
pure::variants User's Guide

Parametric Technology GmbH

pure::variants User's Guide
Version 6.0.7.685 for pure::variants 6.0

Publication date 2024
Copyright © 2003-2024 Parametric Technology GmbH

iii

Table of Contents
1. Introduction .. 1

1.1. What is pure::variants? ... 1
1.2. Link to PDF and Other Related Documents ... 1

2. Software and License Installation ... 3
2.1. Software Requirements .. 3
2.2. Software Installation .. 3
2.3. Obtaining and Installing a License ... 3

3. Introduction to Product Line Engineering with Feature Models .. 5
3.1. Introduction .. 5
3.2. Software Product Lines .. 5
3.3. Modelling the Problem Space with Feature Models ... 6
3.4. Modelling the Solution Space .. 8
3.5. Designing a variable architecture ... 9
3.6. Deriving product variants .. 11

4. Getting Started with pure::variants .. 13
4.1. Variant Management Perspective .. 13
4.2. Tooltips ... 13
4.3. Using Feature Models .. 14
4.4. Using Configuration Spaces .. 15
4.5. Transforming Configuration Results ... 16
4.6. Viewing and Exporting Configuration Results .. 17
4.7. Exploring Documentation and Examples ... 18

5. Concepts .. 19
5.1. Introduction .. 19
5.2. Common Concepts in pure::variants Models ... 20

5.2.1. Model Constraints ... 20
5.2.2. Element Restrictions .. 21
5.2.3. Element Relations ... 21
5.2.4. Element Attributes .. 21

5.3. Feature Models ... 23
5.3.1. Feature Attributes ... 24

5.4. Family Models .. 24
5.4.1. Structure of the Family Model .. 25
5.4.2. Restrictions in Family Models ... 26
5.4.3. Relations in Family Models .. 27

5.5. Variant Description Models ... 28
5.6. Hierarchical Variant Composition ... 28
5.7. Inheritance of Variant Descriptions ... 28

5.7.1. Inheritance Rules .. 29
5.8. Variant Description Evaluation .. 29

5.8.1. Evaluation Algorithm .. 29
5.8.2. Partial Evaluation .. 31

5.9. Variant Transformation ... 32
5.9.1. The Transformation Process .. 32
5.9.2. Variant Result Models ... 32

5.10. Variant Update .. 33
5.10.1. File based Update .. 34

6. Tasks ... 37
6.1. Evaluating Variant Descriptions ... 37

6.1.1. Configuring the Evaluation ... 37
6.1.2. Setting the VDM Configuration Mode .. 40
6.1.3. Default Element Selection State ... 40
6.1.4. Automatic Resolving of Selection Problems ... 40
6.1.5. Automatic Selection .. 41
6.1.6. Configuring the Auto Resolver .. 42

pure::variants User's Guide

iv

6.2. Reuse of Variant Descriptions ... 43
6.2.1. Hierarchical Variant Composition .. 43
6.2.2. Inheritance of Variant Descriptions .. 46
6.2.3. Load a Variant Description ... 47
6.2.4. Rename Reused Variant Description Model ... 47
6.2.5. Reorder Reused Variant Description Models .. 48

6.3. Transforming Variants .. 50
6.3.1. Setting up a Transformation .. 50
6.3.2. Standard Transformation .. 60
6.3.3. User-defined transformation scripts with JavaScript ... 64
6.3.4. Transformation of Hierarchical Variants .. 68
6.3.5. Reusing existing Transformation .. 68
6.3.6. Ant Build Transformation Module ... 69

6.4. Validating Models ... 69
6.4.1. XML Schema Model Validation .. 69
6.4.2. Model Check Framework ... 69

6.5. Refactoring Models .. 73
6.6. Comparing Models .. 74

6.6.1. General Eclipse Compare ... 75
6.6.2. Model Compare Editor .. 75
6.6.3. Conflicts .. 76
6.6.4. Compare Example ... 76

6.7. Searching in Models .. 77
6.7.1. Variant Search .. 77
6.7.2. Quick Overview ... 79

6.8. Analyse Models .. 80
6.8.1. Finding variant description models with similar selections .. 80
6.8.2. Finding variant description models with the same selection ... 83
6.8.3. Find elements with the same selection states in all variant description models 84
6.8.4. Find constant and variable elements in all variant description models 86

6.9. Filtering Models .. 88
6.10. Computing Model Metrics ... 89
6.11. Extending the Type Model .. 90
6.12. Using Multiple Languages in Models .. 92
6.13. Importing and Exporting Models .. 93

6.13.1. Exporting Models .. 93
6.13.2. Importing Models .. 99

6.14. External Build Support (Ant Tasks) ... 110
6.14.1. pv.import .. 113
6.14.2. pv.evaluate ... 113
6.14.3. pv.transform ... 114
6.14.4. pv.validate .. 116
6.14.5. pv.inherit .. 117
6.14.6. pv.connect .. 117
6.14.7. pv.sync .. 117
6.14.8. pv.syntaxsemanitccheck .. 118
6.14.9. pv.mergeselection .. 118
6.14.10. pv.javascript .. 118
6.14.11. pv.offline .. 119
6.14.12. pv.online .. 119
6.14.13. pv.userrolesync .. 119
6.14.14. pv.property ... 120
6.14.15. pv.about ... 120

6.15. Linking between pure::variants and external resources .. 120
6.16. Manipulating Text Files .. 121

6.16.1. Setting Up the Transformation ... 121
6.16.2. Editing Conditions and Calculations in Text Files .. 121

6.17. Using Known Servers Preferences ... 122

pure::variants User's Guide

v

6.17.1. Central deployment mechanism of servers .. 123
6.18. Convert a pure::variants 4 project into a pure::variants 5 project ... 124
6.19. Customizing the Variant Configuration Process ... 125

6.19.1. Creating a Variant Configuration Wizard Model .. 125
6.19.2. Configure a Variant Configuration Wizard Model .. 127

7. Graphical User Interface .. 131
7.1. Getting Started with Eclipse .. 131
7.2. Variant Management Perspective .. 132
7.3. Editors ... 132

7.3.1. Common Editor Pages .. 132
7.3.2. Feature Model Editor ... 144
7.3.3. Family Model Editor .. 147
7.3.4. Variant Description Model Editor ... 148
7.3.5. Variant Result Model Editor ... 153
7.3.6. Model Compare Editor ... 154
7.3.7. Matrix Editor .. 154

7.4. Views .. 156
7.4.1. Attributes View ... 156
7.4.2. Visualization View .. 157
7.4.3. Search View ... 158
7.4.4. Outline View .. 159
7.4.5. Problem View/Task View ... 159
7.4.6. Properties View .. 159
7.4.7. Relations View ... 161
7.4.8. Result View ... 162
7.4.9. Impact View ... 164
7.4.10. pvSCL IDE .. 167
7.4.11. Variant Projects View .. 169

7.5. Model Properties ... 170
7.5.1. Common Properties Page .. 170
7.5.2. General Properties Page .. 171
7.5.3. Inheritance Page .. 172

8. Additional pure::variants Extensions .. 175
8.1. Installation of Additional pure::variants Extensions .. 175

9. Reference .. 177
9.1. Element Attribute Types ... 177
9.2. Element Relation Types .. 177
9.3. Element Variation Types ... 179
9.4. Element Selection Types ... 180
9.5. Predefined Source Element Types ... 180

9.5.1. ps:dir ... 181
9.5.2. ps:file .. 181
9.5.3. ps:fragment .. 182
9.5.4. ps:condxml ... 182
9.5.5. ps:condtext ... 183
9.5.6. ps:pvsclxml .. 184
9.5.7. ps:pvscltext .. 185
9.5.8. ps:flagfile ... 187
9.5.9. ps:makefile ... 187
9.5.10. ps:classaliasfile .. 188
9.5.11. ps:symlink .. 189

9.6. Predefined Part Element Types .. 189
9.6.1. ps:classalias .. 190
9.6.2. ps:class .. 190
9.6.3. ps:flag ... 190
9.6.4. ps:variable .. 190
9.6.5. ps:feature ... 190

9.7. Expression Language pvSCL ... 191

pure::variants User's Guide

vi

9.7.1. How to read this reference .. 191
9.7.2. Comments .. 191
9.7.3. Boolean Values ... 191
9.7.4. Numbers .. 191
9.7.5. Strings ... 191
9.7.6. Collections ... 192
9.7.7. SELF and CONTEXT .. 192
9.7.8. Name and ID References .. 193
9.7.9. Element Selection State Check .. 194
9.7.10. Attribute Access .. 195
9.7.11. Logical Combinations ... 195
9.7.12. Relations .. 196
9.7.13. Conditionals .. 197
9.7.14. Value Comparison ... 197
9.7.15. Arithmetics ... 198
9.7.16. Variable Declarations ... 198
9.7.17. Function Definitions ... 198
9.7.18. Function Calls ... 199
9.7.19. Iterators ... 199
9.7.20. Accumulators .. 199
9.7.21. Error Handling .. 200
9.7.22. Limitations ... 200
9.7.23. Function Library .. 201
9.7.24. User-Defined pvSCL Functions .. 217

9.8. XSLT Extension Functions .. 217
9.9. Predefined Variables .. 222
9.10. Regular Expressions ... 223

9.10.1. Characters .. 223
9.10.2. Character Sequences .. 224
9.10.3. Repetition ... 225
9.10.4. Alternation ... 225
9.10.5. Grouping .. 225
9.10.6. Boundaries ... 225
9.10.7. Back References .. 226

9.11. Keyboard Shortcuts .. 226
9.12. Naming Restrictions ... 227

9.12.1. Project Name .. 227
9.12.2. Folder Name ... 227
9.12.3. Config Space Name ... 227
9.12.4. Model Name ... 227
9.12.5. Revision Name .. 227

10. Appendices .. 229
10.1. Software Configuration ... 229
10.2. User Interface Advanced Concepts .. 229

10.2.1. Console View ... 229
10.3. Glossary ... 229

Index ... 233

vii

List of Figures
1.1. Overview of family-based software development with pure::variants .. 1
3.1. Overview of SPLE activities ... 6
3.2. Structure and notation of feature models (using pure::variants Directed Graph Export) 7
3.3. Feature Model for meteorological Product Line .. 7
3.4. Enhanced Feature Model for meteorological Product Line .. 8
3.5. pure::variants screen shot - solution space fragment shown at right ... 10
4.1. Initial layout of the Variant Management Perspective .. 13
4.2. Switching Tooltips on/off ... 14
4.3. A simple Feature Model of a car ... 14
4.4. VDM with a problematic selection ... 15
4.5. Transformation configuration in Configuration Space Properties .. 16
4.6. Transformation button in Eclipse toolbar ... 17
4.7. VDM export wizard ... 17
5.1. pure::variants transformation process .. 20
5.2. (simplified) element meta model .. 20
5.3. (Simplified) element attribute meta-model ... 21
5.4. Basic structure of Feature Models .. 24
5.5. Basic structure of Family Models ... 25
5.6. Sample Family Model .. 26
5.7. Model Evaluation Algorithm (Pseudo Code) .. 29
5.8. XML Transformer ... 32
5.9. General Update functionality ... 34
5.10. Folder Structure ... 34
6.1. VDM Editor with Outline, Result, Problems, and Attributes View .. 37
6.2. Model Evaluation Preferences Page .. 38
6.3. Configuration Space Evaluation Settings Page .. 39
6.4. Variant Model Configuration Mode Page ... 40
6.5. Automatically Resolved Feature Selections .. 41
6.6. Auto Resolver Preferences Page ... 42
6.7. Unique Names in a Variant Hierarchy ... 44
6.8. Example Variant Hierarchy ... 46
6.9. Load Selection Dialog .. 47
6.10. Rename Reused Variant Description Model .. 48
6.11. Rename Dialog .. 48
6.12. Reorder Reused Variant Description Models ... 49
6.13. Reorder Instances Dialog .. 49
6.14. Multiple Transform Button .. 50
6.15. Configuration Space properties: Model Selection ... 50
6.16. Configuration Space properties: Properties ... 51
6.17. Configuration Space properties: Transformation input/output paths ... 52
6.18. Configuration Space properties: Transformation Configuration ... 53
6.19. Transformation module selection dialog ... 54
6.20. Transformation module parameters ... 55
6.21. Configuration Space properties: Transformation Configuration ... 56
6.22. Configuration Space properties: Transformation Configuration ... 57
6.23. Configuration Space properties: Transformation Configuration ... 58
6.24. Configuration Space properties: Transformation Configuration ... 59
6.25. Configuration Space properties: Transformation Configuration ... 59
6.26. The Standard Transformation Type Model ... 60
6.27. Multiple attribute definitions for Value calculation .. 62
6.28. Sample Project using Regular Expressions ... 63
6.29. Model Validation Preferences Page ... 70
6.30. New Check Configuration Dialog ... 71
6.31. Automatic Model Validation Preferences Page .. 72
6.32. Model Validation in Progress ... 73

