
The R*-tree:

An Efficient and Robust Access Method

for Points and Rectangles+

Norbert Beckmann, Hans-Peter begel
Ralf Schneider, Bernhard Seeger

Praktuche Informatlk, Umversltaet Bremen, D-2800 Bremen 33, West Germany

Abstract
The R-tree, one of the most popular access methods for
rectangles, IS based on the heurlstlc optlmlzatlon of the area
of the enclosmg rectangle m each mner node By running
numerous experiments m a standardized testbed under highly
varying data, queries and operations, we were able to design
the R*-tree which mcorporates a combined optlmlzatlon of
area, margin and overlap of each enclosmg rectangle m the
directory Using our standardized testbed m an exhaustive
performance comparison, It turned out that the R*-tree
clearly outperforms the exlstmg R-tree varmnts Guttman’s
linear and quadratic R-tree and Greene’s variant of the R-tree
This superlorlty of the R*-tree holds for different types of
queries and operations, such as map overlay. for both
rectangles and multldlmenslonal points m all experiments
From a practical pomt of view the R*-tree 1s very attractive
because of the followmg two reasons 1 It effrclently
supports pomt and spattal data at the same time and 2 Its
lmplementatlon cost 1s only slightly higher than that of
other R-trees

l.Introduction
In this paper we will consider spatial access methods
(SAMs) which are based on the approxlmatlon of a complex
spatial object by the mmlmum boundmg rectangle with the
sides of the rectangle parallel to the axes of the data space

yIp---

+ This work was supported by grant no Kr 670/4-3 from the
Deutsche Forschun&iememschaft (German Research
Society) and by the Mmlstry of Environmental and Urban
Planning of Bremen

Pemxss~on to copy wthout fee all or part of this maternal IS granted prowded
that the copses are not made or dlstnbuted for dwzct commeraal advantage, the
ACM copy&t notice and the title of the pubbcatlon and its date appear, and
notw IS gwn that cqymg II by pemuwon of the Assoaatlon for Computmg
Machmq To copy othemw, or to repubbsh requ,res a fee and/or speoflc
pemllsslon
0 1990 ACM 089791365 5/!90/0@35/0322 $150

The most important property of this simple approxlmatlon
1s that a complex object 1s represented by a limited number
of bytes Although a lot of mformatlon 1s lost, mnumum
bounding rectangles of spatial oblects preserve the most
essential geometric properties of the object, 1 e the
location of the oblect and the extension of the object in
each axis

In [SK 881 we showed that known SAMs organlzmg
(mmlmum bounding) rectangles are based on an underlymg
point access method (PAM) using one of the followmg three
techniques cllpplng, transformation and overlapping
regions

The most popular SAM for storing rectangles 1s the R-
tree [Gut 841 Followmg our classlflcatlon, the R-tree 1s
based on the PAM B+-tree [Knu 731 usmg the technique
over-lapping regions Thus the R-tree can be easily
implemented which considerably contributes to Its
popularity

The R-tree 1s based on a heurlstlc optlmlzatlon The
optlmlzatton crlterlon which It persues, 1s to mmlmlze the
area of each enclosing rectangle m the mner nodes This
crlterlon IS taken for granted and not shown to be the best
possible Questions arise such as Why not mnumlze the
margin or the overlap of such mlnlmum bounding
rectangles Why not optimize storage utlllzatlon? Why not
optunlze all of these criteria at the same hme? Could these
criteria mteract in a negative way? Only an engineering
approach will help to find the best possible combmatlon of
optimization criteria

Necessary condltlon for such an engmeermg approach 1s
the avallablhty of a standardized testbed which allows us to
run large volumes of experiments with highly varying data,
queries and operations We have implemented such a
standardized testbed and used It for performance comparisons
parucularly of pomt access methods [KSSS 891

As the result of our research we designed a new R-tree
varmnt, the R*-tree, which outperforms the known R-tree
variants under all experiments For many reallstlc profiles
of data and operations the gam m performance 1s quite
considerable Additionally to the usual point query,

322

rectangle mtersectton and rectangle enclosure query, we have
analyzed our new R*-tree for the map overlay operation.
also called spatial lout. which 1s one of the most rmportant
operatrons m geographic and envrronmental database
systems

This paper is organized as follows In sectron 2, we
tntroduce the prrncrples of R-trees rncludrng their
optimizatron criteria In section 3 we present the existing
R-tree variants of Guttman and Greene Section 4 describes
rn detail the design our new R*-tree The results of the
comparrsons of the R*-tree wrth the other R-tree varmnts
are reported m section 5 Section 6 concludes the paper

2. Principles of R-trees and possible
optimization criteria

An R-tree 1s a B+-tree like structure which stores multrdrm-
ensional rectangles as complete ObJects without clipping
them or transformmg them to higher drmensronal points
before

A non-leaf node contarns entries of the form (cp,
Rectangle) where cp 1s the address of a child node m the
R-tree and Rectangle 1s the mnumum boundmg rectangle
of all rectangles which are entries m that child node A leaf
node contams entries of the form (Old, Rectangle) where
Old refers to a record m the database, describing a spatial
oblect and Rectangle 1s the enclosrng rectangle of that
spatial oblect Leaf nodes containing entries of the form
(datuob.tect, Rectangle) are also possrble This wrll not
affect the basic structure of the R-tree In the followmg we
wrll not consider such leaf nodes

