The R*-tree:
An Efficient and Robust Access Method
for Points and Rectangles™

Norbert Beckmann, Hans-Peter Kniegel
Ralf Schneider, Bernhard Seeger
Praktische Informatik, Universitaet Bremen, D-2800 Bremen 33, West Germany

Abstract

The R-tree, one of the most popular access methods for
rectangles, 1s based on the heunstic optimization of the area
of the enclosing rectangle in each inner node By runming
numerous experiments 1n a standardized testbed under highly
varymng data, queries and operations, we were able to design
the R*-tree which mcorporates a combined optimization of
area, margin and overlap of each enclosing rectangle in the
directory Using our standardized testbed in an exhaustive
performance comparison, 1t turned out that the R¥*-tree
clearly outperforms the existing R-tree variants Guttman’s
linear and quadratic R-tree and Greene’s vanant of the R-tree
This superionty of the R*-tree holds for different types of
queries and operations, such as map overlay, for both
rectangles and multidimensional points in all experiments
From a practical point of view the R*-tree 1s very attractive
because of the following two reasons 1 1t efficiently
supports point and spatial data at the same time and 2 1ts
implementation cost 1s only shghtly higher than that of
other R-trees

1.Introduction

In this paper we will consider spatial access methods
(SAMs) which are based on the approximation of a complex
spatial object by the mimimum bounding rectangle with the
sides of the rectangle parallel to the axes of the data space

+ This work was supported by grant no Kr 670/4-3 from the
Deutsche Forschungsgememschaft (German Research
Society) and by the Ministry of Environmental and Urban
Planning of Bremen

Permission to copy without fee all or part of this matenal 1s granted provided
that the copies are not made or distributed for direct commercial advantage, the
ACM copynight notice and the ttle of the publication and its date appear, and
notice 13 given that copying 1s by permission of the Association for Computing
Machinery To copy otherwise, or to republish requires a fee and/or specific
permission

© 1990 ACM 089791 365 5/90/0005/0322. $1 50

322

The most important property of this simple approximation
1s that a complex object 1s represented by a limited number
of bytes Although a lot of information 1s lost, minimum
bounding rectangles of spatial objects preserve the most
essential geometric properties of the object, 1 e the
location of the object and the extension of the object 1n
each axis

In [SK 88] we showed that known SAMs organizing
(mmmum bounding) rectangles are based on an underlying
point access method (PAM) using one of the following three
techniques clipping, transformation and overlapping
regions

The most popular SAM for storing rectangles 1s the R-
tree [Gut 84] Following our classification, the R-tree 1s
based on the PAM B*-tree [Knu 73] using the technique
over-lapping regions Thus the R-tree can be easily
implemented which considerably contributes to 1ts
popularity

The R-tree 1s based on a heunistic optimization The
optimization criterion which 1t persues, 1s to minimize the
area of each enclosing rectangle in the inner nodes This
criterion 1s taken for granted and not shown to be the best
possible Questions arise such as Why not mmimize the
margin or the overlap of such minimum bounding
rectangles Why not optimize storage utilization? Why not
optimize all of these criteria at the same time? Could these
criteria interact 1n a negative way? Only an engineering
approach will help to find the best possible combination of
optimization criteria

Necessary condition for such an engineering approach is
the availability of a standardized testbed which allows us to
run large volumes of experiments with highly varying data,
queries and operations We have implemented such a
standardized testbed and used 1t for performance comparisons
particularly of point access methods [KSSS 89]

As the result of our research we designed a new R-tree
variant, the R*-tree, which outperforms the known R-tree
variants under all experiments For many realistic profiles
of data and operations the gain in performance 1s quite
considerable Additionally to the usual point query,

rectangle intersection and rectangle enclosure query, we have
analyzed our new R*-tree for the map overlay operation,
also called spatial join, which 1s one of the most important
operations in geographic and environmental database
systems

This paper 1s orgamized as follows In section 2, we
introduce the principles of R-trees including their
optimization criteria In section 3 we present the existing
R-tree vaniants of Guttman and Greene Section 4 describes
in detail the design our new R*-tree The results of the
comparisons of the R*-tree with the other R-tree variants
are reported 1n section 5 Section 6 concludes the paper

2. Principles of R-trees and possible
optimization criteria

An R-tree 1s a B*-tree like structure which stores muludim-
ensional rectangles as complete objects without clipping
them or transforming them to higher dimensional points
before

A non-leaf node contains entries of the form (cp,
Rectangle) where cp 15 the address of a child node in the
R-tree and Rectangle 1s the mimimum bounding rectangle
of all rectangles which are entries 1n that child node A leaf
node contains entries of the form (O:id, Rectangle) where
Oid refers to a record in the database, describing a spatial
object and Rectangle 1s the enclosing rectangle of that
spatial object Leaf nodes containing entries of the form
(dataobject, Rectangle) are also possible This will not
affect the basic structure of the R-tree In the following we
will not consider such leaf nodes

Let M be the maximum number of entries that will fit 1n one

node and let m be a parameter specifying the minimum

number of entries 1n a node (2 £ m £ M/2) An R-tree

satisfies the following properties

o The root has at least two children unless 1t 15 a leaf

« Every non-leaf node has between m and M children unless
1t 1s the root

» Every leaf node contains between m and M entries unless
1t 1s the root

» All leaves appear on the same level

An R-tree (R*-tree) 1s completely dynamic, insertions and
deletions can be intermixed with queries and no periodic
global reorganization 15 required Obviously, the structure
must allow overlapping directory rectangles Thus it cannot
guarantee that only one search path 1s required for an exact
match query For further information we refer to [Gut84]