pure::variants User's Guide

viii

6.33. Refactoring context menu for a feature .. 74
6.34. Model Compare Editor ... 77
6.35. The Variant Search Dialog .. 78
6.36. Quick Overview in a Feature Model ... 80
6.37. .. 81
6.38. The similarity input configuration dialog ... 82
6.39. The similarity calculation result dialog .. 82
6.40. Similarity Matrix ... 83
6.41. .. 83
6.42. The same selection result dialog ... 84
6.43. The same selection result dialog ... 85
6.44. The same selection result dialog ... 86
6.45. The same selection result dialog ... 87
6.46. The same selection result dialog ... 88
6.47. Filter definition dialog .. 89
6.48. Metrics for a model ... 90
6.49. Type Model Editor Example .. 91
6.50. Type Model Editor Example .. 91
6.51. Language selection in the element properties dialog ... 92
6.52. HTML Export Wizard .. 94
6.53. HTML Export Wizard .. 95
6.54. HTML Export Result ... 96
6.55. HTML Transformation Module .. 97
6.56. HTML Transformation Module Parameters .. 98
6.57. Directed graph export example ... 99
6.58. Directed graph export example (options LR direction, Colored) ... 99
6.59. Import Dialog .. 100
6.60. Select Variant Import Format ... 101
6.61. Specify Source file ... 102
6.62. Specify pure::variants model .. 103
6.63. Imported Feature Model .. 103
6.64. Excel File Structure .. 104
6.65. Import Dialog .. 105
6.66. Select Variant Import Format ... 106
6.67. Select Target and Specify Source file .. 107
6.68. Select Pattern for feature Selection .. 108
6.69. Imported Feature Model .. 109
6.70. JavaScript Manipulator Wizard Page ... 109
6.71. Ant Build Action ... 110
6.72. Ant Build JRE Parameter .. 111
6.73. Relations View with external Links ... 120
6.74. Family Model with ps:pvscltext transformation setup ... 121
6.75. Editing pvSCL conditions or calculations ... 122
6.76. Known Servers page ... 122
6.77. pure::variants Project Version ... 125
6.78. New Variant Configuration Model .. 126
6.79. Add the new Variant Configuration Model to Configuration Spaces .. 126
6.80. Add a Variant Configuration Model to a Configuration Space .. 127
6.81. VCWM Editor General Settings Section ... 128
6.82. VCWM Editor Start Page Section ... 128
6.83. VCWM Editor Finish Page Section ... 129
7.1. Eclipse workbench elements .. 131
7.2. Variant management perspective standard layout ... 132
7.3. Constraints view .. 134
7.4. Selected Element Selection Tool .. 136
7.5. Feature/Family Model Element Creation Tools ... 137
7.6. Family Model Element Properties ... 138
7.7. Element Relations Page .. 139

pure::variants User's Guide

ix

7.8. Sample attribute definitions for a feature ... 140
7.9. Restrictions page of element properties dialog .. 141
7.10. Constraints page of element properties dialog ... 142
7.11. Advanced pvSCL expression editor ... 143
7.12. Element selection dialog .. 144
7.13. Feature Model Editor with outline and property view ... 145
7.14. New Feature wizard ... 146
7.15. Feature Model Element Properties ... 147
7.16. Open Family Model Editor with outline and property view .. 148
7.17. Finalize Configuration Dialog .. 149
7.18. Variant Configuration Wizard Start Page .. 150
7.19. Variant Configuration Wizard Step Page .. 151
7.20. Variant Configuration Wizard Finish Page .. 151
7.21. Specifying an attribute value in VDM with cell editor .. 152
7.22. Outline view showing the list of available elements in a VDM ... 153
7.23. VRM Editor with outline and properties view ... 154
7.24. Matrix Editor of a Configuration Space ... 155
7.25. Export Matrix Dialog .. 156
7.26. Attributes view (right) showing the attributes for the VDM ... 157
7.27. Visualization view (left) showing 2 named filters and 2 named layouts .. 157
7.28. Variant Search View (Tree) ... 158
7.29. Variant Search View (Table) .. 159
7.30. Properties view for a feature .. 160
7.31. Description tab in Properties view for a relation .. 160
7.32. Properties view for a variant attribute .. 160
7.33. Relations view (different layouts) for feature with a ps:requires to feature 'Main Component Big' 162
7.34. Result View .. 163
7.35. Result View in Delta Mode ... 164
7.36. Open Impact View ... 165
7.37. Impact Calculation Result .. 166
7.38. Impact View Context Menu ... 167
7.39. Open pvSCL IDE View .. 168
7.40. Open pvSCL IDE View .. 168
7.41. Assign context element to pvSCL IDE ... 169
7.42. The pvSCL IDE View .. 169
7.43. The Variant Projects View ... 170
7.44. Feature Model Properties Page ... 171
7.45. General Model Properties Page ... 172
7.46. Variant Description Model Inheritance Page ... 173
9.1. pvSCL Code Library Model Property Page .. 217
10.1. The configuration dialog of pure::variants .. 229

x

xi

List of Tables
5.1. Mapping between input and concrete model types ... 33
6.1. Configuration Space Settings ... 68
6.2. Refactoring Operations ... 74
6.3. Table of CSS classes ... 95
6.4. Import Fields .. 103
6.5. Environment Variables ... 111
6.6. runant Command Line Parameters .. 112
6.7. variantscli Command Line Parameters ... 112
6.8. Table of server category IDs .. 123
9.1. Supported Attribute Types ... 177
9.2. Supported relations between elements (I) ... 178
9.3. Supported Relations between Elements (II) .. 179
9.4. Element variation types and its icons .. 179
9.5. Types of element selections ... 180
9.6. Predefined source element types ... 180
9.7. Registered XSLT Extensions ... 182
9.8. Predefined part types .. 189
9.9. Supported format specifiers ... 206
9.10. Extension functions providing model information .. 218
9.11. Extension functions providing transformation information ... 219
9.12. Extension elements for logging and user messages ... 220
9.13. Extension functions providing file operations .. 221
9.14. Extension functions providing string operations ... 222
9.15. Supported Variables ... 222
9.16. Common Keyboard Shortcuts ... 226
9.17. Model Editor Keyboard Shortcuts ... 226
9.18. Graph Editor Keyboard Shortcuts ... 226

xii

xiii

List of Examples
9.1. A sample conditional document for use with the ps:condxml transformation 183
9.2. Example use of pv:value-of ... 183
9.3. A sample conditional document for use with the ps:condtext transformation 184
9.4. A sample conditional document for use with the ps:pvsclxml transformation 185
9.5. Example use of pv:eval .. 185
9.6. A sample conditional document for use with the ps:pvscltext transformation 187
9.7. Generated code for a ps:flagfile for flag "DEFAULT" with value "1" .. 187
9.8. Generated code for a ps:makefile for variable "CXX_OPTFLAGS" with value "-O6" 188
9.9. Generated code for a ps:classalias for alias "io::net::PCConn" with aliased class "NoConn" 188
9.10. Generated code for a ps:classalias for alias "io::net::PCConn" with aliased class "NoConn" with in-
cludebasedir set to "usr/wm-src" ... 188

xiv

1

Chapter 1. Introduction
1.1. What is pure::variants?

pure::variants provides a set of integrated tools to support each phase of the software product-line development
process. pure::variants has also been designed as an open framework that integrates with other tools and types
of data such as requirements management systems, object-oriented modeling tools, configuration management
systems, bug tracking systems, code generators, compilers, UML or SDL descriptions, documentation, source
code, etc.

Figure 1.1, “Overview of family-based software development with pure::variants” shows the four cornerstone ac-
tivities of family-based software development and the models used in pure::variants as the basis for these activities.

When building the infrastructure for your Product Line, the problem domain is represented using hierarchical
Feature Models. The solution domain, i.e. the concrete design and implementation of the software family, is im-
plemented as Family Models.

The two models used for Application Engineering, i.e. the creation of product variants, are complementary to the
models described above. The Variant Description Model (VDM), containing the selected feature set and associated
values, represents a single problem from the problem domain. The Variant Result Model describes a single concrete
solution drawn from the solution family.

Figure 1.1. Overview of family-based software development with pure::variants

pure::variants manages the knowledge captured in these models and provides tool support for co-operation between
the different roles within a family-based software development process:

• The domain analyst uses a Feature Model editor to build and maintain the problem domain model containing
the commonalities and variabilities in the given domain.

• The domain designer uses a Family Model editor to describe the variable family architecture and to connect it
via appropriate rules to the Feature Models.

• The application analyst uses a variant description model to explore the problem domain and to express the
problems to be solved in terms of selected features and additional configuration information. This information
is used to derive a Variant Result Model from the Family Model(s).

• The application developer generates a member of the solution family from the Variant Result Model by using
the transformation engine.

1.2. Link to PDF and Other Related Documents

The Workbench User Guide (Help->Help Contents) is a good starting point for familiarizing yourself with the
Eclipse user interface.

Link to PDF and Other Related Documents

2

The pure::variants XML transformation system is described in detail in the XML Transformation System Manual
(see Eclipse online help for a HTML version).

Any features concerning the pure::variants Server are described in the separate documents "pure::variants Server
Support Plug-In Manual" and "pure::variants Server Administration Plug-In Manual". The server is available in
the products "Professional" and "Enterprise".

The pure::variants Extensibility Guide is a reference document for information about extending and customizing
pure::variants, e.g. with customer-specific user interface elements or by integrating pure::variants with other tools.

This document is available in online help as well as in printable PDF format here .

pure::variants uses open source libraries. The list of used libraries is available here .

3

Chapter 2. Software and License Installation
2.1. Software Requirements
Please consult section System Requirements in the pure::variants Setup Guide for detailed information on
how to install the connector (menu Help -> Help Contents and then pure::variants Setup Guide -> System
Requirements).

2.2. Software Installation
Please consult section pure::variants Connectors in the pure::variants Setup Guide for detailed informa-
tion on how to install the connector (menu Help -> Help Contents and then pure::variants Setup Guide ->
pure::variants Connectors).