Let M be the maximum number of entries that will fit m one
node and let m be a parameter specrfymg the mrmmum
number of entries m a node (2 5 m < M/2) An R-tree
satisfies the following properties
l The root has at least two children unless rt 1s a leaf
l Every non-leaf node has between m and M children unless

it is the root
l Every leaf node contans between m and M entries unless

It 1s the root
l All leaves appear on the same level

An R-tree (R*-tree) 1s completely dynamrc, msertrons and
deletions can be intermixed with queries and no perrodrc
global reorgamzatron 1s required Obvrously, the structure
must allow overlappmg drrectory rectangles Thus rt cannot
guarantee that only one search path 1s requued for an exact
match query For further mformatron we refer to [Gut841
We wrll show m this paper that the overlappmg-regrons-
techruque does not rmply bad average retrieval performance
Here and rn the followmg, we use the term directory
rectangle, which 1s geometrrcally the minrmum bounding
rectangle of the underlymg rectangles

The main problem rn R-trees 1s the followrng For an
arbitrary set of rectangles, dynamrcally burld up bounding
boxes from subsets of between m and M rectangles, m a
way that arbitrary retrieval operatrons with query rectangles
of arbitrary srze are supported effrcrently The known

parameters of good retrieval performance affect each other m
a very complex way, such that rt 1s rmposstble to optrmlze
one of them without influencing other parameters whtch
may cause a deterroratron of the overall performance
Moreover, smce the data rectangles may have very different
size and shape and the drrectory rectangles grow and shrmk
dynamically, the success of methods which wrll opttmrze
one parameter 1s very uncertam Thus a heurrstrc approach IS
applied, whrch is based on many different experiments
carried out m a systematrc framework

In this section some of the parameters which are essential
for the retrieval performance are considered Furthermore,
tnterdependencres between different parameters and
optnnrzatron criteria are analyzed

(01) The area covered by a drrectory rectangle should be
mtnrmrzed, 1 e the area covered by the boundmg rectangle
but not covered by the enclosed rectangles, the dead space,
should be mmlmrzed Thus will Improve performance smce
decrsrons which paths have to be traversed, can be taken on
higher levels

(02) The overlap between drrectory rectangles should be
mwmrzed Thts also decreases the number of paths to be
traversed

(03) The margrn of a dwectory rectangle should be
mlnrmrzed Here the margin 1s the sum of the lengths of the
edges of a rectangle Assummg fixed area, the oblect wnh
the smallest margrn IS the square Thus mmtmrzmg the
margin mstead of the area, the dvectory rectangles wrll be
shaped more quadratrc Essentrally queries with large
quadratic query rectangles will profit from this optimizatron
More important. mmrmrzatlon of the margm wrll basrcally
improve the structure Since quadratic objects can be packed
easier, the bounding boxes of a level will build smaller
directory rectangles m the level above Thus clustermg
rectangles into bounding boxes wrth only little variance of
the lengths of the edges wrll reduce the area of dtrectory
rectangles

(04) Storage utlltzatron should be optlmrzed Higher
storage utrhzatron will generally reduce the query cost as the
height of the tree wrll be kept low Evidently. query types
with large query rectangles are influenced more smce the
concentratron of rectangles m several nodes wrll have a
stronger effect rf the number of found keys IS hrgh

Keepmg the area and overlap of a directory rectangle small,
requires more freedom m the number of rectangles stored m
one node Thus mmrmrzmg these parameters will be paid
with lower storage utrlrzatton. Moreover, when applymg
(01) or (02) more freedom rn choosrng the shape 1s
necessary Thus rectangles wrll be less quadratic Wrth (01)
the overlap between directory rectangles may be affected m
a postttve way srnce the coverrng of the data space 1s
reduced As for every geometrrc optrmrzatron, muumrzmg
the margins wrll also lead to reduced storage uttltzatton
However, smce more quadratrc directory rectangles support

323

packing better, It will be easier to maintain high storage
utlllzatlon Obviously, the performance for queries with
sufflclently large query rectangles will be affected more by
the storage utlllzatlon than by the parameters of (Ol)-(03)

3. R-tree Variants
The R-tree 1s a dynamic structure Thus all approaches of
optlmlzlng the retrieval performance have to be applied
during the msertlon of a new data rectangle The insertion
algorithm calls two more algorithms m which the crucial
declslons for good retrieval performance are made The first
IS the algorithm ChooseSubtree Beglnnmg in the root,
descending to a leaf, it finds on every level the most
suitable subtree to accomodate the new entry The second 1s
the algorithm Split It 1s called, If ChooseSubtree ends m a
node filled with the maximum number of entries M Split
should distribute M+l rectangles mto two nodes m the most
appropriate manner

In the followmg, the ChooseSubtree- and Split-algorithms,
suggested In available R-tree variants are analyzed and
dlscussed We will first consider the orlgmal R-tree as
proposed by Guttman m [Gut 841