We will show 1n this paper that the overlapping-regions-
technique does not imply bad average retrnieval performance
Here and 1n the following, we use the term directory
rectangle, which 1s geometrically the minimum bounding
rectangle of the underlying rectangles

The main problem in R-trees 1s the following For an
arbitrary set of rectangles, dynamically build up bounding
boxes from subsets of between m and M rectangles, in a
way that arbitrary retrieval operations with query rectangles
of arbitrary size are supported efficiently The known

323

parameters of good retrieval performance affect each other in
a very complex way, such that it 1s impossible to optimize
one of them without influencing other parameters which
may cause a detenioration of the overall performance

Moreover, since the data rectangles may have very different
s1ze and shape and the directory rectangles grow and shrink
dynamically, the success of methods which will optimize
one parameter 1s very uncertain Thus a heuristic approach 1s
applied, which 1s based on many different experiments
carried out m a systematic framework

In this section some of the parameters which are essential
for the retrieval performance are considered Furthermore,
interdependencies between different parameters and
optimization criteria are analyzed

(O1) The area covered by a directory rectangle should be
minimized, 1 e the area covered by the bounding rectangle
but not covered by the enclosed rectangles, the dead space,
should be mmmmized This will improve performance since
decisions which paths have to be traversed, can be taken on
higher levels

(02) The overlap between directory rectangles should be
mimmized This also decreases the number of paths to be
traversed

(03) The margin of a directory rectangle should be
minimized Here the margin 1s the sum of the lengths of the
edges of a rectangle Assumng fixed area, the object with
the smallest margin 1s the square Thus minimizing the
margin instead of the area, the directory rectangles will be
shaped more quadratic Essentially queries with large
quadratic query rectangles will profit from this optimization
More important, minimization of the margin will basically
improve the structure Since quadratic objects can be packed
easier, the bounding boxes of a level will build smaller
directory rectangles in the level above Thus clustering
rectangles into bounding boxes with only little vaniance of
the lengths of the edges will reduce the area of directory
rectangles

(04) Storage utilization should be optimized Higher
storage utithzation will generally reduce the query cost as the
height of the tree will be kept low Evidently, query types
with large query rectangles are influenced more since the
concentration of rectangles in several nodes will have a
stronger effect 1f the number of found keys 1s high

Keeping the area and overlap of a directory rectangle small,
requires more freedom 1n the number of rectangles stored in
one node Thus minimizing these parameters will be paid
with lower storage utilization. Moreover, when applying
(0O1) or (O2) more freedom in choosing the shape 1s
necessary Thus rectangles will be less quadrac With (O1)
the overlap between directory rectangles may be affected in
a positive way since the covering of the data space 1s
reduced As for every geometric optimization, minimizing
the margins will also lead to reduced storage utilization
However, since more quadratic directory rectangles support

packing better, 1t will be easier to mamntain high storage
utilization Obviously, the performance for queries with
sufficiently large query rectangles will be affected more by
the storage utilization than by the parameters of (01)-(03)

3. R-tree Variants

The R-tree 1s a dynamic structure Thus all approaches of
optimizing the retrieval performance have to be applied
during the msertion of a new data rectangle The insertion
algorithm calls two more algorithms in which the crucial
decisions for good retrieval performance are made The first
1s the algorithm ChooseSubtree Beginning in the root,
descending to a leaf, 1t finds on every level the most
suitable subtree to accomodate the new entry The second 1s
the algorithm Split It 1s called, if ChooseSubtree ends 1n a
node filled with the maximum number of entries M Split
should distribute M+1 rectangles into two nodes 1n the most
appropriate manner

In the following, the ChooseSubtree- and Split-algorithms,
suggested 1n available R-tree variants are analyzed and
discussed We will first consider the original R-tree as
proposed by Guttman 1n [Gut 84]

Algorithm ChooseSubtree

CS1 Set N to be the root

CS2 If N s a leaf,
return N

else
Choose the entry in N whose rectangle needs least
area enlargement to include the new data Resolve
ties by choosing the entry with the rectangle of
smallest area

end

Set N to be the childnode pointed to by the

childpointer of the chosen entry an repeat from CS2

CS3

Obviously, the method of optimization 1s to minimize the
area covered by a directory rectangle, 1e (O1) This may
also reduce the overlap and the cpu cost will be relatively
low

Guttman discusses split-algorithms with exponential,
quadratic and linear cost with respect to the number of
entries of a node All of them are designed to mmimize the
area, covered by the two rectangles resulting from the split
The exponential split finds the area with the global
mimimum, but the cpu cost is too lmgh The others try to
find approximations In his experiments, Guttman obtains
nearly the same retrieval performance for the linear as for
the quadratic version We implemented the R-tree 1 both
variants However 1n our tests with different distributions,
different overlap, variable numbers of data-entries and
different combinations of M and m, the quadratic R-tree
yielded much better performance than the linear version (see
also section 5) Thus we will only discuss the quadratc
algorithm 1n detail

324

Algorithm QuadraticSplit
[Divide a set of M+1 entries into two groups])
QS1 Invoke PickSeeds to choose two entries to be the first
entries of the groups
QS2 Repeat
DistributeEntry
until
all entries are distnibuted or
one of the two groups has M-m+1 entries
If entries remam, assign them to the other group
such that 1t has the minimum number m