2.3. Obtaining and Installing a License
Please consult section Basic Setup of the pure::variants Client in the pure::variants Setup Guide for detailed
information on how to install the connector (menu Help -> Help Contents and then pure::variants Setup Guide
-> Basic Setup of the pure::variants Client).

4

5

Chapter 3. Introduction to Product Line
Engineering with Feature Models

3.1. Introduction

Although the term "(Software) Product line Engineering" is becoming more widely known, there is still uncertainty
among developers about how it would apply in their own development context. The purpose of this chapter is to
explain the design and automated derivation of the product variants of a Software Product Line using an easy to
understand, practical example.

One increasing trend in software development is the need to develop multiple, similar software products instead
of just a single individual product. There are several reasons for this. Products that are being developed for the
international market must be adapted for different legal or cultural environments, as well as for different languages,
and so must provide adapted user interfaces. Because of cost and time constraints it is not possible for software
developers to develop a new product from scratch for each new customer, and so software reuse must be increased.
These types of problems typically occur in portal or embedded applications, e.g. vehicle control applications.
Software Product Line Engineering (SPLE) offers a solution to these not quite new, but increasingly challenging,
problems. The basis of SPLE is the explicit modelling of what is common and what differs between product
variants. Feature Models are frequently used for this. SPLE also includes the design and management of a variable
software architecture and its constituent (software) components.

This chapter describes how this is done in practice, using the example of a Product Line of meteorological data
systems. Using this example we will show how a Product Line is designed, and how product variants can be
derived automatically using pure::variants.

3.2. Software Product Lines

However, before we introduce the example, we'll take a small detour into the basics of SPLE. The main difference
from “normal”, one-of-a-kind software development, is a logical separation between the development of core,
reusable software assets (the platform), and actual applications. During application development, platform soft-
ware is selected and configured to meet the specific needs of the application.

The Product Line's commonalities and variabilities are described in the Problem Space. This reflects the desired
range of applications (“product variants”) in the Product Line (the “domain”) and their inter-dependencies. So,
when producing a product variant, the application developer uses the problem space definition to describe the
desired combination of problem variabilities to implement the product variant.

An associated Solution Space describes the constituent assets of the Product Line (often referred to as the “plat-
form”) and its relation to the problem space, i.e. rules for how elements of the platform are selected when certain
values in the problem space are selected as part of a product variant. The four-part division resulting from the
combination of the problem space and solution space with domain and application engineering is shown in Fig-
ure 3.1, “Overview of SPLE activities” . Several different options are available for modelling the information in
these four quadrants. The problem space can be described e.g. with Feature Models, or with a Domain Specific
Language (DSL). There are also a number of different options for modelling the solution space, for example com-
ponent libraries, DSL compilers, generative programs and also configuration files.

Modelling the Problem Space with Feature Models

6

Figure 3.1. Overview of SPLE activities

In the rest of this chapter we will consider each of these quadrants in turn, beginning with Domain Engineering
activities. We'll first look at modelling the problem space - what is common to, and what differs between, the
different product variants. Then we'll consider one possible approach for realising product variants in the solution
space using C++ as an example. Finally we'll look at how Application Engineering is performed by using the
problem and solution space models to create a product variant. In reality, this linear flow is rarely found in practice.
Product Lines usually evolve continuously, even after the first product variants have been defined and delivered
to customers.

Our example Product Line will contain different products for entry and display of meteorological data on a PC. An
initial brainstorming session has led to a set of possible differences (variation points) between possible products:
meteorological data can come from different sensors attached to the PC, fetched from appropriate Internet services
or generated directly by the product for demonstration and test purposes. Data can be output directly from the
application, distributed as HTML or XML through an integrated Web server or regularly written to file on a fixed
disk. The measurements to make can also vary: temperature, air pressure , wind velocity and humidity could all
be of interest. Finally the units of measure could also vary (degrees Celsius vs. Fahrenheit, hPa vs. mmHg, m /
s vs. Beaufort).

3.3. Modelling the Problem Space with Feature Models

We will now convert the informal, natural-language specification of variability noted above into a formal model,
in order to be able to process it. Specifically, we will use a Feature Model. Feature models are simple, hierarchical
models that capture the commonality and variability of a Product Line. Each relevant characteristic of the problem
space becomes a feature in the model. Features are an abstract concept for describing commonalities and variabil-
ities. What this means precisely needs to be decided for each Product Line. A feature in this sense is a characteristic
of a system relevant for some Stakeholder. Depending on the interest of the Stakeholders a feature can be for the
example a requirement, a technical function or function group or a non-functional (quality) characteristic.

Feature models have a tree structure, with features forming nodes of the tree. Feature variability is represented
by the arcs and groupings of features. There are four different types of feature groups: “mandatory", “optional",
"alternative" and “or”.

When specifying which features are to be included in a variant the following rules apply: If a parent feature is
contained in a variant, all its mandatory child features must be also contained ("n from n"), any number of optional
features can be included ("m from n, 0 < = m<=n"), exactly one feature must be selected from a group of alternative
features ("1 from n"), at least one feature must be selected from a group of or features ("m from n, m>1").

Modelling the Problem Space with Feature Models

7

Figure 3.2. Structure and notation of feature models
(using pure::variants Directed Graph Export)

There is no single standard for the graphical notation of feature models. We use a simplified notation created by
pure::variants Direct Graph Export (see the section called “Directed Graph Export”). Alternatives and groups of
or features are represented with traverses between the matching features. In this representation both colour and box
connector are used independently to indicate the type of group. Our notation is shown in Figure 3.2, “Structure and
notation of feature models (using pure::variants Directed Graph Export) ” . Using this notation, our example feature
model, with some modifications, is shown in Figure 3.3, “Feature Model for meteorological Product Line” : Each
Feature Model has a root feature. Beneath this are three mandatory features – "Measurements", "Data Source"
and "Output Format". Mandatory features will always be included in a product variant if their parent feature is
included in the product variant. Mandatory features are not variable in the true sense, but serve to structure or
document their parent feature in some way. Our example also has alternative features, e.g. "External Sensors",
"Demo" and "Internet" for data sources. All product variants must contain one and only one of these alternatives.

Figure 3.3. Feature Model for meteorological Product Line

At this stage we can already see one advantage that feature modelling has over a natural-language representation
- it removes ambiguities - e.g. whether an individual variant is able to process data from more than one source.
When taking measurements any combination of measurements is meaningful and at least one measurement source
is necessary for a sensible weather station, to model this we use a group of Or. Usually simple optional features
are used, such as the example of the freezing point alarm. Further improvements can also be made by refining the
model hierarchy. So the strict choice between Web Server output formats - HTML or XML – can be made explicit.

Feature models also support transverse relationships, such as requires (ps:requires) and mutually exclusive
(ps:conflicts), in order to model additional dependencies between features other than those already described. So,
in the example model, a selection of the “Freeze Point” alarm feature is only meaningful in connection with the
temperature measurement capability. This can be modelled by an "Freeze Point" requires "Temperature" relation-
ship (not shown in the figure). However, such relations should be used sparingly. The more transverse relations
there are, the harder it is for a human user to visualize connections in the model.

When creating a feature model it can be difficult to decide exactly how problem space variabilities are to be
represented in the model. In this case it is best to discuss this further with the customer. It is usually better to base
these discussions around the feature model, since such models are easier for the customer to understand than textual
documents and / or UML models. Formalising customer requirements in this way offers significant advantages
later in Product Line development, since many architectural and implementation decisions can be made on the
basis of the variabilities captured in the feature model.

In the example, the use of the output format XML and HTML can be clarified. The model explicitly defines that the
choice of output format is only relevant for Web Server, a format selection is not possible for File or Text output.

Modelling the Solution Space

8

However, in the context of a discussion of the feature model it could be decided that HTML is also desirable for
the on-screen (Window) representation and could also be applicable for file storage.

This results in the modified feature model shown in Figure 3.4, “Enhanced Feature Model for meteorological
Product Line ” .

Figure 3.4. Enhanced Feature Model for meteorological Product Line

We have added “Plaintext” to the existing features; this was implicitly assumed for output to the screen or to a
file. We have modelled the mutual exclusion of XML and screen display (“Text”) using a (transverse) relationship
between these features (not shown).

The previous discussion describes the basic feature model approach commonly found in the literature. How-
ever, pure::variants extends this basic approach. To complement the so-called hard relations between features
(ps:requires and ps:conflicts) the weakened forms ps:recommends and ps:discourages have been added to many
feature model dialects. pure::variants also supports the association of named attributes with features. This allows
numeric values or enumerated values to be conveniently associated with features e.g. the wind force required to
activate the storm alarm could be represented as a "Threshold" attribute of the feature "Storm Alert".

An important and difficult issue in the creation of feature models is deciding which problem space features to
represent. In the example model it is not possible to make a choice from the available hardware sensor types (e.g.
use of a PR1003 or a PR2005 sensor for pressure). So, when specifying a variant, the user does not have direct
influence on the selection of sensor types. These are determined when modelling the solution space. If the choice
of different sensor types for measuring pressure is a major criterion for the customer / users, then appropriate
options would have to be included in the feature model.

This means that the features in the problem space are not a 1:1-illustration of the possibilities in the solution space,
but only represent the (variable) characteristics relevant for the users of the Product Line. Feature models are a
user-oriented (or marketing-oriented) representation of the problem space, not the solution space.

After creating the problem space model we can use it to perform some initial analysis. For example, we can now
calculate the upper limit on the number of possible variants in our example Product Line. In this case we have
1,512 variants (the model in Figure 2 only has 612 variants). For such a small number of variants the listing of
all possible variants can be meaningful. However, the number of variants is usually too high to make practical
use of such an enumeration.

3.4. Modelling the Solution Space

In order to implement the solution space using a suitable variable architecture, we must take account of other factors
beyond the variability model of the problem space. These include common characteristics of all variants of the
problem space that are not modelled in the feature model, as well as other constraints that limit the solution space.

These typically include the programming languages that can be used, the development environment and the ap-
plication deployment environment(s). Different factors affect the choice of mechanisms to be used for converting
from variation points in the solution space. These include the available development tools, the required perfor-
mance and the available (computing) resources, as well as time and money. For example, use of configuration
files can reduce development time for a project, if users can administer their own configurations. In other cases,
using preprocessor directives (#ifdef) for conditional compilation can be appropriate, e.g. if smaller program sizes
are required.

There are many possibilities for implementation of the solution space. Very simple variant-specific model trans-
formations can be made with model-driven software development (MDSD) tools by including information from

Designing a variable architecture

9

feature models in the Model-Transformation process, e.g. by using the pure::variants Connector for Ecore/openAr-
chitectureWare or the pure::variants Connector for Enterprise Architect. Product Lines can also be implemented
naturally using "classical" means such as procedural or object-oriented languages.

3.5. Designing a variable architecture

A Product Line architecture will only rarely result directly from the structure of the problem space model. The
solution space which can be implemented should support the variability of the problem space, but there won't
necessarily be a 1:1 correspondence of the feature models with the architecture. The mapping of variabilities can
take place in various ways.

In the example Product Line we will use a simple object-oriented design concept implemented in C++ . A majority
of the variability is then resolved at compile-time or link-time; runtime variability is only used if it is absolutely
necessary. Such solutions are frequently used in practice, particularly in embedded systems.

The choice of which tools to use for automating the configuration and / or production of a variant plays a substantial
role in the design and implementation of the solution space. The range of variability, the complexity of relations
between problem space features and solution constituents, the number and frequency of variant production, the
size and experience of the development team and many further factors play a role. In simple cases the variant
can be produced by hand, but quickly automation in the various forms like small configuration scripts, model
transformers, code generators or variant management systems such as pure::variants will speed production.