Algorithm ChooseSubtree
CSl Set N to be the root
CS2 If N 1s a leaf,

return N
else

Choose the entry m N whose rectangle needs least
area enlargement to include the new data Resolve
ties by choosmg the entry with the rectangle of
smallest area

end
CS3 Set N to be the chlldnode pointed to by the

chlldpomter of the chosen entry an repeat from CS2

Obviously, the method of optlmlzatlon 1s to mnumlze the
area covered by a directory rectangle, 1 e (01) This may
also reduce the overlap and the cpu cost will be relatively
low

Guttman discusses split-algorithms with exponential,
quadratic and linear cost with respect to the number of
entries of a node All of them are deslgned to mmlmlze the
area, covered by the two rectangles resultmg from the split
The exponential split finds the area with the global
mmlmum, but the cpu cost 1s too high The others try to
fmd approxlmatlons In his experiments, Guttman obtains
nearly the same retrieval performance for the linear as for
the quadratic version We implemented the R-tree m both
variants However m our tests with different dlstrlbutlons,
different overlap, variable numbers of data-entries and
different combmatlons of M and m, the quadratic R-tree
yielded much better performance than the linear version (see
also section 5) Thus we will only discuss the quadratic
algorithm m detail

Algorithm QuadraticSplit
[Divide a set of M+l entries mto two groups]
QSl Invoke PickSeeds to choose two entries to be the first

entries of the groups
QS2 Repeat

DlstrlbuteEntry
until

all entries are distributed or
one of the two groups has M-m+1 entries

QS3 If entries remam, assign them to the other group
such that it has the mmlmum number m

Algorithm PickSeeds
PSl For each pau of entries El and E2, compose a

rectangle R mcludmg El rectangle and E2 rectangle
Calculate d = area(R) - area(E1 rectangle) -

area(E2 rectangle)
PS2 Choose the pan with the largest d

Algorithm DistributeEntry
DE1 Invoke P&Next to choose the next entry to be

assigned
DE2 Add It to the group whose covermg rectangle will

have to be enlarged least to accommodate It Resolve
ties by adding the entry to the group with the
smallest area, then to the one with the fewer entries,
then to either

Algorithm PickNext
PNl For each entry E not yet m a group, calculate d, = the

area mcrease required m the covermg rectangle of
Group 1 to include E Rectangle
Calculate $ analogously for Group 2

PN2 Choose the entry with the maximum difference
between d, and d,

The algorithm PickSeeds fmds the two rectangles which
would waste the largest area put m one group In this sense
the two rectangles are the most distant ones It 1s important
to mention that the seeds will tend to be small too, If the
rectangles to be distributed are of very different size (and) or
the overlap between them 1s high The algorithm
DlstrlbuteEntry assigns the remaining entries by the
crlterlon of mnumum area P&Next chooses the entry with
the best area-goodness-value m every sltuatlon

If this algorithm starts with small seeds, problems may
occur If m d-l of the d axes a far away rectangle has nearly
the same coordinates as one of the seeds, It will be
distributed first Indeed, the area and the area enlargement of
the created needle-like bounding rectangle will be very
small, but the distance 1s very large This may nutlate a
very bad split Moreover. the algorithm tends to prefer the
bounding rectangle, created from the first assignment of a
rectangle to one seed Smce It was enlarged, It will be larger
than others Thus It needs less area enlargement to mclude
the next entry, It will be enlarged again. and so on Another
problem is, that If one group has reached the maximum
number of entries M-m+l, all remaining entries are assigned
to the other group without consldermg geometric properties
Figure 1 (see section 4 3) gives an example showing all

324

these problems The result 1s either a split with much
overlap (fig lc) or a split with uneven dlstrtbutlon of the
entries reducing the storage utlhzatlon (fig lb)

We tested the quadratic split of our R-tree lmplementatlon
varying the mmlmum number of entries m = 20%, 30%,
35% ,40% and 45% relatively to M and obtained the best
retrieval performance with m set to 40%

On the occasion of comparmg the R-tree with other
structures storing rectangles, Greene proposed the
followmg alternative split-algorithm [Gre 891 To determine
the appropriate path to insert a new entry she uses
Guttman’s original ChooseSubtree-algorithm

Algorithm Greene’s-Split
[Divide a set of M+l entries mto two groups]
GSI Invoke ChooseAxls to determme the axis

perpendicular to which the split 1s to be performed
GS2 Invoke Distribute

Algorithm ChooseAxis
CA1 Invoke PickSeeds (see p 5) to find the two most

distant rectangles of the current node
CA2 For each axis record the separation of the two seeds
CA3 Normalize the separations by dlvldmg them by the

length of the nodes enclosing rectangle along the
appropriate axis

CA4 Return the axis with the greatest normalized
separation

Algorithm Distribute
Dl Sort the entries by the low value of then rectangles

along the chosen axis
D2 Assign the first (M+l) dlv 2 entries to one group, the

last (M+l) dlv 2 entries to the other
D3 If M+l 1s odd, then assign the remaining entry to the

group whose enclosmg rectangle will be
increased least by its addition

Almost the only geometric crlterlon used m Greene’s split
algorithm 1s the choice of the split axis Although
choostng a suitable split axis 1s Important, our
mvestlgatlons show that more geometric optimization
criteria have to be applied to considerably improve the
retrieval performance of the R-tree In spite of a well
clustermg, m some sltuatlons Greene’s split method cannot
fmd the “nght” axis and thus a very bad split may result
Figure 2b (see p 12) depicts such a sltuatlon