Qs3

Algorithm PickSeeds

PS1 For each pair of entries E1 and E2, compose a
rectangle R including E1 rectangle and E2 rectangle
Calculate d = area(R) - area(El rectangle) -

area(E2 rectangle)
PS2 Choose the pair with the largest d

Algorithm DistributeEntry

DE1 Invoke PickNext to choose the next entry to be
assigned

Add 1t to the group whose covering rectangle will
have to be enlarged least to accommodate it Resolve
ties by adding the entry to the group with the
smallest area, then to the one with the fewer entries,
then to either

DE2

Algorithm PickNext

PN1 For each entry E not yet 1n a group, calculate d; = the
area increase required in the covering rectangle of
Group 1 to include E Rectangle

Calculate d, analogously for Group 2

Choose the entry with the maximum difference
between d; and d,

PN2

The algorithm PickSeeds finds the two rectangles which
would waste the largest area put in one group In this sense
the two rectangles are the most distant ones It 1s important
to mention that the seeds will tend to be small too, 1f the
rectangles to be distributed are of very different size (and) or
the overlap between them 1s high The algorithm
DistributeEntry assigns the remaining entries by the
criterion of mimimum area PickNext chooses the entry with
the best area-goodness-value 1n every situation

If this algorithm starts with small seeds, problems may
occur If in d-1 of the d axes a far away rectangle has nearly
the same coordinates as one of the seeds, 1t will be
distributed first Indeed, the area and the area enlargement of
the created needle-like bounding rectangle will be very
small, but the distance 1s very large This may initiate a
very bad split Moreover, the algorithm tends to prefer the
bounding rectangle, created from the first assignment of a
rectangle to one seed Since 1t was enlarged, 1t will be larger
than others Thus 1t needs less area enlargement to include
the next entry, 1t will be enlarged again, and so on Another
problem 1s, that if one group has reached the maximum
number of entries M-m+1, all remaining entries are assigned
to the other group without considering geometric properties
Figure 1 (see section 4 3) gives an example showing all

these problems The result is either a split with much
overlap (fig 1c) or a split with uneven distribution of the
entries reducing the storage utihization (fig 1b)

We tested the quadratic split of our R-tree implementation
varying the minmimum number of entries m = 20%, 30%,
35% ,40% and 45% relatively to M and obtained the best
retrieval performance with m set to 40%

On the occasion of comparing the R-tree with other
structures storing rectangles, Greene proposed the
following alternative split-algorithm [Gre 89] To determine
the appropriate path to insert a new entry she uses
Guttman’s original ChooseSubtree-algorithm

Algorithm Greene’s-Split

[Divide a set of M+1 entries into two groups}]

GS1 Invoke ChooseAxis to determine the axis
perpendicular to which the split 1s to be performed

GS2 Invoke Distribute

Algorithm ChooseAxis

CA1l Invoke PickSeeds (see p 5) to find the two most
distant rectangles of the current node

CA2 For each axis record the separation of the two seeds

CA3 Normalize the separations by dividing them by the
length of the nodes enclosing rectangle along the
appropriate axis

CA4 Return the axis with the greatest normalized
separation

Algorithm Distribute

D1 Sort the entries by the low value of their rectangles
along the chosen axis

D2 Assign the first (M+1) div 2 entries to one group, the
last (M+1) div 2 entnes to the other

D3 If M+1 1s odd, then assign the remaining entry to the

group whose enclosing rectangle will be
increased least by 1ts addition

Almost the only geometric criterion used 1n Greene’s split
algorithm 1s the choice of the split axis Although
choosing a suitable split axis 1s 1mportant, our
investigations show that more geometric optimization
criteria have to be apphed to considerably improve the
retrieval performance of the R-tree In spite of a well
clustering, in some situations Greene’s split method cannot
find the "night” axis and thus a very bad split may result
Figure 2b (see p 12) depicts such a situation

4, The R*-tree

4.1 Algorithm ChooseSubtree

To solve the problem of choosing an appropriate msertion
path, previous R-tree versions take only the area parameter
into consideration In our investigations, we tested the
parameters area, margin and overlap in different
combinations, where the overlap of an entry 1s defined as
follows

325

Let Eq, ,Ep be the entries 1n the current node Then
p
overlap(E,) = 2 ara(E, Redangle N E Rectangle) ,1<k<p

=1,1%#k

The version with the best retrieval performance 1s described
in the following algorithm

Algorithm ChooseSubtree
CS1 Set N to be the root
CS2 If N 15 a leaf,
return N
else
if the childpointers in N point to leaves [determme
the mimmum overlap cost],
choose the entry in N whose rectangle needs least
overlap enlargement to include the new data
rectangle Resolve ties by choosing the entry
whose rectangle needs least area enlargement,
then
the entry with the rectangle of smallest area
if the childpointers in N do not point to leaves
[determine the mmmmum area cost),
choose the entry 1n N whose rectangle needs least
area enlargement to mnclude the new data
rectangle Resolve ties by choosing the entry
with the rectangle of smallest area
end
CS3 Set N to be the childnode pomted to by the
childpointer of the chosen entry and repeat from CS2

For choosing the best non-leaf node, alternative methods
did not outperform Guttman’s original algorithm For the
leaf nodes, minimizing the overlap performed shightly
better