For modelling and mapping of the solution space variability pure::variants and its integrated model transformation
in most case is an ideal. This uses a Family Model to model the solution space, to associate solution space elements
with problem space features, and to support the automatic selection of solution space elements when constructing
a product variant.

Family models have a hierarchical structure, consisting of logical items of the solution architecture, e.g. compo-
nents, classes and objects. These logical items can be augmented with information about "real" solution elements
such as source code files, in order to enable automatic production of a solution from a valid feature model config-
uration (more on this later). For each family model element a rule is created to link it to the solution space. For
example, the Languages implementation component is only included if the Languages feature has been selected
from the problem space. To achieve this, a Languages rule is attached to the "Languages" component . Any item
below “Languages” in the Family model can only be included in the solution if the corresponding Languages
feature is selected.

A pure::variants screen shot showing part of the solution space is shown in Figure 3.5, “pure::variants screen shot
- solution space fragment shown at right” .

Designing a variable architecture

10

Figure 3.5. pure::variants screen shot - solution space fragment shown at right

In our example, an architectural variation point arises, among other possibilities, in the area of data output. Each
output format can be implemented with an object of a format-specific output class. Thus in the case of English
output, an object of type EnglishOutput is instantiated, and with German output, an GermanOutput object. There
would also be the possibility here of instantiating an appropriate object at runtime using a Strategy pattern. How-
ever, since the feature model designates only the use of alternative output formats, the variability can be resolved
at compile-time and a suitable object can be instantiated using code generation for example.

In our example solution space a lookup in a text database is used to support multiple natural languages. The choice
of which database to use is made at compile-time depending on the desired language. No difference in solution
architectures can be detected between two variants that differ only in the target language. Here the variation point
is embedded in the data level of the implementation. In many cases managing variable solutions only at the archi-
tectural level is insufficient. As has already been mentioned above, we must also support variation points at the
implementation level, i.e. in our case at the C++ source code level. This is necessary to support automated product
derivation. The constituents of a solution on the implementation level, like source code files or configuration files
which can be generated, can also be entered in the family model and associated with selection rules.

So the existence of the Languages component in a product variant is denoted using a #define preprocessor directive
in a configuration Header file. In addition, an appropriate abstract variation point variable "Languages" must first
be created of the type ps:variable in the family model. The value of this variable is determined by a Value attribute.
In our case this value is always 1 if the variable is contained in the product variant. An item of type ps:flagfile can
now be assigned to this abstract variable. This item also possesses attributes (file, flag), which are used during the
transformation of the model into "real" code. The meaning of the attributes is determined by the transformation
selected in the generation step . Here we use the standard pure::variants transformation for C / C++ programs,
which produces a C-preprocessor #define- Flags in the file defined by file from these specifications.

Separating the logical variation point from the solution makes it very simple to manage changes to the solution
space. For example, if the same variation point requires an entry in a Makefile, this could be achieved with the
definition of a further source element, of the type ps:makefile, below the variation point "Languages".

Deriving product variants

11

3.6. Deriving product variants

The family model captures both the structure of the solution space with its variation points and the connection of
solution and problem space. Not only is the separation of these two spaces important, but also the direction of the
connection, since problem space models in most cases are much more stable than solution spaces; the linkage of
the solution space to the problem space is more meaningful than the selection of solution items by rules in the
problem space. This also increases the potential for reuse, since problem space models can simply be combined
with other (new, better, faster) solutions. In pure::variants the linkage between models is determined by creating
a configuration space with the relevant feature and family models as members.

Now we have all the information needed to create an individual product variant. The first step is to determine a
valid selection of characteristics from the feature model. In the case of pure::variants, the user is guided towards a
valid and complete feature selection. Once a valid selection is found, the specified feature list as well as the family
model serve as input for the production of a variant model. Then, as is described above, the rules of the individual
model items are checked. Only items that have their rules satisfied are included in the finished solution.

Since all these activities are done on pure::variants model level only, no "real" product has been created at this
point. The last step is to execute the transformation, which interprets the models and creates an actual product
variant. In pure::variants this transformation is highly configurable. In this example, source code would be copied
from a file repository to a variant specific location, the configuration header file and some makefile settings would
be generated. Also the generation of product variant specific UML models is a possible transformation. See fol-
lowing parts of the documentation for more information on the transformation process.

12

13

Chapter 4. Getting Started with pure::variants
4.1. Variant Management Perspective

The easiest way to access the variant management functionality is to use the Variant Management perspective
provided by pure::variants. If not open by default, Use Window->Open Perspective->Other and choose Variant
Management to open this perspective in its default layout. The Variant Management perspective should now open
as shown below.

Figure 4.1. Initial layout of the Variant Management Perspective

Now select the Variant Projects view in the upper left side of the Eclipse window. Create an initial standard project
using the context menu of this view and choose New->Variant Project or use the File->New->Project wizard from
the main menu. The view will now show a new project with the given name.

Once the standard project has been created, three editor windows will be opened automatically: one for the Feature
model, one for the Family Model and one for the VDM.

To create a new project using a JavaScript template use New->Variant Project from Template. For more details
about the template see the pure::variants JavaScript Extensibility Guide section JavaScript Project Template .
The existing template files are shown in a table of the opening wizard. After a template is selected and the name
of the project is specified it is possible to specify references projects. Finishing the wizard generates the project
like specified in the JavaScript template file.

4.2. Tooltips

By default "pure::variants" shows tooltips when hovering over features, family elements or models in the project
view. You can turn off the tooltips, by clicking the "Toggle pure::variants Tooltips" button in the toolbar.

Using Feature Models

14

Figure 4.2. Switching Tooltips on/off

4.3. Using Feature Models
When a new Variant project of project type Standard is created a new Feature Model is also created with a root
feature of the same name as the project's name followed by Features . This name can be changed using the Prop-
erties dialog of the feature. To create child features, use the New entry of the context menu of the intended parent
feature. A New Feature wizard allows a unique name, a visible name, and the type of the feature and other prop-
erties to be specified. All properties of a feature can be changed later using the Properties dialog.

The figure below shows a small example Feature Model for a car.

Figure 4.3. A simple Feature Model of a car

The Outline view (lower left corner) shows configurable views of the selected Feature Model and allows fast
navigation to features by double-clicking the displayed entry.

The Properties view in the lower middle of the Eclipse window shows properties of the currently selected feature.

The Table tab of the Feature Model Editor (shown in the lower left part) provides a table view of the model. It lists
all features in a table, where editing capabilities are similar to the tree (same context menu, cell editors concept...).
It allows free selection of columns and their order.

Using Configuration Spaces

15

The Details tab of the Feature Model Editor provides a different view on the current feature. This view uses a layout
and fields inspired by the Volere requirements specification template to record more detailed aspects of a feature.

The Graph tab provides a graphical representation of the Feature model. It also supports most of the actions
available in the feature model Tree view.

The Constraints tab contains a table with all constraints defined in the model supporting full editing capabilities
for the constraints.

4.4. Using Configuration Spaces

In order to create VDMs it is first necessary to create Configuration Spaces. These are used to combine models for
configuration purposes. The New->Configuration Space menu item starts the New Configuration Space wizard.
Only the names of the Configuration Space and at least one Feature Model have to be specified. The initially
created Standard project Configuration Space is already configured in this way.

A VDM has to be created inside the Configuration Space for each configuration. This is done using the context
menu of the Configuration Space.

The VDM Editor is used to select the desired features for the variant. This editor is also used to perform configu-
ration validation. The Evaluate Model button on the toolbar, and the Variant->Evaluate menu item, are used to
perform an immediate validation of the feature selection. The Variant->Auto Evaluate menu item enables or dis-
ables automatic validation after each selection change. The Variant->Auto Resolve menu item enables or disables
automatic analysis and resolution of selection problems.

The problems view (lower right part) shows problems with the current configuration. Double clicking on a problem
will open the related element(s) in the VDM Editor. When used for the first time, Variant Management problems

may be filtered out. To resolve this, simply click on the filter icon and select Variant Management Problems
as problem item to show. For some problems the Quick fix item in the context menu of the problem may offer
options for solving the problem.

The figure below shows an example of a problem selection.

Figure 4.4. VDM with a problematic selection

Transforming Configuration Results

16

The Outline view shows a configurable list of features from all Feature Models in the Configuration Space.

4.5. Transforming Configuration Results

The last step in the automatic production of configured product variants is the transformation of the configuration
results into the desired artifacts.

A modular, XML-based transformation engine is used to control this process (see Section 5.9, “ Variant Transfor-
mation ”). The transformation process has access to all models and additional parameters such as the input and
output paths that have been specified in the Configuration Space properties dialog.

The transformation configuration for a Configuration Space is specified in its properties dialog. The Transforma-
tion Configuration Page (Figure 4.5, “Transformation configuration in Configuration Space Properties”) of this
dialog allows the creation and modification of transformation configurations. A default configuration for the stan-
dard transformation is created when the Configuration Space is created. See Section 6.3.1, “ Setting up a Trans-
formation ” for more information.

Figure 4.5. Transformation configuration in Configuration Space Properties

The toolbar transformation button is used to initiate a transformation (see Figure 4.6, “Transformation button in
Eclipse toolbar”). If the current feature selection is invalid a dialog is opened asking the user whether to transform
anyway.

Note

Transforming invalid configurations may yield incorrect product variants.

For more information on the XML transformation engine, see the document pure::variants XML Transformation
System Documentation .

Viewing and Exporting Configuration Results

17

The distributed examples include some sample transformations.

Figure 4.6. Transformation button in Eclipse toolbar

4.6. Viewing and Exporting Configuration Results

Results of a configuration can be accessed in a number of ways. The Result view (Window->Show View->Oth-
er->Variant Management->Result) allows graphical review of the concrete models that have been derived from
the corresponding models in the Configuration Space.

The context menu of the Variant Projects view provides an Export operation. As shown in the figure below,
configuration results (features and components) can be exported as XML and CSV formats. The XML data format
is the same as for importing models but contains only the configured elements. The Export dialog asks the user
for a path and name and the export data formats for the generated files, and the model types to export.

Figure 4.7. VDM export wizard

Exploring Documentation and Examples

18

4.7. Exploring Documentation and Examples

"pure::variants" gives an access to online help and examples of pure::variants usage. Online documentation is
accessed using "Help"->"Help Contents".

Examples can be installed as projects in the user's workspace by using "File"->"New"->"Example". The available
example projects are listed in the dialog below the items "Variant Management" and "Variant Management SDK".
Each example project typically comes with a Readme.txt file that explains the concept and use of the example.

Additionally tutorials can be installed in the same way as the examples. The available tutorials are listed in the
dialog below the items "Variant Management Tutorials". It contains the documentation itself in the pure::variants
project and optional project contents.

19

Chapter 5. Concepts

5.1. Introduction

The pure::variants Eclipse plug-in extends the Eclipse IDE to support the development and deployment of software
product lines. Using pure::variants, a software product line is developed as a set of integrated Feature Models
describing the problem domain, Family Models describing the problem solution and Variant Description Models
(VDMs) specifying individual products from the product line.

Feature Models describe the products of a product line in terms of the features that are common to those products
and the features that vary between those products. Each feature in a Feature Model represents a property of a
product that will be visible to the user of that product. These models also specify relationships between features,
for example, choices between alternative features. Feature Models are described in more detail in Section 5.3, “
Feature Models ” .