4. The R*-tree

4.1 Algorithm ChooseSubtree
To solve the problem of choosmg an appropriate insertion
path, previous R-tree versions take only the area parameter
into conslderatlon In our mvestlgatlons, we tested the
parameters area, margin and overlap m different
combmatlons, where the overlap of an entry 1s defined as
follows

Let&, ,Ep be the entries m the current node Then
P

overlap = c alea(E;,Redangle n E,Rtiangle) , 1s k $ p
1=1,1#k

The version W&I the best retrieval performance 1s described
m the followmg algorithm

Algorithm ChooseSubtree
CSl Set N to be the root
CS2 If N 1s a leaf,

return N
else

If the chlldpomters m N point to leaves [determine
the mmimum overlap cost],
choose the entry m N whose rectangle needs least
overlap enlargement to include the new data
rectangle Resolve ties by choosmg the entry
whose rectangle needs least area enlargement,

then
the entry with the rectangle of smallest area

d the chlldpomters m N do not pomt to leaves
[determme the mtmmum area cost],
choose the entry m N whose rectangle needs least
area enlargement to mclude the new data
rectangle Resolve ties by choosmg the entry
with the rectangle of smallest area

end
CS3 Set N to be the childnode pomted to by the

chlldpomter of the chosen entry and repeat from CS2

For choosmg the best non-leaf node, alternatlve methods
did not outperform Guttman’s original algorithm For the
leaf nodes, mmlmlzmg the overlap performed slightly
better

In this version, the cpu cost of determmmg the overlap
1s quadrant 111 the number of entries, because for each entry
the overlap with all other entries of the node has to be
calculated However, for large node sizes we can reduce the
number of entries for which the calculation has to be done,
smce for very distant rectangles the probabllltty to yield
the mmlmum overlap 1s very small Thus, m order to reduce
the cpu cost, this part of the algorithm might be modlfled
as follows

[determme the nearly mmnnum overlap cost]
Sort the rectangles m N m mcreasmg order of
then area enlargement needed to mclude the new
data rectangle
Let A be the group of the first p entrles
From the entries m A, consldermg all entries m
N, choose the entry whose rectangle needs least
overlap enlargement Resolve ties as described
above

For two dlmenslons we found that with p set to 32 there 1s
nearly no reduction of retrieval performance to state For
more than two dlmenslons further tests have to be done
Nevertheless the cpu cost remains higher than the original
version of ChooseSubtree. but the number of disc accesses

325

1s reduced for the exact match query precedmg each msertlon
and 1s reduced for the ChooseSubtree algortthm Itself

The tests showed that the ChooseSubtree optlmlzatlon
improves the retrieval performance partlculary m the
followmg sltuatlon Queries wrth small query rectangles on
datafiles wrth non-unrformly dlstrlbuted small rectangles or
points

In the other cases the performance of Guttman’s
algorithm was similar to this one Thus principally an
improvement of robustness can be stated

4 2 Split of the R*-tree
The R*-tree uses the followmg method to fmd good sphts
Along each axis, the entries are first sorted by the lower
value, then sorted by the upper value of then rectangles For
each sort M-2m+2 dlstrlbutlons of the M+l entrles mto two
groups are determmed. where the k-th dlstrlbutlon (k =
1, ,(M-2m+2)) 1s described as follows The first group
contains the first (m-l)+k entrles, the second group
contams the remaining entrles

For each dlstrlbutlon goodness values are determined
Depending on these goodness values the final dlstrlbutlon
of the entries IS determined Three different goodness values
and different approaches of using them in different
combmatlons are tested experlmentally

(1) area-value area[bb(first group)] +
area[bb(second group)]

(11) margm-value margm[bb(fust group)] +
margm[bb(second group)]

(111) overlap-value area[bb(first group) n
bb(second group)]

Here bb denotes the boundmg box of a set of rectangles

Possible methods of processmg are to determme
l the minunum over one axis or one sort
l the mmlmum of the sum of the goodness values over one

axis or one sort
l the overall mmunum

The obtained values may be applied to determine a spht axis
or the final dlstrlbutlon (on a chosen split axls) The best
overall performance resulted from the followmg algorithm

Algorithm Split
Sl Invoke ChooseSplltAxls to determme the axis,

perpendicular to which the spht 1s performed
s2 Invoke ChooseSplltIndex to determine the best

dlstrlbutlon mto two groups along that axls
s3 Dlstrlbute the entrles mto two groups

Algorithm ChooseSplitAxis
CSAl For each axls

Sort the entrles by the lower then by the upper
value of their rectangles and determme all
dlstrlbutlons as described above Compute S. the
sum of all margin-values of the different
dlstrlbutlons

end
CSA2 Choose the axls with the mmlmum S as split axis

Algorithm ChooseSplitlndex
CSIl Along the chosen split axIs, choose the

dlstrlbutlon with the mmunum overlap-value
Resolve ties by choosmg the dlstrlbutlon with
mmunum area-value

