
AND ROTHNIE, J. B. "Some computa-
tmnal problems related to database con-
currency control," in Proe. Conf. Theoret-
wal Computer Scwnee, Waterloo, Ont.,
Canada, Aug. 1977. SILBS0
PAPADIMITRIOU, C. H. "Seriallzability
of concurrent updates," J. ACM 26, 4
(Oct. 1979), 631-653.
RAHIMI, S K., AND FRANTS, W . R . "A STEA76
posted update approach to concurrency
control in distributed database systems,"
in Proe. 1st Int. Conf. Dtstr~buted Com-
puting Systems (IEEE), New York, Oct.
1979, pp. 632-641. STEAS1
RAMIREZ, R. J , AND SANTORO,
N. "Distributed control of updates in
multiple-copy data bases: A time optimal

REIS79a

RExs79b

SHAP77a

SHAP77b

algorithm," in Proc. 4th Berkeley Work-
shop Dtstributed Data Management and
Computer Networks, Aug. 1979.
REED, D.P. "Naming and synchroniza-
tion m a decentralized computer system~
Ph.D. dissertation, Dept. of Electrical En-
gineering, M.I.T., Cambridge, Mass.,
Sept., 1978.
REIS, D. "The effect of concurrency
control on database management system
performance," Ph.D. dissertation, Com-
puter Science Dept., Univ. Califorma,
Berkeley, April 1979.
REIS, D. "The effects of concurrency
control on the performance of a distrib-
uted database management system," in
Proc. 4th Berkeley Workshop D~strtbuted
Data Management and Computer Net.
works, Aug. 1979.
ROSEN, E.C. "The updating protocol of
the ARPANET's new routing algorithm:
A case study in maintaining identical cop-
ies of a changing distributed data base,"
in Proc. 4th Berkeley Workshop Dlstrtb.
uted Data Management and Computer
Networks, Aug. 1979.
ROSENKRANTZ, D. J., STEARNS, R E.,
AND LEWIS, P.M. "System level concur-
rency control for distributed database sys-
tems," ACM Trans. Database Syst. 3, 2
(June 1978), 178-198.
ROTHNIE, J. B., AND GOODMAN, N. "A
survey of research and development in
distributed databases systems," in Proe
3rd Int. Conf. Very Large Data Bases
(IEEE), Tokyo, Japan, Oct. 1977.
SCHLAGETER, G. "Process synchromza-
tion in database systems." ACM Trans.
Database Syst. 3, 3 (Sept. 1978), 248-271.
SEQUIN, J., SARGEANT, G., AND WILNES,
P. "A majority consensus algorithm for
the eonsmtency of duplicated and distrib-
uted information," in Proc. 1st Int. Conf.
Distributed Computing Systems (IEEE),
New York, Oct. 1979, pp. 617-624.
SHAPIRO, R. M., AND MILLSTEIN, R.
E. "Rehability and fault recovery in dis-
tributed processing," in Oceans '77 Conf
Record, vol II, Los Angeles, 1977.
SHAPIRO, R. M., AND MILLSTEIN, R.
E. "NSW reliability plan," Massachu-
setts Tech. Rep. 7701-1411, Computer As-
sociates, Wakefield, Mass., June 1977.
SILBERSCHATZ, A., AND KEDEM,
Z. "Consistency in hierarchical database
systems," J. ACM 27, 1 (Jan. 1980), 72-
80.
STEARNS, R. E., LEWIS, P. M. II, AND
ROSENKRANTZ, D.d. "Concurrency con-
troll for database systems," in Proe. 17th
Syrup. Foundatmns Computer Science
(IEEE), 1976, pp. 19-32.
STEARNS, R. E., AND ROSENKRANTZ,
J. "Distributed database concurrency
controls using fore-values," in Proc 1981
SIGMOD Conf. (ACM).

Computing Surveys, Vol. 13, No 2, June 1981

STON77

STON79

THOM79

VERH78

STONEBRAKER, M., AND NEUHOLD~
E. "A distributed database version of
INGRES," in Proc. 2nd Berkeley Work-
shop D~stributed Data Management and
Computer Networks, May 1977.
STONEBRAKER, M. "Concurrency con-
trol and consistency of multiple copies of
data in distributed INGRES, IEEE
Trans. Soflw. Eng. SE-5, 3 (May 1979),
188-194.
THOMAS, R.H. "A solution to the con-
currency control problem for multiple
copy databases," in Proc. 1978 COMP-
CON Conf. (IEEE), New York.
VERHOFSTAD, J. S. M. "Recovery and
crash resmtance in a filing system," in
Proc. SIGMOD Int Conf. Management
of Data (ACM), New York, 1977, pp 158-
167.

A Partial Index of References
1. Cert~fwrs: BADA79, BAYE80, CASA79, KUNG81,

PAPA79, THOM79
2. Concurrency control theory: BERN79b, BERN80C,

CASA79, ESWA76, KUNG79, MXNO78, PAPA77,
PAPA79, SCHL78, SILB80, STEA76

Concurrency Control in Database Systems • 221

3. Performance: BADA80, GARC78, GARC79a,
GARC79b, GELE78, REIS79a, RExs79b, ROTH77

4. Reliabihty
General: ALSB76a, ALSB76b, BELF76, BERN79a,
HAMMS0, LAMP76
Two-phase commzt: HAMM80, LAMP76

5. Timestamp-ordered scheduling (T/O)
General: BADA78, BERN78a, BERN80a, BERN80b,
BERN80d, LELA78, LIN79, RAMI79
Thomas' Wrtte Rule: THOM79
Multivers~on t~mestamp ordering: MONT78,
REED78
T~mestamp and clock management: LAMP78,
THOM79

6. Two-phase locking (2PL)
General. BERN79b, BREI79, ESWA76, GARD77,
GRAY75, GRAY78, PAPA79, SCHL78, SILB80,
STEA81
D~str~buted 2PL: MENA80, MINO79, ROSE78,
STON79
Primary copy 2PL: STOle77, STON79
Centralized 2PL: ALSB76a, ALSB76b, GARc79b,
GARC79C
Voting 2PL: GIFF79, SEQU79, THOM79
Deadlock detection/prevention: GRAY78, KXNG74,
KAWA79, ROSE78, STON79

Received April 1980; final revision accepted February 1981

Computing Surveys, Vol. 13, No 2, June 1981