Family Models describe how the products in the product line will be assembled or generated from pre-specified
components. Each component in a Family Model represents one or more functional elements of the products in
the product line, for example software (in the form of classes, objects, functions or variables) or documentation.
Family models are described in more detail in Section 5.4, “ Family Models ” .

In contrast to other approaches, pure::variants captures the Feature Model (problem domain) and the Family Model
(problem solution) separately and independently. This separation of concerns makes it simpler to address the
common problem of reusing a Feature Model or a Family Model in other projects.

A Variant Description Model (VDM) describes the set of features of a single product, i.e., a configuration, in the
product line. Taking a Feature Model and making choices where there is variability in the Feature Model creates
these models. VDMs are described in more detail in Section 5.5, “ Variant Description Models ” .

pure::variants supports two modes of configurations in VDMs: In full configuration mode, which was the only
mode available in pure::variants 4.0, it is assumed that the set of chosen features is complete. New in pure::variants
5.0 is the partial configuration mode, which assumes that the set of chosen features is not complete and will
describe a subset of products of a product line.

The checking, whether the chosen set of features in a VDM is valid, is done in an automatic Model Evaluation.
The pure::variants Model Evaluation supports both configurations modes: In full evaluation it is checked whether
the current chosen set of features fulfills all relationships of the corresponding Feature and Family Models. In
the partial evaluation, however, it is checked whether the current set of features or an extension of that fulfills all
relationships. That is, a valid set of features can be reached by eventually selecting more features. More details
about the evaluation algorithm can be found in Section 5.8, “ Variant Description Evaluation ” . Also, in the next
sections, the evaluation handling for the single modeling parts is briefly described. For a better understanding this
only covers the full evaluation. The differences of the evaluation in partial configuration mode is described more
in detail in Section 5.8.2, “ Partial Evaluation ” .

Figure 5.1, “pure::variants transformation process” gives an overview of the basic process of creating variants
with pure::variants.

Common Concepts in pure::variants Models

20

Figure 5.1. pure::variants transformation process

The product line is built by creating Feature and Family Models. Once these models have been created, individual
products may be built by creating VDMs. Responsibility for creation of product line models and creation of product
models is usually divided between different groups of users.

5.2. Common Concepts in pure::variants Models

This section describes the common, generic structure on which all models are based.

All models store elements (features in Feature Models, components, parts and source elements in Family Models)
in a hierarchical tree structure. Elements (Figure 5.2, “(simplified) element meta model”) have an associated type
and may have any number of associated attributes. An element may also have any number of associated relations.
Additionally restrictions and constraints can be assigned to an element.

Figure 5.2. (simplified) element meta model

5.2.1. Model Constraints

Model constraints are used to check the integrity of the configuration (Variant Result Model) during a model
evaluation. They can be assigned to model elements for clarity only, i.e. they have no effect on the assigned

Element Restrictions

21

elements. All defined constraints have to be fulfilled for a resulting configuration to be valid. Detailed information
about using constraints is given in Section 5.8, “ Variant Description Evaluation ” .

5.2.2. Element Restrictions

Element restrictions are used to decide if an element is part of the resulting configuration. During model evalu-
ation, an element cannot become part of a resulting configuration unless one of the restrictions defined on the
element evaluates to true. Restrictions can not only be defined for elements but also for element attributes, attribute
values, and relations. Detailed information about using restrictions is given in Section 5.8, “ Variant Description
Evaluation ” .

5.2.3. Element Relations

pure::variants allows arbitrary 1:n relations between model elements to be expressed. The graphical user interface
provides access to the most commonly used relations. The extension interface allows additional relations to be
accessed.

Examples of the currently supported relations are requires , required_for , conflicts , recommends , discourages ,
cond_requires , and influences . Use the Relations page in the property dialog of a feature to specify feature rela-
tions. Table 9.2, “Supported relations between elements (I)” documents the supported relations and their meanings.

5.2.4. Element Attributes

pure::variants uses attributes to specify additional information associated with an element. An attribute is a typed
and named model element that can represent any kind of information (according to the values allowed by the
type). An element may have any number of associated attributes. The attributes of a selected model element are
evaluated and their values calculated during the model evaluation process. A simplified version of the element
attribute meta-model is shown below.

Figure 5.3. (Simplified) element attribute meta-model

Element Attributes

22

Element attributes may be fixed (indicated with the checked column in the GUI) or non-fixed . The difference
between a fixed and a non-fixed attribute is the location of the attribute value. The values of fixed attributes are
stored together with the model element and are considered to be part of the model. A non-fixed element attribute
value is stored in a VDM, so the value may be different in other VDMs.

A non-fixed attribute must not, but can have values that are used by default when the element is selected and no
value has been specified in the VDM.

Guarding restrictions control the availability of attributes to the model evaluation process. If the restrictions asso-
ciated with an attribute evaluate to false , the attribute is considered to be unavailable and may not be accessed
during model evaluation.

A fixed attribute may have multiple value definitions assigned to it. A value definition may also have a restriction.
In the evaluation process the value of the attribute is that of the first value definition that has a valid restriction
(or no restriction) and successfully evaluates to true .

 Instead of selecting one value from a list of possible values, it is also possible to provide attributes which
have a configurable collection of values. Each value in the collection is available in a variant if the corresponding
restriction holds true. Two types of collections are available for use: Lists and Sets. List attributes mean to maintain
an order of the values and allow multiple equal entries. Set attributes instead require each value to be unique. An
order is not ensured. To use this feature, either square brackets ("[]") for lists or curly brackets ("{}") for sets have
to be added after the data type, e.g. ps:string{} , ps:boolean[] , or ps:integer[] .

Each attribute of type ps:integer or ps:float may define a range which the attribute values have to fit in. The Syntax
of a valid range is as follows.

• A number. For ps:integer attributes decimal numbers are allowed (e.g. 5 or -2) as well as positive hexdezimal
numbers prefixed with 0x (e.g. 0x10). For ps:float attributes float numbers are allowed in the renage definition.
(e.g. 4.56 or 2.9E2)

• An inclusive number range (e.g. [1,*] or [0,3])

• An exclusive number range (e.g. (-5,5) or (0,3))

• A mix of inclusive and exclusive bounds (e.g. (1,23])

• A set of number ranges delimited by commas (e.g. [1,2],[4,7],9)

 Attribute Value Types

The list of value types supported in pure::variants is defined in the pure::variants meta-model. Currently all types
except ps:integer and ps:float are treated as string types internally. However, the transformation phase and some
plug-ins may use the type information for an attribute value to provide special formatting etc..

The list of types provided by pure::variants is given in the reference section in table Table 9.1, “Supported Attribute
Types” . Users may define their own types by entering the desired type name instead of choosing one of the
predefined types.

By adding square brackets ("[]") or curly brackets ("{}") to the name of a value type a list or set type can be
specified, e.g. ps:string[] , ps:boolean[] , or ps:integer{} . A list or set type can hold a list of values of the same
data type. In contrast to normal types each of the given values is available in a variant if its restriction holds true
or it doesn't have a restriction.

 Attribute Values

Attribute values can be constant or calculated. Calculations are performed by providing a calculation expression
instead of the constant value. The result of evaluating the calculation expression is the value of the attribute in a
variant. pure::variants uses either the built-in expression language pvSCL to express calculations.

Feature Models

23

Attributes with type ps:integer must have decimal or hexadecimal values of the following format.

('0x' [0-9a-fA-F]+) | ([+-]? [0-9]+)

Attributes with type ps:float must have values of the following format.

[+-]? [0-9]+ ('.' [0-9]+)? ([eE] [+-]? [0-9]+)?

 Attribute Value Calculations with pvSCL

When using pvSCL for value calculation, the following examples are a good starting point. For a detailed descrip-
tion of the pvSCL syntax, refer to Section 9.7, “Expression Language pvSCL” .

Attribute calculation in pvSCL requires the returned value to be of the defined attribute type. Thus, to assign the
value 1 to an attribute of type ps:integer use the following calculation expression:

 1

To assign an attribute the value of another attribute OtherAttribute of an element OtherElement , use the fol-
lowing expression:

 OtherElement->OtherAttribute

To return the half of the product of the value of two attributes, use:

 (OtherElement->OtherAttribute * AnotherElement->AnotherAttribute) / 2

Only the value of attributes of type ps:float and ps:integer should be used in arithmetic expressions.

Use the following expression to return a string based on another attribute.

 'Text ' + OtherElement->OtherAttribute + ' more Text'

5.3. Feature Models

Feature Models are used to express commonalities and variabilities efficiently. A Feature Model captures features
and their relations . A feature is a property of the problem domain that is relevant with respect to commonalities
of, and variation between, problems from this domain. The term relevant indicates that there is a stakeholder who
is interested in an explicit representation of the given feature (property). What is relevant thus depends on the
stakeholders. Different stakeholders may describe the same problem domain using different features.

Feature relations can be used to define valid selections of combinations of features for a domain. The main rep-
resentation of these relations is a feature tree . In this tree the nodes are features and the connections between
features indicate whether they are optional , alternative or mandatory . Table 9.4, “Element variation types and
its icons” gives an explanation on these terms and shows how they are represented in feature diagrams.

Additional constraints can be expressed as restrictions, element relations, and/or model constraints. Possible re-
strictions could allow the inclusion of a feature only if two of three other features are selected as well, or disallow
the inclusion of a feature if one of a specific set of features is selected.

Figure 5.4, “Basic structure of Feature Models” shows the principle structure of a pure::variants Feature Model
as UML class diagram. A problem domain (ProblemDomainModel) consists of any number of Feature Models
(FeatureModel). A Feature Model has at least one feature.

Feature Attributes

24

Figure 5.4. Basic structure of Feature Models

5.3.1. Feature Attributes

Some features of a domain cannot be easily or efficiently expressed by requiring a fixed description of the feature
and allowing only inclusion or exclusion of the feature. Although for many features this is perfectly suitable.
Feature attributes (i.e. element attributes in Feature Models) provide a way of associating arbitrary information
with a feature. This significantly increases the expressive power of Feature Models.

However, it should be noted that this expressive power could come at a price in some cases. The main drawback is
that for checking feature attribute values, the simple requires , conflicts , recommends and discouraged statements
are insufficient. If value checks are necessary, for example to determine whether a value within a given range
conflicts with another feature, pvSCL level restrictions will be required.

5.4. Family Models

The Family Model describes the solution family in terms of software architectural elements. Figure 5.5, “Basic
structure of Family Models” shows the basic structure of Family Models as a UML class diagram. Both models
are derived from the SolutionComponentModel class. The main difference between the two models is that Family
Models contain variable elements guarded by restriction expressions. Since Concrete Component Models are
derived from Family Models and represent configured variants with resolved variabilities there are no restrictions
used in Concrete Component Models. Please note, that older designations of Family Models are Family Component
Model or even just Component Model. Following just Family Model will be used to designate those models with
restrictions and thus unresolved variability.

Structure of the Family Model

25

Figure 5.5. Basic structure of Family Models

5.4.1. Structure of the Family Model

The components of a family are organized into a hierarchy that can be of any depth. A component (with its parts
and source elements) is only included in a result configuration when its parent is included and any restrictions
associated with it are fulfilled. For top-level components only their restrictions are relevant.

Components:

A component is a named entity. Each component is hierarchically decomposed into further components or into
part elements that in turn are built from source elements .

Parts:

Parts are named and typed entities. Each part belongs to exactly one component and consists of any number of
source elements .