The split algorithm 1s tested with m = 20%, 302, 40% and
45% of the maximum number of entrles M As ex- perunents
with several values of M have shown, m = 40% yields the
best performance Additionally, we varied m over the life
cycle of one and the same R*-tree m order to correlate the
storage utlllzatlon with geometric paremeters However,
even the followmg method did result m worse retrieval
performance Compute a split usmg ml = 30% of M, then
compute a split using m2 =40% If spllt(m2)ylelds overlap
and spllt(ml) does not, take spllt(m,), otherwlse take
vllt(q)

Concernmg the cost of the split algorithm of the R*-tree
we will mention the following facts For each axis
(dlmenslon) the entries have to be sorted two times which
requires O(M log(M)) tune As an experlmental cost analysis
has shown, thrs needs about half of the cost of the split
The remammg split cost 1s spent as follows For each axls
the margm of 2*(2*(M-2m+2)) rectangles and the overlap of
2*(M-2m+2) dlstnbunons have to be calculated

4 3 Forced Relnsert
Both, R-tree and R*-tree are nondetermmlstlc m allocatmg
the entrles onto the nodes 1 e different sequences of
msertlons will build up different trees For this reason the
R-tree suffers from its old entrees Data rectangles inserted
durmg the early growth of the structure may have introduced
directory rectangles, which are not sultable to guarantee a
good retrieval performance m the current situation A very
local reorganlzatton of the directory rectangles 1s
performend during a split But this 1s rather poor and
therefore it 1s desirable to have a more powerful and less
local mstrument to reorgamze the structure

The discussed problem would be maintamed or even
worsened, If underfilled nodes, resultmg from deletion of
records would be merged under the old parent Thus the
known approach of treatmg underfilled nodes 111 an R-tree 1s
to delete the node and to remsert the orphaned entrles m the
correspondmg level [Gut 841 This way the ChooseSubtree
algorithm has a new chance of distributing entries mto
different nodes

Smce it was to be expected, that the deletion and
reinsertion of old data rectangles would Improve the
retrieval performance, we made the followmg simple
experiment with the linear R-tree Insert 20000 umformly
dlstrlbuted rectangles Delete the fast 10000 rectangles and
insert them agaln The result was a performance
improvement of 20% up to 50%(l) dependmg on the types
of the queries Therefore to delete randomly half of the data
and then to Insert It agam seems to be a very simple way of
tuning existing R-tree datafiles But this 1s a stattc
sltuahon. and for nearly static datafiles the pack algorithm
[RL 851 1s a more sophlstlcated approach

To achieve dynanuc reorgamzatlons, the R*-tree forces
entries to be remserted during the msertlon routme The

326

following algorithm 1s based on the ability of tne insert
routme to msert entries on every level of the tree as already
required by the deletion algorithm [Gut 841 Except for the
overflow treatment, It 1s the same as described orlgmally by
Guttman and therefore It 1s only sketched here

Algorithm InsertData
ID1 Invoke Insert startmg with the leaf level as a

parameter, to Insert a new data rectangle

Algorithm Insert
11 Invoke ChooseSubtree. with the level as a parameter,

to fmd an appropriate node N, m which to place the
new entry E

12 If N has less than M entries, accommodate E m N
If N has M entries. invoke OverflowTreatment with the
level of N as a parameter [for reinsertion or spht]

13 If OverflowTreatment was called and a split was
performed, propagate OverflowTreatment upwards
If necessary
If OverflowTreatment caused a spht of the root, create a
new root

14 Adjust all covermg rectangles in the msertion path
such that they are mmlmum boundmg boxes
enclosmg then children rectangles

Algorithm OverflowTreatment
OTl If the level 1s not the root level and this IS the first

call of OverflowTreatment m the given level
durmg the Insertion of one data rectangle, then

mvoke Reinsert
else

mvoke Split
end

Algorithm Reinsert
RI1 For all M+l entries of a node N, compute the distance

between the centers of their rectangles and the center
of the bounding rectangle of N
Sort the entries m decreasmg order of their distances
computed m RI1
Remove the first p entries from N and adjust the
bounding rectangle of N
In the sort, defined 111 R12, starting with the maxlmum
distance (= far remsert) or mmunum distance (= close
reinsert), mvoke Insert to remsert the entries

RI2

RI3

RI4

If a new data rectangle 1s Inserted, each first overflow
treatment on each level will be a reinsertion of p entries
This may cause a split in the node which caused the
overflow if all entrles are reinserted m the same location
Otherwise splits may occur in one or more other nodes, but
m many sltuattons sphts are completely prevented The
parameter p can be varied mdependently for leaf nodes and
non-leaf nodes as part of performance tunmg, and different
values were tested experimentally The experiments have
shown that p = 30% of M for leaf nodes as well as for non-
leaf nodes yields the best performance Furthermore, for all
data files and query files close remsert outperforms far
remsert Close reinsert prefers the node which mcluded the

entries oerore. ana tnis 1s mlenueu, DeCdube 1~s enclosmg
rectangle was reduced m size Thus this node has lower
probablllty to be selected by ChooseSubtree agam

Summarizmg. we can say
l Forced remsert changes entries between neighboring

nodes and thus decreases the overlap
l As a side effect, storage utlllzatton IS unproved
l Due to more restructurmg, less sphts occur
l Since the outer rectangles of a node are remserted, the

shape of the directory rectangles will be more quadratic
As discussed before, this 1s a desuable property