In this version, the cpu cost of determining the overlap
1s quadratic m the number of entries, because for each entry
the overlap with all other entries of the node has to be
calculated However, for large node sizes we can reduce the
number of entries for which the calculation has to be done,
since for very distant rectangles the probabillity to yield
the mmmimum overlap is very small Thus, in order to reduce
the cpu cost, this part of the algorithm might be modified
as follows

[determine the nearly minimum overlap cost]
Sort the rectangles in N in increasing order of
their area enlargement needed to include the new
data rectangle

Let A be the group of the first p entries

From the entries 1n A, considering all entries 1n
N, choose the entry whose rectangle needs least
overlap enlargement Resolve ties as described
above

For two dimensions we found that with p set to 32 there 1s
nearly no reduction of retrieval performance to state For
more than two dimensions further tests have to be done
Nevertheless the cpu cost remains higher than the original
version of ChooseSubtree, but the number of disc accesses

1s reduced for the exact match query preceding each insertion
and 15 reduced for the ChooseSubtree algorithm itself

The tests showed that the ChooseSubtree optimization
improves the retrieval performance particulary in the
following situation Queries with small query rectangles on
datafiles with non-uniformly distributed small rectangles or
points

In the other cases the performance of Guttman’s
algorithm was similar to this one Thus principally an
improvement of robustness can be stated

4 2 Split of the R*-tree
The R*-tree uses the following method to find good splits
Along each axis, the entries are first sorted by the lower
value, then sorted by the upper value of their rectangles For
each sort M-2m+2 distributions of the M+1 entries mto two
groups are determined, where the k-th distribution (k =
1, ,(M-2m+2)) 1s described as follows The first group
contains the first (m-1)+k entries, the second group
contains the remaining entries

For each distribution goodness values are determined
Depending on these goodness values the final distribution
of the entries 1s determined Three different goodness values
and different approaches of using them in different
combinations are tested experimentally

(1) area-value area[bb(first group)] +

area[bb(second group)]
(1) margin-value margm[bb(first group)] +

margin[bb(second group)]
(i) overlap-value area[bb(first group) N

bb(second group)]

Here bb denotes the bounding box of a set of rectangles

Possible methods of processing are to determine

» the mimimum over one axis or one sort

¢ the mimimum of the sum of the goodness values over one
axis or one sort

+ the overall minimum

The obtained values may be apphed to determine a sphit axis
or the final distribution (on a chosen split axis) The best

overall performance resulted from the following algorithm

Algorithm Split

S1 Invoke ChooseSplitAxis to determme the axis,
perpendicular to which the splhit 1s performed
S2 Invoke ChooseSplitindex to determine the best
distnibution into two groups along that axis
S3 Distribute the entries mnto two groups

Algorithm ChooseSplitAxis

CSAl1 For each axis
Sort the entries by the lower then by the upper
value of their rectangles and determine all
distributions as described above Compute S, the
sum of all margin-values of the different
distributions

end

CSA2 Choose the axts with the mimimum $ as split axis

326

Algorithm ChooseSplitindex

csi1 Along the chosen split axis, choose the
distribution with the mimimum overlap-value
Resolve ties by choosing the distribution with
mimnimum area-value

The sphit algorithm 1s tested with m = 20%, 30%, 40% and
45% of the maximum number of entries M As ex- periments
with several values of M have shown, m = 40% yields the
best performance Additionally, we varied m over the life
cycle of one and the same R*-tree in order to correlate the
storage utilization with geometric paremeters However,
even the following method did result in worse retrieval
performance Compute a split using m; = 30% of M, then
compute a split using m, =40% If split(m,)yields overlap
and split(m,;) does not, take split(m;), otherwise take
split(m,)

Concerning the cost of the split algorithm of the R*-tree
we will mention the following facts For each axis
(dimension) the entries have to be sorted two times which
requires O(M log(M)) time As an experimental cost analysis
has shown, this needs about half of the cost of the split
The remaining split cost 1s spent as follows For each axis
the margin of 2*(2*(M-2m+2)) rectangles and the overlap of
2*(M-2m+2) distnnbutions have to be calculated

4 3 Forced Reinsert
Both, R-tree and R*-tree are nondetermimistic 1n allocating
the entries onto the nodes 1 e different sequences of
msertions will build up different trees For this reason the
R-tree suffers from its old entries Data rectangles mnserted
during the early growth of the structure may have introduced
directory rectangles, which are not suitable to guarantee a
good retrieval performance 1n the current situation A very
local reorganization of the directory rectangles 1s
performend during a split But this 1s rather poor and
therefore 1t 1s desirable to have a more powerful and less
local instrument to reorgamize the structure

The discussed problem would be maintained or even
worsened, 1f underfilled nodes, resulting from deletion of
records would be merged under the old parent Thus the
known approach of treating underfilled nodes 1n an R-tree 1s
to delete the node and to reinsert the orphaned entries 1n the
corresponding level [Gut 84] This way the ChooseSubtree
algorithm has a new chance of distributing entries into
different nodes

Since 1t was to be expected, that the deletion and
reinsertion of old data rectangles would improve the
retrieval performance, we made the following simple
experiment with the linear R-tree Insert 20000 uniformly
distnbuted rectangles Delete the first 10000 rectangles and
msert them again The result was a performance
improvement of 20% up to 50%(') depending on the types
of the queries Therefore to delete randomly half of the data
and then to nsert 1t again seems to be a very simple way of
tuning existing R-tree datafiles But this 15 a static
situation, and for nearly static datafiles the pack algorithm
{RL 85] 1s a more sophisticated approach