A part can be an element of a programming language, such as a class or an object, but it can also be any other key
element of the internal or external structure of a component, for example an interface description. pure::variants
provides a number of predefined part types, such as ps:class, ps:object, ps:flag, ps:classalias, and ps:variable. The
Family Model is open for extension, and so new part types may be introduced, depending on the needs of the users.

Source Elements:

Since parts are logical elements, they need a corresponding physical representation or representations. Source
elements realise this physical representation. A source element is an unnamed but typed element. The type of a
source element is used to determine how the source code for the specified element is generated. Different types of
source elements are supported, such as ps:file that simply copies a file from one place to a specified destination.
Some source elements are more sophisticated, for example, ps:classaliasfile, which allows different classes with
different (aliases) to be used at the same place in the class hierarchy.

The actual interpretation of source elements is the responsibility of the pure::variants transformation engine. To
allow the introduction of custom source elements and generator rules, pure::variants is able to host plug-ins for
different transformation modules that interpret the generated Variant Result Model and produce a physical system
representation from it.

The semantics of source element definitions are project, programming language, and/or transformation-specific.

Restrictions in Family Models

26

An example Family Model is shown below:

Figure 5.6. Sample Family Model

This model exhibits a hierarchical component structure. System is the top-level component, Memory its only sub
component. Inside this component are two parts, a class, and a flag. The class is realized by two source elements.
Selecting an element of the family model will show its properties in the Properties view.

5.4.2. Restrictions in Family Models

A key capability that makes the Family Modelling language more powerful than other component description
languages is its support of flexible rules for the inclusion of components, parts, and source elements. This is
achieved by placing restrictions on each of these elements.

By default every element is included in a variant if its parent element is included, or if it has no parent element.
Restrictions specify conditions under which a configuration element may be excluded from a configuration.

It is possible to put restrictions on any element, and on element properties and relations. An arbitrary number
of restrictions are allowed. Restrictions are evaluated in the order in which they are listed. If a restriction rule
evaluates to true , the restricted element will be included. That is, a set of restrictions is evaluated as a disjunction
of these restriction.

A restriction rule may contain arbitrary (pvSCL) statements. The most useful rule is <feature name/id) which
evaluates to true if the feature selection contains the named feature.

Examples of Restriction Rules

Including an element only if a specific feature is present

 Bar

The element/attribute may be included only if the current feature selection contains the feature with identifier Bar .

Relations in Family Models

27

Or-ing two restriction rules

Rule 1

 not(BarFoos)

Rule2

 FoosBar

This is a logical or of two statements. The element will be included if either feature BarFoos is not in the feature
selection or FoosBar is in it.

It is also possible to merge both rules into one by using the or keyword.

Rule 1 or Rule 2

 not(BarFoos) or FoosBar

5.4.3. Relations in Family Models

As for features, each element (component, part, and source element) may have relations to other elements. The
supported relations are described in Section 9.2, “Element Relation Types” .

When a configuration is checked, the configuration may be regarded as invalid if any relations are not satisfied.

Example using ps:exclusiveProvider/ps:requestsProvider relations

In the example below, the Cosine class element is given an additional ps:requestsProvider relation to require that
a cosine implementation must be present for a configuration to be valid. ps:exclusiveProvider relation statements
are used in two different cosine implementations. Either of which could be used in some feature configurations
(feature FixedTime and feature Equidistant). But it cannot be both implementations in the resulting system.

ps:class("Cosine")
 Restriction: Cosine
 Relation: ps:requestsProvider = 'Cosine'

 ps:file(dir = src, file = cosine_1.cc, type = impl):
 Restriction: FixedTime
 Relation: ps:exclusiveProvider = 'Cosine'

 ps:file(dir = src, file = cosine_2.cc, type = impl):
 Restriction: FixedTime and Equidistant
 Relation: ps:exclusiveProvider = 'Cosine'

Example for ps:defaultProvider/ps:expansionProvider relation

In the example given above an error message would be generated if the restrictions for both elements were valid, as
it would not be known which element to include. Below, this example is extended by using the ps:defaultProvider/
ps:expansionProvider relations to define a priority for deciding which of the two conflicting elements should be
included. These additional relation statements are used to mark the two cosine implementations as an expansion
point. The source element entry for cosine_1.cc specifies that this element should only be included if no more-
specific element can be included (ps:defaultProvider). In this example, cosine_2.cc will be included when
feature FixedTime and feature Equidistant are both selected, otherwise the default implementation, cosine_1.cc
is included. If the Auto Resolver for selection problems is activated then the appropriate implementation will be
included automatically, otherwise an error message will highlight the problem.

ps:class("Cosine")
 Restriction: Cosine
 Relation: ps:requestsProvider = 'Cosine'

 ps:file(dir = src, file = cosine_1.cc, type = impl):
 Restriction: FixedTime
 Relation: ps:exclusiveProvider = 'Cosine'

Variant Description Models

28

 Relation: ps:defaultProvider = 'Cosine'
 Relation: ps:expansionProvider = 'Cosine'

 ps:file(dir = src, file = cosine_2.cc, type = impl):
 Restriction: FixedTime and Equidistant
 Relation: ps:exclusiveProvider = 'Cosine'
 Relation: ps:expansionProvider = 'Cosine'

5.5. Variant Description Models
Variant Description Models (VDM) describe the set of features of a single product in the product line. How to make
a feature selection is described in Section 7.3.4, “ Variant Description Model Editor ” . The validity of a feature
selection is determined by the pure::variants model validation described in Section 5.8, “ Variant Description
Evaluation ” .

5.6. Hierarchical Variant Composition
See Section 6.2.1, “ Hierarchical Variant Composition ” for detailed information on how to create hierarchical
variants.

5.7. Inheritance of Variant Descriptions
To share common feature selections/exclusions between several variants pure::variants supports VDM inheritance.
This allows users to define the models for each VDM from which selections are to be inherited. Changes in the
inherited model selection will be propagated automatically to all inheriting models. Inheritance is possible across
Configuration Spaces and projects.

This kind of inheritance allows for example combination of partial configurations, restricting choices available to
users only to the points where the inherited model left decisions explicitly open, or use of variant configurations
in other contexts.

The list of models from which to inherit selections is defined on the properties page of the VDM (see Section 7.5.3,
“ Inheritance Page ”). Models from the following locations can be inherited:

• from the same Configuration Space

• from another Configuration Space or folder of the same project

• from another Configuration Space or folder of a referenced project

Both single and multiple inheritance is supported. Single inheritance means that a VDM inherits directly from
exactly one VDM. Multiple inheritance means directly inheriting from more than one VDM. It is not supported
to directly or indirectly inherit a VDM from itself. But it is allowed to indirectly inherit a VDM more than once
(diamond inheritance).

The following selections are inherited from a base VDM:

• selections explicitly made by the user

• exclusions explicitly made by the use

• selections the base VDM has inherited from other VDMs

Additionally attribute values defined in a inherited VDM are inherited if the corresponding selection is inherited.
The applicable rules for the inheritance are listed in Section 5.7.1, “Inheritance Rules” .

pure::variants 5 introduces the independent inheritance of attributes values and selections. Now, a VDM can supply
only an attribute value but still leave inheriting VDMs the choice to select or exclude the attribute's parent element.
Likewise, a VDM can supply only an element selection but still leave inheriting VDMs the choice to supply values
for the element's attributes. The independent inheritance mode is active for all projects created with pure::variant
5 and later. Additionally pure::variants 5 projects inherit constraints defined in a vdm. Older projects have to be
converted to version 5 in order to use the independent inheritance (See Section 6.18, “Convert a pure::variants 4
project into a pure::variants 5 project”).

Inheritance Rules

29

Inherited selections can not be changed directly. To change an inherited selection, the original selection in the
inherited VDM has to be changed. Particularly if a selection is inherited that has a non-fixed attribute and no value
is given in the inherited VDM, it is not possible to set a value for this attribute in the inheriting VDM. The value
can only be set in the inherited VDM.

If both the inherited and the inheriting VDM are open, changes on the inherited VDM are immediately propagated
to the inheriting VDM. This propagation follows the rules described in Section 5.7.1, “Inheritance Rules” .

If the list of inherited VDMs for a VDM is changed, all inheriting VDMs have to be closed before.

5.7.1. Inheritance Rules

The following rules apply to the VDM inheritance:

1. If a model element is user selected in one inherited VDM it must not be user excluded in another. Otherwise
it is an error and the conflicting selection is ignored.

2. There must be no conflicting values for the same attribute in different VDMs of the inheritance hierarchy.
Otherwise it is an error and the conflicting attribute value is ignored.

3. An inherited VDM has to exist in the current or in any of the referenced projects. Otherwise it is an error and
the not existing VDM is ignored.

4. A VDM must not inherit itself, neither direct nor indirect. Otherwise it is an error.

5.8. Variant Description Evaluation
In the context of pure::variants, model evaluation is the activity of verifying that a VDM complies with the feature
and family models it is related to. Understanding this evaluation process is the key to a successful use of relations,
restrictions, and constraints.

5.8.1. Evaluation Algorithm

The input of the evaluation is a set of feature and family models and a variant description model defining the user
selections/exclusions and attribute value assignments. If available, also automatic selections/exclusions created
by auto resolver and extended auto resolver runs (see Section 6.1.4, “ Automatic Resolving of Selection Problems
” and Section 6.1.5, “ Automatic Selection ”) are used.

An outline of the evaluation algorithm is given in pseudo code in Figure 5.7, “Model Evaluation Algorithm (Pseudo
Code)” .

Figure 5.7. Model Evaluation Algorithm (Pseudo Code)

modelEvaluation()
{

 propagateSelectionsAndExclusions();
 foreach(current in modelRanks())
 {
 selectAndStoreFromFeatureModels(
 getFeatModelsByRank(current));
 selectAndStoreFromFamilyModels(
 getFamModelsByRank(current),class('ps:family'));
 selectAndStoreFromFamilyModels(
 getFamModelsByRank(current),class('ps:component'));
 selectAndStoreFromFamilyModels(
 getFamModelsByRank(current),class('ps:part'));
 selectAndStoreFromFamilyModels(
 getFamModelsByRank(current),class('ps:source'));
 }
 checkFeatureRestrictions(getSelectedFeatures());
 checkRelations();
 checkConstraints();
 calculateAttributeValuesForResult();
}

Evaluation Algorithm

30

In the first step, the existing selections and exclusions are collected and used to find more trivial, logically im-
perative selections and exclusions. New selections are added by propagating existing selections up-tree, since a
selected element always require a selected parent element. Analogously, new exclusions are added by propagating
existing exclusions down-tree. Additionally, new exclusions are also added for all unselected alternatives, if at
least one alternative is selected.

In the next step, the feature and family model trees are traversed to collect and add more selections and exclusions
based on mandatory relations and based on the element's default-selection state (see Section 6.1.3, “ Default Ele-
ment Selection State ”) in combination with restrictions. The generally applied rules are: a) If a parent element
is selected, any unselected mandatory child element will also be selected. b) If a parent element is selected, an
unselected child element with a set default-selection state will also be selected if the child element has either no
restriction or at least one restriction, which evaluates to true. If however all restrictions evaluate to false, the child
element and all its descendant elements will be excluded. Consequently, restrictions on elements, which are not
selected will not be evaluated at all.

Since the evaluation of restrictions usually access the selection state of other elements, the order of adding and
requesting selections need to be considered. Therefore, the traversal of the feature and family model trees is dis-
tributed by so called ranks. On the higher level, model ranks define an order of whole sets of feature and family
models. Models with a higher rank (with a lower rank index number) will be traversed first. On the lower level,
for a set of models with the same model rank, the order of traversal is defined by the element class. The elements
of a feature model (i.e., the features) are all of class feature and they are traversed first. The elements of a family
model are of one of four classes, which are traversed in the following order: a) family (the class of the family
model root elements), b) component, c) part, and d) source.