Obviously, the cpu cost will be higher now smce the
msertlon routme 1s called more often This 1s alleviated,
because less splits have to be performed The experiments
show that the average number of disc accesses for msertlons
increases only about 4% (and remains the lowest of all R-
tree variants), tf Forced Reinsert 1s applied to the R*-tree
This 1s particularly due to the structure lmprovmg properties
of the insertion algorithm

R&l ovdllkd~

327

5. Performance Comparison
5 1 Experimental Setup and Results of the

Experiments

We ran the performance comparison on SUN workstations
under UNIX usmg Modula-2 unplementalons of the different
R-tree variants and our R*-tree Analogously to our
performance comparison of PAM’s and SAM’s m [KSSS 891
we keep the last accessed path of the trees m mam memory
If orphaned entries occur from msertlons or delettons, they
are stored m mam memory additionally to the path

In order to keep the performance comparison
manageable, we have chosen the page size for data and
directory pages to be 1024 bytes which 1s at the lower end
of reahstlc page sizes Using smaller page sizes, we obtain
slmllar performance results as for much larger file sizes
From the chosen page size the maxnnum number of entries
m dnectory pages 1s 56 According to our standardized
testbed we have restricted the maxunum number of entries m
a data page to 50

As candidates of our performance comparison we selected
the R-tree with quadratic split algorithm (abbre- vlatlon qua
Gut), Greene’s variant of the R-tree (Greene) and our R*-tree
where the parameters of the different structures are set to the
best values as described in the previous sections
Addltlonally, we tested the most popular R-tree
Implementation, the variant with the linear split algorithm
(lm Gut) The popularity of the lmear R-tree 1s due to the
statement m the orlgmal paper [Gut841 that no essential
performance gam resulted from the quadratic version vs the
linear version For the linear R-tree we found m=20% (of
M) to be the variant with the best performance

To compare the performance of the four structures we
selected six data flies contalnlng about 100,000 2-
dlmenslonal rectangle Each rectangle 1s assumed to be m
the unit cube [O,l)* In the followmg each data file 1s
described by the dlstrlbutlon of the centers of the rectangles
and by the tripe1 (n, cl,* , nv,,,) Here n denotes the
number of rectangles, P,~ 1s the mean value of the area of a
rectangle and nv,, = o,, / JIP~ 1s the normahzed varmnce
where oarca denotes the variance of the areas of the
rectangles Obviously, the parameter nv,,, Increases
mdependently of the dlstrlbutlon the more the areas of the
rectangles differ from the mean value and the average
overlap 1s simply obtamed by n* p,-

W

W)

“Uniform”
The centers of the rectangles follow a 2-dimensional
mdependent umform dlstrlbuuon
(n = 100,000, para = 0001, nvarea = 9505)

“Cluster”
The centers follow a dlstrlbutlon with 640 clusters,
each cluster contams about 1600 ObJects
(n = 99,968, pflea = 00002, nvarea = 1 538)

(F3) “Parcel”
First we decompose the umt square mto 100,000
dujomt rectangles Then we expand the area of each
rectangle by the factor 2 5
(n = 100,000, parea = 00002504, nvarea = 30 3458)

(F4) “Real-data”
These rectangles are the mmlmum boundmg rectangles
of elevahon hnes from real cartography data
(n = 120,576, pare, = 0000926, nvarea = 1 504)

(F5) “Gaussian”
The centers follow a 2-dlmenslonal independent
Gaussian dlstrlbutlon
(n = 100,000, parea = 00008, nvarea = 89875)

m “Mixed-Uniform”
The centers of the rectangles follow a 2-dunenslonal
independent umform dlstrlbutlon
First we take 99,000 small rectangles with

warea = 0000101 Then we add 1,000 large rectangles

with parea = 001 Finally these two data files are
merged to one
(n = 100,000, parea = 00002, nvarea = 6 778)

For each of the flies (Fl) - (F6) we generated queries of the
followmg three types
. rectangle mtersectlon query Given a rectangle S, find

all rectangles R m the file with R n S z @
l powt query Given a point P, fmd all rectangles R m

the file with P E R
. rectangle enclosure query Given a rectangle S, find all

rectangles R m the file with R 2 S

For each of these flies (Fl) - (F6) we performed 400
rectangle Intersection queries where the ratio of the x-
extension to the y-extension umformly varies from 0 25 to
2 25 and the centers of the query rectangles themselves are
uniformly dlstrlbuted m the unit cube In the followmg, we
consider four query files (Ql) - (44) of 100 rectangle
mtersectlon queries each The area of the query rectangles of
each query file (Ql) - (44) varies from l%, 0 l%, 0 01% to
0 001% relatively to the area of the data space For the
rectangle enclosure query we consider two query files (QS)
and (46) where the correspondmg rectangles are the same as
m the query files (Q3) and (Q4), respectively Addltlonally,
we analyzed a query file (47) of 1.000 pomt queries where
the query pomts are umformly dlstrlbuted

For each query file (Ql) - (47) we measured the average
number of disc accesses per query In the performance
comparison we use the R*-tree as a measurmg stick for the
other access methods. 1 e we standardize the number of
page accesses for the queries of the R*-tree to 100% Thus
we can observe the performance of the R-tree varmnts
relative to the 100% performance of the R*-tree