To achieve dynamic reorganizations, the R*-tree forces
entries to be reinserted during the insertion routine The

tollowing algorithm 1s based on the ability of the insert
routine to insert entries on every level of the tree as already
required by the deletion algornithm [Gut 84] Except for the
overflow treatment, 1t 1s the same as described originally by
Guttman and therefore 1t 1s only sketched here

Algorithm InsertData
ID1 Invoke Insert starting with the leaf level as a
parameter, to insert a new data rectangle

Algorithm Insert

I1 Invoke ChooseSubtree, with the level as a parameter,
to find an appropriate node N, 1n which to place the
new entry E

If N has less than M entries, accommodate E in N

If N has M entnes, invoke OverflowTreatment with the
level of N as a parameter [for reinsertion or split]

If OverflowTreatment was called and a split was
performed, propagate OverflowTreatment upwards

if necessary

If OverflowTreatment caused a split of the root, create a
new root

Adjust all covering rectangles in the msertion path
such that they are minimum bounding boxes

enclosing their children rectangles

12

I3

I4

Algorithm OverflowTreatment
OT1 If the level 1s not the root level and this 1s the first
call of OverflowTreatment in the given level
during the nsertion of one data rectangle, then
mvoke Relnsert
else
mvoke Split
end

Algorithm Relnsert

RI1 For all M+1 entries of a node N, compute the distance
between the centers of their rectangles and the center
of the bounding rectangle of N

Sort the entries 1n decreasing order of their distances
computed n RI1

Remove the first p entries from N and adjust the
bounding rectangle of N

In the sort, defined in RI2, starting with the maximum
distance (= far remnsert) or mimimum distance (= close
reinsert), invoke Insert to remsert the entries

RI2
RI3

R4

If a new data rectangle 1s inserted, each first overflow
treatment on each level will be a reinsertion of p entries
This may cause a split in the node which caused the
overflow 1f all entries are reinserted in the same location
Otherwise splits may occur 1n one or more other nodes, but
in many situations splits are completely prevented The
parameter p can be varied independently for leaf nodes and
non-leaf nodes as part of performance tuning, and different
values were tested experimentally The experiments have
shown that p = 30% of M for leaf nodes as well as for non-
leaf nodes yields the best performance Furthermore, for all
data files and query files close reinsert outperforms far
remnsert Close remnsert prefers the node which included the

327

entries berore, ana s 15 inlenaeda, oecause its enclosing
rectangle was reduced in size Thus this node has lower
probability to be selected by ChooseSubtree again

Summarizing, we can say

« Forced remnsert changes entries between neighboring
nodes and thus decreases the overlap

* As a side effect, storage utilization 1s improved

* Due to more restructuring, less splits occur

« Since the outer rectangles of a node are reinserted, the
shape of the directory rectangles will be more quadratic
As discussed before, this 1s a desirable property

Obviously, the cpu cost will be higher now since the
msertion routine 1s called more often This 1s alleviated,
because less splits have to be performed The experiments
show that the average number of disc accesses for insertions
increases only about 4% (and remains the lowest of all R-
tree variants), if Forced Reinsert 1s applied to the R*-tree
Thus 1s particularly due to the structure improving properties
of the insertion algorithm

g

Uo
1.
o |
I
Figure 1b: Fperelc: Figure 1d Figare le
Spik o the quadatic Splitof the quadratic R-tree, Greene 3 spiit Spiit of the R Aree, m = 40%
Rireq, m=30% m=40%

’ﬁmmm@
|
=

v

N

%

Figure2br Greene s splt where
the spltaxss 18 horzontal

Figwela Overfilled node Figore2c: Spltof theR* tree

where the sphtaxs 18 vertical

5. Performance Comparison
S 1 Experimental Setup and Results of the
Experiments

We ran the performance comparison on SUN workstations
under UNIX using Modula-2 implementatons of the different
R-tree variants and our R*-tree Analogously to our
performance comparison of PAM’s and SAM’s 1n [KSSS 89]
we keep the last accessed path of the trees m main memory
If orphaned entries occur from insertions or deletions, they
are stored 1n main memory additionally to the path

In order to keep the performance comparison
manageable, we have chosen the page size for data and
directory pages to be 1024 bytes which 1s at the lower end
of realistic page sizes Using smaller page sizes, we obtain
similar performance results as for much larger file sizes
From the chosen page size the maximum number of entries
in directory pages 1s 56 According to our standardized
testbed we have restricted the maximum number of entries in
a data page to 50

As candidates of our performance comparison we selected
the R-tree with quadratic split algorithm (abbre- viation qua
Gut), Greene’s vanant of the R-tree (Greene) and our R*-tree
where the parameters of the different structures are set to the
best values as described in the previous sections
Additionally, we tested the most popular R-tree
implementation, the variant with the linear split algorithm
(Iin Gut) The popularity of the linear R-tree 1s due to the
statement 1n the original paper [Gut84] that no essential
performance gam resulted from the quadratic version vs the
linear version For the linear R-tree we found m=20% (of
M) to be the variant with the best performance

To compare the performance of the four structures we
selected six data files containing about 100,000 2-
dimensional rectangle Each rectangle 1s assumed to be in
the unit cube [0,1)2 In the following each data file 1s
described by the distribution of the centers of the rectangles
and by the tripel (n, M., » nV,.,) Here n denotes the
number of rectangles, {1, 1s the mean value of the area of a
rectangle and nv, ., = 0,0, / Mape, 18 the normalized vanance
where 0,.., denotes the variance of the areas of the
rectangles Obviously, the parameter nv,. ., increases
independently of the distribution the more the areas of the
rectangles differ from the mean value and the average
overlap 1s sumply obtained by n* y .,