So, the traversal is done in the following way for each model rank from higher to lower ranks: First the feature
models of the current model rank are traversed in depth-first order starting with the root elements. During traversal,
selections and exclusions are collected and added according to the rules defined above. The traversal stops at
features, which are not selected and also cannot be selected by the mentioned rules. As soon as the traversal of
all feature models of the current model rank is done, the collected and added selections will become visible for
the evaluation of restrictions.

After the feature models, the family models with the current rank are traversed, beginning with the elements of the
family class, followed by the component, part and source classes. A depth-first traversal is done for all elements
of the same class, where again selections and exclusions are collected and added. The traversal stops again at not
selectable elements. It also stops on elements of the next class. These elements are used later as a starting point for
the element traversal of that class. After the traversal of the elements of each class, the new selections become again
visible. So restrictions can always access safely the element selection states of previous classes and model ranks.

Warning

In restrictions, directly or indirectly accessing the selection state of features or elements of the same
or lower class or of a lower model rank will always result in Boolean false. Make sure that element
restrictions are "safe". That is, they do not contain direct or indirect references to elements for which the
selection is not yet calculated.

After the traversal of the feature and family models is done, the selections are checked against the feature and
family models. First for all selected features and elements the restrictions are checked. Errors are raised for each
element with restrictions evaluating to false. Then tree structure relations (i.e., alternatives and or-groups) and
element relations are checked. If element relations are restricted, they only need to be fulfilled, if at least one
restriction evaluates to true. Again errors are raised for not fulfilled relations. The check of all constraints in all
feature and family models will be done after that.

In the last step the values of all attributes of selected features or elements will be determined. This will also do
the evaluation of value restrictions and of calculations. Although values of attributes of unselected features and
elements are not part of the evaluation result, they can be accessed in restrictions, constraints and calculations. If
an attribute value has no value in the result or if no value can be calculated, an error will be raised for this attribute.

Partial Evaluation

31

5.8.2. Partial Evaluation

As already mentioned in the introduction of this concepts chapter, the Model Evaluation supports the two con-
figuration modes: In the full configuration mode , it is assumed, that the set of selected features and elements is
complete. So all features, which are not selected, are handled as excluded features. All constraints, relations, and
restrictions are evaluated accordingly to this definition. It is also expected that all attributes of selected elements
have a value. Therefore, missing values are handled as a configuration error.

In partial configuration mode , the set of selected features and elements needs not to be complete, i.e., it is partial.
The currently unselected features and elements are handled as open decisions, which will be made later, e.g. in
an inherited VDM. So for the evaluation there is a difference between excluded and still unselected features and
elements. During evaluation any propositional checks are done in three-valued logic with the values true (for a
selection), false (for an exclusion), and open (for an unselection).

In result, tree structure relations (e.g. alternatives), element relations, constraints, and restrictions can also evaluate
to true , false , or open . Only tree structure relations, element relations, and constraints, which evaluate to false will
create an error. So, no error means that the dependency is either fulfilled or potentially fulfillable. For a restriction
set on a feature or element, only an error is created, if that feature or element is selected and all its restrictions
evaluate to false . A relation with a set of restrictions will only be checked during evaluation, if at least one of the
restrictions is evaluating to true , since otherwise the relation does not need to hold or it is open whether the relation
needs to hold or not. Attributes with a set of restrictions exist in the result, except if all restrictions evaluate to false .

In full configuration mode, during traversal of the tree elements only restrictions a) on selected elements, and b) on
unselected elements with a set default-selection state that are children of a selected element are evaluated. In partial
configuration mode however, to create more exclusions, restrictions on all unselected elements are evaluated. If
all restrictions on an unselected element evaluates to false, this element will be excluded. The default-selection
state is not relevant in partial configuration mode. So, new selections will not be created based on that state.

The result value of an attribute can also be open depending on preset values, restrictions, and calculation evaluation
results. Following rules apply for determining the result value of attributes if the values are set or not:

• A fixed attribute with no value creates an error (as for full configurations).

• A fixed attribute with a non-restricted value results in that value (as for full configurations).

• A non-fixed attribute with no value results in an open value, since the user can set this value later on.

• A non-fixed attribute with a default value result in an open value, since the user can overwrite the default value
later on.

If the attribute values of an attribute have restrictions, the result of that attribute is determined by the evaluation
result of each restriction set. So an attribute value can exist (true), can not exist (false), or can potentially exist
(open). An attribute value without restrictions can be equated with an attibute value with a restriction always
evaluating to true . So the next statements also apply if some or all attributes does not have any restrictions.

In full configuration mode the result value of a fixed non-collection attribute with many (restricted) attribute values
is determined by finding the first attribute value with a restriction set evaluating to true . All previous attribute
values with a false restriction will be ignored. If no attribute value remains, the attribute has no value and an error
will be created for that attribute.

In partial configuration mode, the open restrictions need to be also considered. So the result depends on the first
attribute value, whose restriction set does not evaluate to false . If the restriction set of the first of such an attribute
value evaluates to true , this value will be the result value of the attribute. However, if it evaluates to open , the
result value will be also open , since it is unknown if that attribute value is the right one, or one of its successors.
As for full configuration mode, if no attribute value remains, an error will be created.

For fixed collection attributes, i.e, for list and set attributes, in full configuration mode the result value collection
contains all attribute values, whose restriction set evaluates to true . In partial configuration mode, however, some
attribute values only potentially exists. So the resulting collection value could contain optional collection members.
If that is the case, so if at least one attribute value has an open restriction set, the resulting collection will be open .

Variant Transformation

32

Each attribute value is a constant or a calculation. A calculation itself can also evaluate to an open value. More
information about how pvSCL expressions will be evaluated in partial configuration mode is described in Sec-
tion 9.7, “Expression Language pvSCL” .

5.9. Variant Transformation
pure::variants supports a user-specified generation of product variants using an XML-based transformation com-
ponent. Input to this transformation process is an XML representation of the Variant Result Model. Transforma-
tion modules are bound to nodes of the XML document according to a user-specified module configuration. These
processing modules encapsulate the actions to be performed on a matching node in the XML document.

A set of generic modules is supplied with pure::variants, e.g. a module for collecting and executing transformation
actions. The list of available transformation depends on the pure::variants product and installed extensions.

The user may create custom modules and integrate these using the pure::variants API.

The transformation module configuration is part of the Configuration Space properties (see Section 6.3.1, “ Setting
up a Transformation ”).

5.9.1. The Transformation Process

The transformation process works by traversing XML document tree. Each node visited during this traversal is
checked to see whether any processing modules should be executed on it. If no module has to be executed, then
the node is skipped. Otherwise the actions of each module are performed on the node. Further modules executed
on the node can process not only the node itself but also the results produced by previously invoked modules.

The processing modules to be executed are defined in a module configuration file. This file lists the applicable
modules and includes configuration information for each module such as the types of nodes on which a module
is to be invoked. The transformation engine evaluates this configuration information before the transformation
process is started.

Figure 5.8. XML Transformer

The transformation engine initializes the available modules before any module is invoked on a node of the XML
document tree. This could, for instance, give a database module the opportunity to connect to a database. The trans-
formation engine also informs each module when traversal of the XML document tree is finished. The database
module could now disconnect.

Before a module is invoked on a node it is queried as to whether it is ready to run on the node. The module must
answer this query referring only on its own internal state.

Part of the SDK is a separately distributed manual contains further information about the XML transformer. This
manual shows how the built-in modules are used and how you can create and integrate your own modules.

5.9.2. Variant Result Models

For each Feature and Family Model of the Configuration Space a concrete variant is calculated during the mod-
el evaluation, collected in the so-called Variant Result Model. In full configuration mode, the concrete model

Variant Update

33

variants contain only the selected features and elements. Successfully evaluated restrictions and constraints are
removed and attribute value calculations are replaced by their calculated values. In partial configuration mode,
the concrete model variants contain both the selected and open features and elements. Only the excluded features
and elements are removed. In case of that single calculation results are still open, the concrete model will still
contain these calculations. Only the calculations which evaluate in a non-open value will be replaced. Also in
case of open restrictions on attribute values, the concrete model variants can contain more attribute values than
in full configuration mode.

The type of the feature and family models is changed to signal that these models are concrete variants (see Ta-
ble 5.1, “Mapping between input and concrete model types”).

Table 5.1. Mapping between input and concrete model types

Input Model Type Concrete Model Type

ps:fm (Feature Model) ps:cfm (Concrete Feature Model)

ps:ccfm (Family Model) ps:ccm (Concrete Family Model)

ps:vdm (Variant Description Model) ps:vdm (Variant Description Mod-
el, identical to the input model)

The Variant Result Model contains additional variant information and is the input of the pure::variants transfor-
mation. It has the following structure.

<variant>
 <locationinfo>
 <model mid="variant model ID">variant model URL</model>
 <model mid="feature model ID">feature model URL</model>
 <model mid="family model ID">family model URL</model>
 </locationinfo>
 <cm:consulmodels
 xmlns:cm="http://www.Parametric Technology.com/consul/model">
 <cm:consulmodel cm:id="variant model ID"
 cm:type="ps:vdm" cm:version="1.5">
 ...
 </cm:consulmodel>
 <cm:consulmodel cm:id="feature model ID"
 cm:type="ps:cfm" cm:version="1.5">
 ...
 </cm:consulmodel>
 <cm:consulmodel cm:id="family model ID"
 cm:type="ps:ccm" cm:version="1.5">
 ...
 </cm:consulmodel>
 </cm:consulmodels>
</variant>

The locationinfo subtree of this XML structure lists the URLs of the models used in the stored variant in-
cluding the variant model. If the stored Variant Result Model is used for inout to a evaluation or transfor-
mation pure::variants tries to open the input models from the stored locations to complete the variant. The
cm:consulmodels subtree contains a list of all the concrete models.

Tip

A copy of this XML structure can be saved using the "Save Result to File" button that is shown in the
tool bar of a variant description model or automatically as part of a transformation result. See the section
called “Input-Output Page” for more information.

5.10. Variant Update

The Variant Update allows to merge custom changes made in a variant with a newly transformed version of that
variant. Sometimes changes for a specific product need to be done after a variant was transformed. When the
variant gets transformed again these changes need to be merged in order to keep both pieces of information. To do

File based Update

34

this, certain information have to be gathered in order to keep track of who made changes where, and what needs to
be merged back into the newly generated variant assets. For that purpose, pure::variants stores each transformation
output in an internal repository.

With this information pure::variants is able to update changes to the latest transformation, as well as to the current
customer-specific variant, by using a three-way compare. The graphic below shows this process.

Figure 5.9. General Update functionality

Depending on the tool, our connector either supports a file based update or a tool specific approach.

5.10.1. File based Update

If you activate the update functionality in your transformation module (see the section called “Transformation
Configuration Page”), three folders will be generated into your output folder.

Figure 5.10. Folder Structure

Working copy (work) : a variant created by the transformation that may be edited by the user.

Latest: a variant created by the transformation, which reflects the latest state of the product line.

Ancestor : a variant created by the transformation, which is the common ancestor of both working copy and latest
reference.

After all changes have been done and the new version of the variant is generated from the product line, you can
merge these changes into your local working copy as follows: Open the context menu of the variant folder you
want to update. In the refactor section of the menu, you will find Variant Update , where Merge Variant ... is
located. A three-way compare opens, showing the differences between the files of the respective subfolders, where
you can choose which part to keep and which to take over from the product line.