To analyze the performance for bulldmg up the different
R-tree varmnts we measured the parameters insert and star
Here msert denotes the average number of disc accesses per

328

msertlon and stor denotes the storage utlllzatlon after
completely bulldmg up the files In the followmg table we
present the results of our experiments depending on the
different dlstrlbutlons (data files) For the R*-tree we also
depict “#
query

hn Gut
qua. Gut
Greene
R*-tree
accesses

lin Gut
qua Gut
Greene
R*-tree
#accesses

Parcel

Im Gut
qua Gut
Greene
R*-tree
accesses

tin Gut
qua Gut
Greene

R*-tree
accesses

lin Gut
qua Gut
Greene
R*-tree
accesses

accesses”, the average number of disk accesses per

Im Gut
qua Gut
Greene
R*-tree
#accesses

Additionally to the conventional queries like pomt query,
mtersectton query and enclosure query we have consldered
the operation spatial Join usually used m appllcatlons like
map overlay We have defined the spatial Jam over two
rectangle flies as the set of all palrs of rectangles where the
one rectangle from file1 intersects the other rectangle from

file2

For the spaual Jam operation we performed the followmg
experiments
(SJl) file1 “Parcel”-dlstrlbutron with 1000

rectangles randomly selected from file (F3)
flle2 data file (F4)

(SJ2) file1 “Parcel”-dlstrlbutlon with 7500 rectangles

randomly selected from data file (F3)
file2 7,536 rectangles generated from elevation

lines
(n = 7,536, parea = 00148, nvarea = 1 5)

(SJ3) file1 “Parcel”-dutnbutlon with 20,000 rectangles

randomly selected from data file (F3)
file2 file1

For these experiments we measured the number of disc
accesses per operation The normalized results are presented
m the following table

Spatial Join

(SJ 1) (SJ 2) (SJ 3)

lin.Gut 296 6 229.2 257 8

qua.Gut 1424 1547 144 8

Greene 187.1 168.3 1604

d-tree 100.0 1000 100.0

5.2 Interpretation of the Results
In table 1 for the parameters stor and Insert we computed the
unwelghted average over all SIX dlstrlbutlons (data files)
The parameter spatral Join denotes the average over the
three spatial Jam operations (SJl) - (SJ3) For the average
query performance we present the parameter query average
which 1s averaged over all seven query files for each
dlstrlbutlon and then averaged over all six dlstrlbutlons

lin Gut 227 5 261 2 62 7 1263

qua.Gut 1300 1473 68 1 776

Greene 142 3 171 3 897 7 67

d-tree 1000 1000 73 0 613

Table 1 utwetghted average over all dtstnbutlons

329

The loss of mformatlon m the parameter query average IS
even less In table 2 where the parameter 1s displayed
separately for each data file (Fl) - (F6) as an average over
all seven query files and m table 3 where the parameter
query average 1s depicted separately for each query (Ql) -
(47) as an average over all six data files

IIn Gut

qua Gut

Greene
e-1 ree

mlxuni pard tad dab

3081 2472 2272

1218 1281 144.6

ZE 1155 1924 1442

1000 lW0 1000

Table 2 unwqhted average ovcx all seyen types of qw dependug op Ihe d~&Won

lin. Gut

qua, Gut

Greene
R*-tree

Table 3 unwe@cd map over all lilx Ctnbuhous &pn&ng on tk quay type

intwsedion
,001 , 0, , ,Q

First of all, the R*-tree clearly outperforms the R-tree
variants m all experiments Moreover the most popular
variant, the linear R-tree, performs essentially worse than
all other R-trees The followmg remarks emphasize the
superlorlty of the R*-tree m comparison to the R-trees

The R*-tree 1s the most robust method which 1s
underllgned by the fact that for every query file and every
data file less disk acesses are required than by any other
variants To say It m other words, there 1s no experiment
where the R*-tree 1s not the wmner

The gam m efficiency of the R*-tree for smaller query
rectangles 1s higher than for larger query rectangles,
because storage utlllzatlon gets more nnportant for larger
query rectangles This emphasizes the goodness of
the order preservation of the R*-tree (1 e rectangles
close to each other are more likely stored together m
one page)

The maxunum performance gam of the R*-tree taken
over all query and data files 1s m comparison to the
linear R-tree about 400% (1 e It takes four tunes as long
as the R*-tree If), to Greene’s R-tree about 200%
and to the quadratic R-tree 180%

As expected, the R*-tree has the best storage utilization

l Surprlsmgly m spite of using the concept of Forced
Reinsert, the average msertlon cost 1s not mcreased, but
essentially decreased regarding the R-tree variants

l The average performance gam for the spatial Jam
operation 1s higher than for the other queries The
quadratic R-tree, Greene’s R-tree and the lmear R-tree
require 147%. 171% and 261% of the disc accesses of the
R*-tree, respectively, averaged over all spatial Jam
operations

5.3 The R*-tree: an efficient point access method

An important requuement for a spatial access method 1s to
handle both spatial objects and point objects efficiently
Points can be considered as degenerated rectangles and m
most appllcatlons rectangles are very small relatively to the
data space If a SAM 1s also an efficient PAM, this would
underllgn the robustness of the SAM Moreover, m many
appllcatlons It 1s desirable to support addltlonally to the
boundmg rectangle of an object at least an atomar key with
one access method