(F1) "Uniform"
The centers of the rectangles follow a 2-dimensional
independent umform distribution
(n = 100,000, p .. = 0001, nv,. = 9505)

(F2) "Cluster"
The centers follow a distribution with 640 clusters,
each cluster contams about 1600 objects
(n = 99,968, W o,= 00002, nv, ... =1538)

328

(F3) "Parcel"
First we decompose the unit square into 100,000
disjoint rectangles Then we expand the area of each
rectangle by the factor 2 5
(n = 100,000, p,..,= 00002504, nv,., = 303458)

(F4) "Real-data"
These rectangles are the mmmmum bounding rectangles

of elevation lines from real cartography data

(n = 120,576, Yypep = 0000926, nv,., = 1 504)

(F5) "Gaussian"
The centers follow a 2-dimensional independent
Gaussian distribution

(n = 100,000, P,ro, = 00008, nv, ., =

89875)

(F6) "Mixed-Uniform"

The centers of the rectangles follow a 2-dimensional
independent uniform distribution

First we take 99,000 small rectangles with

Marea = 0000101 Then we add 1,000 large rectangles
with e, = 001 Finally these two data files are

merged to one
(n = 100,000, pype, = 00002, nv,., = 6778)

For each of the files (F1) - (F6) we generated quernes of the

following three types

» rectangle intersection query Given a rectangle S, find
all rectangles R 1n the file with RN S # ¢

¢ point query Given a point P, find all rectangles R m

the file with P e R

» rectangle enclosure query Given a rectangle S, find all
rectangles R m the file withR 2 §

For each of these files (F1) - (F6) we performed 400
rectangle intersection queries where the ratio of the x-
extension to the y-extension umformly varies from 0 25 to
2 25 and the centers of the query rectangles themselves are
uniformly distributed in the umt cube In the following, we
consider four query files (Q1) - (Q4) of 100 rectangle
intersection queries each The area of the query rectangles of
each query file (Q1) - (Q4) varies from 1%, 0 1%, 0 01% to
0 001% relatively to the area of the data space For the
rectangle enclosure query we consider two query files (Q5)
and (Q6) where the corresponding rectangles are the same as
m the query files (Q3) and (Q4), respectively Additionally,
we analyzed a query file (Q7) of 1,000 pomnt queries where
the query ponts are umformly distributed

For each query file (Q1) - (Q7) we measured the average
number of disc accesses per query In the performance
comparison we use the R*-tree as a measuring stick for the
other access methods, 1e we standardize the number of
page accesses for the queries of the R¥-tree to 100% Thus
we can observe the performance of the R-tree variants
relative to the 100% performance of the R*-tree

To analyze the performance for building up the different
R-tree variants we measured the parameters msert and stor
Here insert denotes the average number of disc accesses per

msertion and stor denotes the storage utilization after
completely building up the files In the following table we
present the results of our experiments depending on the
different distributions (data files) For the R*-tree we also
depict "# accesses”, the average number of disk accesses per
query

Uniform.
point i ﬁe!sec:!?n 10 oiﬁl_@iﬁ stor |insert
In Gut 2258 Q2126 2077 1830 Q1445 |2247 2481 €41 743
qua, Gut [1248 J1215 1244 1241 1142 1167 1219 Jé95 | 427
Greene 1400 1361 1354 (1301 J11S1 |1328 11538 703 | 4.67
R’-tree 1000 J1000 [1000 J1000 100 ¢ [10e0 1000 | 758 | 442
#accesses | 526 604 |763 |1329 |s342 |a8s |36
Cluster. intersection enclosure
point 8.1 10 le 0.01 | stor |insert
lin Gut 2509 [231¢ 2197 1766 1369 |2478 2494 f617 613
qua Gut 1661 R152.7 [1607 1391 [120.4 |1854 [1829 [669 497
Greene 1599 J1518 (1522 [1443 1169 1516 1532 692 [432
RY-tree 1000 1000 [100¢ J100e f1000 Jio0e 1000 722 J377
#accesses [290 226 {295 |713 J36e {18¢ |18
P i o B, LS9 | e
Iin Gut 2641 2650 |2586 |2143 |1779 2694 2810 Je02 |2307
qua Gut [1295 [1323 [1209 [12¢61 1221 Jasro Jusé Jere 1330
Greene 1998 [1962 |2069 |1841 |15¢5 J1958 J2075 Q689 [16.02
R*-tree 1000 1000 [1000 |1000]1000 J1000 J1000 | 725 [1073
#accesses |567 (626 | 73¢ {1329 |367¢ 542 | 496
Real Data
point .l,':,'fr mﬂ‘,"‘ 10 enclosure stor }insert
lin Gut 2456 §2467 2208 1816 11438 2681 §2841 §629 |730
qua Gut |1473 1531 1433 1325 1164 |1s88 Jréo1 fes1 |sos
Greene 1478 1440 1465 1302 {1159 |1551 J169.8 R69¢ |S50S
R*tree 1000 F1000 J1000 [1000 {1000 |1000 J1000 R705 (422
#accesses | 478 [529 735 [iaés [e084 [a0s [308
Gau
pont _:'n:e: 01 10 lo fm.—‘lﬂ n? stor |insert
lin Gut |1711 1656 J1681 |1501 1438 1711 Jis02 Je3s 1912
qua Gut [1162 Juso Ji160 |u176 [1192 [1064 J1068 Jé33 140
Greene 1232 Jus7 1312 [1229 |42 [1207 1306 J699 [t 41
R*-tree 1000 1000 §1000 [100.0 f1000 1000 J1000 | 738 [915
#accesses | 483 587 769 1088 [a619 | 439 F324
Mixed Uniform.
point _n“:;r 01 10 1 i Py 0‘: stor |insert
In Gut [3541 |325 o117 Ja3s1 Juess fass1 Jeoré |e34 1270
qua Gut 1276 J1263 J122.7 §1190 F1130 [1196 f1247 | 682 |494
Greene 1214 Ju67 J1160 Ju14S Jro93 Jurdo Jui63 [701 [4s8
R*-tree 1000 J1000 J1000 J1000 J1000 Jrooo Jiooo |71 [4a4é
#accesses | 487 |JS5S51 727 f137é 5206 J4aa 369