Therefore we ran the different R-tree variants and our R*-
tree against a benchmark proposed and used for pomt access
methods The reader interested m the details of this
benchmark 1s referred to [KSSS 891 In this paper, let us
mention that the benchmark mcorporates seven data files of
highly correlated 2-dlmensmonal points Each data file
contains about 100.000 records For each data file we
considered five query files each of them contammg 20
queries The fust query files contam range queries specified
by square shaped rectangles of size 0 1%. 1% and 10%
relatively to the data space The other two query files
contam partml match queries where m the one only the x-
value and in the other only the y-value 1s speclfled,
respectively

Similar to the previous sectlon, we measured the storage
utlllzatlon (stor), the average msertlon cost (insert) and the
average query cost averaged over all query and data files The
results are presented m table 4 where we included the 2-level
grid file ([NHS84], [Hm85]). a very popular pomt access
method

qua.Gut

Greene

Table 4: unweighted average over all seven dlstnbutlons

330

We were posltlvely surprised by our results The performance
gam of the R*-tree over the R-tree variants 1s considerably
higher for pomts than for rectangles In particular Greene’s
R-tree 1s very mefflclent for pomt data It requires even
more accesses than the linear R-tree and 138% more than
the R*-tree, whereas the quadratic R-tree requues 75% more
disc accesses than the R*-tree Nevertheless, we had
expected that PAMs l&e the 2-level grid file would perform
better than the R*-tree However m the over all average the
2-level grid file performs essentially worse than the R*-tree
for pomt data An advantage of the grid file 1s the low
average lnsertlon cost In that sense It might be more
suitable In an insertion-intensive application Let us
mention that the complexity of the algorithms of the R*-
trees 1s rather low m comparison to highly tuned PAMs

6 Conclusions

The experimental comparison pointed out that the R*-tree
proposed m this paper can efflclently be used as an access
method In database systems organizing both,
multldlmenslonal points and spatial data As demonstrated
m an extensive performance comparison with rectangle data,
the R*-tree clearly outperforms Greene’s R-tree, the quadratic
R-tree and the popular linear R-tree m all experiments
Moreover. for pomt data the gam m performance of the R*-
tree over the other variants 1s increased Addltlonally. the
R*-tree performs essentially better than the 2-level grid file
for pomt data

The new concepts mcorporated m the R*-tree are based
on the reduction of the area, margin and overlap of the
directory rectangles Smce all three values are reduced, the
R*-tree 1s very robust agamst ugly data dlstrlbutlons
Furthermore, due to the fact of the concept of Forced
Reinsert, splits can be prevented, the structure 1s
reorganized dynamically and storage utlhzatlon 1s higher
than for other R-tree variants The average msertion cost of
the R*-tree 1s lower than for the well known R-trees
Although the R*-tree outperforms its competitors, the cost
for the lmplementatlon of the R*-tree 1s only slightly
higher than for the other R-trees

In our future work, the we will mvestlgate whether the
fan out can be increased by prefixes or by using the grad
approxlmatlon as proposed m [SK 901 Moreover. we are
generalizing the R*-tree to handle polygons efficiently

References:

[Gre 891 D Greene ‘An Implementatton and Performance
Analysis of Spatial Data Access Methods’, Proc 5th I n t
Conf on Data Engineering. 606-615, 1989

[Gut 841 A Guttman ‘R-trees a dynamic mdex structure
for spatial searching’, Proc ACM SIGMOD Int
Conf on Management of Data, 47-57, 1984

[Hm 851 K Htnrlchs ‘The grid file system
lmplementatlon and case studies for appllcatlons’,
Dlssertatlon No 7734, Eldgen6sslsche Technlsche
Hochschule (ETH), Zuench. 1985

[Knu 731 D Knuth ‘The art of computer programmmg’,
Vol 3 sorting and searchmg, Addison-Wesley Pub1 Co ,
Reading, Mass , 1973

[KSSS 891 H P Krregel, M Schlwletz, R Schneider, B
Seeger ‘Performance comparison of pomt and spatial
access methods’, Proc Symp on the Design and
Implementation of Large Spatial Databases’, Santa
Barbara, 1989, Lecture Notes m Computer Science

[NHS 841 J Nlevergelt, H Hmterberger, K C Sevclk ‘The
grid file an adaptable, symmetric multlkey file
structure’, ACM Tram on Database Systems, Vol 9, 1. 38-
71. 1984

[RL 851 N Roussopoulos, D Lelfker ‘Direct spatial
search on plctorlal databases usmg packed R-trees’, Proc
ACM SIGMOD Int Conf on Managment of Data, 17-31,
1985

[SK 881 B Seeger. H P Krlegel ‘Design and
lmplementatlon of spatial access methods’, Proc 14th Int
Conf on Very Large Databases, 360-371, 1988

[SK 901 B Seeger. H P Krlegel ‘The design and
lmplementatlon of the buddy tree’, Computer Science
Techmcal Report 3/90, Umverslty of Bremen. submitted for
pubhcatlon, 1990

331