329

Additionally to the conventional queries like pont query,
mtersection query and enclosure query we have considered
the operation spatial join usually used 1n applications like
map overlay We have defined the spatial join over two
rectangle files as the set of all pairs of rectangles where the

one rectangle from filej intersects the other rectangle from
fllez

For the spatial join operation we performed the following
experiments

(SJ1) filey "Parcel”-distribution with 1000

rectangles randomly selected from file (F3)
data file (F4)

"Parcel”-distribution with 7500 rectangles

filey
(832) fileg

randomly selected from data file (F3)

filey 7,536 rectangles generated from elevation

lines
(n = 7,536, Wy, = 00148, nV,e,=15)

(8J3) file; "Parcel"-distribution with 20,000 rectangles

randomly selected from data file (F3)

£ £.1
11161

nlez

For these experiments we measured the number of disc
accesses per operation The normalized results are presented
n the following table

tial Join
(Sd1) [(s42) |(su3)
lin.Gut 2966 | 229.2 2578
qua.Gut | 1424 1547 | 1448
Greene 187.1 166.3 160 4
H-tree | 1000 | 1000 | 100.0

5.2 Interpretation of the Results

In table 1 for the parameters stor and wsert we computed the
unweighted average over all six distributions (data files)
The parameter spatial join denotes the average over the
three spatial join operations (SJ1) - (SJ3) For the average
query performance we present the parameter query average
which 1s averaged over all seven query files for each
distribution and then averaged over all six distributions

:::zge ;:::tlal stor insert
lin Gut 2275 2612 627 1263
qua.Gut | 1300 1473 68 1 776
Greene 1423 173 697 767
Rtree | 1000 | 1000 730 613
Tablel unweighted average over all distributions

The loss of information in the parameter query average 1s
even less in table 2 where the parameter 1s displayed
separately for each data file (F1) - (F6) as an average over
all seven query files and in table 3 where the parameter
query average 15 depicted separately for each query (Q1) -
(Q7) as an average over all six data files

gaussian | cluster | mixuni | parcel | realdata | uniform
Iin Gut 1643 | 2160 | 3081 | 472 | 272 | 266
qua Gut 1129 § 1539 | 2§ | i®1 | 1445 y idi
Greene 1231 § 1471} 1155 | 1924 |} 142 | 1348
R'ree 1000 § 1000 | 1000 | 100 | 1000 | 1000
Table2 unweighted average over all seven types of quenes depending on the distribution

point o agy (i,‘},tfr "‘“2‘{" 14 enlclos(l:;: stor {insert
lin. Gut 2519 P42 12811 1898 1521 J2568 2741 LT .63
qua,Gut 183 Jumd funs ks qure Jund fise jea |1
Greene (1487 [109 [0 137 13 iss Jiss2 {071 147
Ritree [1000 Jioo 1009 fro00 fioo0 fro00 froe |70 [ex3

Table3 unweighted average over all six distnbutions depending o the query type

First of all, the R*-tree clearly outperforms the R-tree
variants 1n all experiments Moreover the most popular
vanant, the linear R-tree, performs essentially worse than
all other R-trees The following remarks emphasize the
superiority of the R*-tree in companson to the R-trees

¢ The R*-tree 1s the most robust method which 1s
underligned by the fact that for every query file and every
data file less disk acesses are required than by any other
variants To say 1t in other words, there 1s no experiment
where the R*-tree 1s not the winner

+ The gain 1n efficiency of the R*-tree for smaller query
rectangles 1s higher than for larger query rectangles,
because storage utilization gets more important for larger
query rectangles This emphasizes the goodness of
the order preservation of the R¥-tree (1 & rectangles
close to each other are more likely stored together in
one page)

+ The maximum performance gaimn of the R*-tree taken
over all query and data files 15 In comparison to the
linear R-tree about 400% (1 e 1t takes four times as long
as the R*-tree 1), to Greene’s R-tree about 200%
and to the quadratic R-tree 180%

+ As expected, the R*-tree has the best storage utilization

330

+ Surprisingly 1n spite of using the concept of Forced
Reinsert, the average insertion cost 1s not increased, but
essentially decreased regarding the R-tree vanants

+ The average performance gain for the spatial join
operation 18 higher than for the other queries The
quadratic R-tree, Greene’s R-tree and the linear R-tree
require 147%, 171% and 261% of the disc accesses of the
R*-tree, respectively, averaged over all spatial join
operations

5.3 The R*-tree: an efficient point access method

An 1mportant requirement for a spatial access method 1s to
handle both spatial objects and point objects efficiently
Points can be considered as degenerated rectangles and 1n
most applications rectangles are very small relatively to the
data space If a SAM 1s also an efficient PAM, this would
underlign the robustness of the SAM Moreover, 1n many
applications it 1s desirable to support additionally to the
bounding rectangle of an object at least an atomar key with
one access method

Therefore we ran the different R-tree variants and our R*-
tree against a benchmark proposed and used for point access
methods The reader interested in the details of this
benchmark 1s referred to [KSSS 89) In this paper, let us
mention that the benchmark incorporates seven data files of
highly correlated 2-dimensiuonal points Each data file
contains about 100,000 records For each data file we
considered five query files each of them containing 20
queries The first query files contain range queries specified
by square shaped rectangles of size 0 1%, 1% and 10%
relatively to the data space The other two query files
contain partial match queries where 1n the one only the x-
value and in the other only the y-value 1s specified,
respectively

Similar to the previous section, we measured the storage
utilization (stor), the average insertion cost (insert) and the
average query cost averaged over all query and data files The
results are presented in table 4 where we included the 2-level
gnd file ((NHS84], [Hin85]), a very popular point access
method

query
average | Stor |Insert
lin.Gut 233.; 64.1 734
qua_Gut 1759 67.8 4.51
Greene 237.8 69.0 5.20
GRID 127.6 58.3 2.56
R*-tree 1000 70.9 3.36

Table 4: unweighted average over all seven distributions

We were positively surprised by our results The performance
gain of the R*-tree over the R-tree variants 15 considerably
higher for points than for rectangles In particular Greene’s
R-tree 1s very inefficient for point data It requires even
more accesses than the linear R-tree and 138% more than
the R*-tree, whereas the quadratic R-tree requires 75% more
disc accesses than the R*-tree Nevertheless, we had
expected that PAMs like the 2-level gnd file would perform
better than the R*-tree However 1n the over all average the
2-level gnd file performs essentially worse than the R*-tree
for point data An advantage of the grid file is the low
average insertion cost In that sense it might be more
suitable in an insertion-intensive application Let us
mention that the complexity of the algorithms of the R*-
trees 1s rather low 1n comparison to highly tuned PAMs

6 Conclusions

The experimental comparison pointed out that the R*-tree
proposed 1n this paper can efficiently be used as an access
method 1n database systems organizing both,
multidimensional pomnts and spatial data As demonstrated
1n an extensive performance comparison with rectangle data,
the R*-tree clearly outperforms Greene’s R-tree, the quadratic
R-tree and the popular linear R-tree in all experiments
Moreover, for point data the gain in performance of the R*-
tree over the other variants 1s increased Additionally, the
R*-tree performs essentially better than the 2-level gnid file
for point data

The new concepts incorporated 1n the R*-tree are based
on the reduction of the area, margin and overlap of the
directory rectangles Since all three values are reduced, the
R*-tree 1s very robust against ugly data distributions
Furthermore, due to the fact of the concept of Forced
Reinsert, splits can be prevented, the structure is
reorganized dynamically and storage utilization 1s higher
than for other R-tree vaniants The average mnsertion cost of
the R*-tree 15 lower than for the well known R-trees
Although the R*-tree outperforms 1ts competitors, the cost
for the implementation of the R*-tree 1s only slightly
higher than for the other R-trees

In our future work, the we will investigate whether the
fan out can be increased by prefixes or by using the gnd
approximation as proposed in [SK 90] Moreover, we are
generahizing the R*-tree to handle polygons efficiently

References:
[Gre 89]

Analysis of Spatial Data Access Methods', Proc 5th
Conf on Data Engineering, 606-615, 1989

D Greene 'An Implementation and Performance
Int

[Gut 84] A Guttman 'R-trees a dynamic index structure
for spatial searching', Proc ACM SIGMOD Int
Conf on Management of Data, 47-57, 1984

[Hin 851 K Hinrichs 'The gnd file system
implementation and case studies for applications’,
Dissertation No 7734, Eidgendssische Technische
Hochschule (ETH), Zuerich, 1985

331

[Knu73] D Knuth 'The art of computer programming',
Vol 3 sorting and searching, Addison-Wesley Publ Co ,
Reading, Mass , 1973

[KSSS 89] HP Kriegel, M Schiwietz, R Schneider, B
Seeger 'Performance comparison of point and spatial
access methods', Proc Symp on the Design and
Implementation of Large Spatial Databases', Santa

Barbara, 1989, Lecture Notes 1n Computer Science

[NHS 84] J Nievergelt, H Hinterberger, KC Sevcik 'The
gnd file an adaptable, symmetric multikey file

structure', ACM Trans on Database Systems, Vol 9, 1, 38-
71, 1984

[RL 85] N Roussopoulos, D Leifker 'Direct spatial
search on pictorial databases using packed R-trees', Proc
ACM SIGMOD Int Conf on Managment of Data, 17-31,
1985

[SK8] B Seeger, H P Kriegel 'Design and
implementation of spatial access methods', Proc 14th Int
Conf on Very Large Databases, 360-371, 1988

[SK90] B Seeger, HP Kriegel 'The design and
implementation of the buddy tree', Computer Science
Technical Report 3/90, University of Bremen, submutted for
publication, 1990