File based Update

35

When all changes are applied and saved, you can mark the variant as merged, via Update Variant -> Mark Variant
as Merged . This will set the "latest" folder as new ancestor and the project is prepared for the next version of the
product line to be transformed, so the process can continue.

36

37

Chapter 6. Tasks
6.1. Evaluating Variant Descriptions

In pure::variants a variant description, i.e. the selection of features in a VDM, can be evaluated and verified
using the Model Evaluation. See Section 5.8, “ Variant Description Evaluation ” for a detailed description of the
evaluation process.

A variant description is evaluated by opening the corresponding VDM in the VDM Editor and clicking on button

 in the Eclipse toolbar. Detected selection problems are shown as problem markers on the right side of the editor
window and in the Problems View. On the left side of the editor window only those markers are shown that point
to problems in the currently visible part of the model. Clicking on these markers may open a list with fixes for
the corresponding problem.

Figure 6.1. VDM Editor with Outline, Result, Problems, and Attributes View

Automatic evaluation of the variant description is enabled by pressing button in the Eclipse toolbar. This will
cause an evaluation of the element selection each time it is changed.

If the variant description is valid, then the result of the evaluation are the concrete variants of the models in the
Configuration Space shown in the Result View (see Section 7.4.8, “ Result View ”). The concrete variants of the

models are collected in the Variant Result Model, that can be saved to an XML file using the button . Saved
Variant Result Models can be opened with the VRM Editor. See Section 5.9.2, “ Variant Result Models ” for
more information about Variant Result Models, and Section 7.3.5, “ Variant Result Model Editor ” for a detailed
description of the VRM Editor.

6.1.1. Configuring the Evaluation

Workspace-specific settings

The model evaluation is configured on the Model Evaluation tab of the Variant Management->Model Handling
preferences page (menu Window->Preferences , see Figure 6.2, “Model Evaluation Preferences Page”).

Configuring the Evaluation

38

Figure 6.2. Model Evaluation Preferences Page

When the "Evaluate Model" button is clicked in the VDM Editor, the current feature selection is analysed to
find and optionally resolve conflicting selections, unresolved dependencies, and open alternatives. Additionally
the implicitly selected and mapped features are computed. For this analysis a timeout can be set. It defaults to
two minutes which should be long enough even for big configuration spaces. The timeout can be disabled by
unchecking the "Timeout for checking a feature selection" check box.

Finding mapped features is an iterative process. Mapped features can cause other features to be mapped and thus
included into the selection. The default maximal number of iterations is 32. Depending on the complexity of the
dependencies between the mapped features it may be necessary to increase this value. In this case pure::variants
will show a dialog saying that the maximal number of iterations was reached. The iterations limit can be disabled
by unchecking the "Limited feature mapping iterations" check box.

If the automatic model evaluation is enabled, changing the current feature selection in the VDM Editor causes
an automatic evaluation of the Configuration Space. The evaluation process is not started immediately but after a
short delay. The default is 500 milliseconds. With the "Restart model evaluation after mouse move" switch it is
configured whether the timer for the evaluation delay is reset if the user moves the mouse.

It is possible to define a list of element attributes that are ignored during the model evaluation.

Note

For listed attributes it is not possible to access them in restrictions and calculations during the model
evaluation process. These attributes also do not become part of the Variant Result Model, i.e. the concrete
models of the variant.

The default list of ignored attributes contains the administrative attributes ps:Source, ps:Changed, ps:ChangedBy,
and ps:Created.

Configuring the Evaluation

39

Configuration-Space-specific settings

For each configuration space, the strictness of the evaluation of the contained variant description models regarding
problematic modeling constructs can be configured (see Figure 6.3, “Configuration Space Evaluation Settings
Page”).

Figure 6.3. Configuration Space Evaluation Settings Page

The following problematic constructs are checked and for each of them the complain level is configurable. How-
ever, it is recommended to use the most strict settings if possible. One example for an exception of this recommen-
dation would be the enabling of current pure::variants versions to use also legacy or baseline models containing
such constructs.

Violating one-definition rule for us-
er functions in pvSCL

pvSCL user function definitions have to follow the one-definition rule
(ODR). So, multiple definitions of pvSCL functions with the same signa-
ture, i.e., same name and same number of arguments, violate this rule. For
the user it is usually unclear, which of these multiple function implemen-
tations will be called in which case. Hence, to ensure the adherence to the
ODR, the evaluation checks for this violation.

Comparing values of incompatible
types in pvSCL

Comparing values of incompatible types in pvSCL, e.g., of values of type
string and number, involves an implicit conversion of each value into a
string followed by a string comparison. This could lead to potentially un-
expected results for the user.

Referencing non-existing models or
elements in relations or pvSCL

Referencing non-existing models or elements is a common modeling issue.
Especially, references to non-existing elements are interpreted as unselect-
ed by default. So they are not easy to find.

Relation types to be considered in
reference check

The scope of the non-existing references check is configurable: With op-
tion All all relation types are checked, whereas with option Built-in only the
check is done for pure::variants' predefined relation types only (see Sec-
tion 9.2, “Element Relation Types”).

Using ambiguous element refer-
ences in pvSCL

Using several models in a configuration space can result in non-unique el-
ement names. Referencing such elements by their name is ambiguous and
can lead to unexpected results, since the first occurence is used by default.

Resolving invalid default-selected
alternatives

Multiple default-selected non-restricted alternatives result in an invalid
configuration. In rare circumstances, this problem can be automatically re-

Setting the VDM Configuration Mode

40

solved, but the automatic resolution could also lead to potentially unexpect-
ed results, e.g. invalid variants although a valid solution exists.

Assigning or accessing incompati-
ble attribute values

User-defined or calculated attribute values have to match the attribute's
type. Values with a wrong type can be implicitly converted to the attribute
type in some cases, e.g. integer to float, number to string, and element to
its Boolean selection state. However, in many cases this is not possible or
not wanted.

6.1.2. Setting the VDM Configuration Mode

For pure::variant version 5 projects, the configuration mode can be set for each VDM separately during creation
of a VDM or later at any time in the Configuration Mode page of the VDM's Properties dialog (see Figure 6.4,
“Variant Model Configuration Mode Page”).

Figure 6.4. Variant Model Configuration Mode Page

6.1.3. Default Element Selection State

Each feature and element has a default selection state defined in Feature and Family Model. Normally Family
Model elements and mandatory features are created with the state "on". All other Feature Model elements are
created with the state "off". Except for mandatory features and elements, the default selection state can be changed
by the user.

In full configuration mode, a feature or element with the default selection state "on" is selected automatically if
the parent element is selected. To deselect this element either the parent has to be deselected or the element itself
has to be excluded by the user or the auto resolver.

In partial configuration mode, the default selection state is ignored, since this state controls the default handling
of unselected elements. So, unselected elements stay open independent of the default selection state.

6.1.4. Automatic Resolving of Selection Problems

If a feature selection is evaluated to be invalid, selection problems will occur. Such selection problems are for
instance failed relations, constraints or restrictions. Certain selection problems are eligible to be resolved automat-
ically. For example, a not yet selected feature that is required by a relation can be selected automatically.

Automatic Selection

41

The pure::variants auto resolver component provides a set of heuristics to resolve failed relations, features selec-
tion ranges and basic propositional constraints. They are applied only in full configuration mode. In partial con-
figuration mode the auto resolver is not executed.

Note

The auto resolver does not change the selection state of user selected or excluded features. It only adds
new selections or exclusions.

As shown in Figure 6.5, “Automatically Resolved Feature Selections” , auto resolving for a VDM is enabled by

clicking button in the tool bar.

Figure 6.5. Automatically Resolved Feature Selections

6.1.5. Automatic Selection

The auto resolver does only resolve selection problems locally, i.e., it considers only a single relation or constraint.
It cannot consider the potentially hidden dependencies of the complete set of the evaluated feature and family
models.

The pure::variants extended auto resolving component therefore uses an approach to add feature selections and
exclusions, which are logically mandatory based on the whole set of feature and family models and the user
selections and exclusions. It will run before evaluation, so the evaluation already checks these new automatic
selections. The extended auto resolving is executed both in full and partial configuration mode. For both modes
the behavior is equal.

The extended auto resolving uses a SAT solver based approach. It covers the propositional part of the models, i.e.,
the feature and family model tree structure with selection ranges, all built-in relations, and the propositional parts
of constraints and restrictions in pvSCL, like Boolean operations. It does not cover attributes with their values
and parts of pvSCL expressions, which are not propositional, like comparisons, arithmetical operations and model
element traversal. However, non-propositional expressions do not influence the reliability of the result. The not
useable parts are simply mapped to open Boolean variables.

Considering the already done user selections and exclusions, the extended auto resolving will first check, if the
propositional part is satisfiable, i.e., a configuration can be reached by adding more selections, which at least fulfills
all propositional dependencies of the models. If the satisfiability is given, for each unselected feature and element
it will be determined, whether it has to be selected or excluded to fulfill all the propositional rules. However, if

Configuring the Auto Resolver

42

the models also contain non-propositional parts, it is still possible that a configuration, which fulfills all model
dependencies can never be reached.

If the propositional part of the models is not satisfiable, i.e., there is a conflict in the models or the user selections
or exclusions, the extended auto resolving cannot determine any new selections and exclusions. Then also the
complete model dependencies including the non-propositional parts, cannot be fulfilled.

6.1.6. Configuring the Auto Resolver

Both auto resolving components are configured on the Auto Resolver tab of the Variant Management->Model
Handling preferences page (menu Window->Preferences , see Figure 6.6, “Auto Resolver Preferences Page”).

Figure 6.6. Auto Resolver Preferences Page

Usually weak relation types like ps:recommends and ps:discourages are not considered by the auto resolver.
Checking box "Auto resolve weak relations..." causes the auto resolver to handle weak relations like hard re-
lations. In detail, ps:recommends is handled like ps:requires , i.e. select the required feature if possible. And
ps:discourages is handled like ps:conflicts , i.e. exclude conflicting features if they were automatically selected
by a ps:recommends relation.

Conflicts usually are not automatically resolved. Checking box "Auto resolve ps:conflicts relations" enables a
special auto resolving for conflicts. If the conflicting feature was automatically selected due to a ps:recommends
relation, then this feature becomes automatically excluded.

To get a clean selection before evaluating a model, i.e. a selection only containing user decisions, "Remove auto
resolved features..." has to be enabled.

The extended auto resolver can be enabled for Feature and Family Models separately. Depending on the complexity
of the Input Models, measured by counting the number of variation points, the extended auto resolver may exceed
the memory and time limits of the model evaluation component of pure::variants. In this case the extended auto
resolver aborts. To solve this problem following actions may be tried:

Reuse of Variant Descriptions

43

• Disable the extended auto resolver for Family Models. In most of the cases extended auto resolving is not
interesting for Family Models.

• Review the models and try to reduce its complexity. This can be done for instance by flatten nested alternatives.

• Increase the model evaluation limits in the preferences.

• Disable the extended auto resolver.

To disable the extended auto resolver automatically if the input models exceed a certain count of elements, a model
element count limit can be specified. The default is 100,000 elements.

6.2. Reuse of Variant Descriptions

6.2.1. Hierarchical Variant Composition

pure::variants supports the hierarchical composition of variants as explained in Section 5.6, “ Hierarchical Variant
Composition ” . A variant hierarchy is set up by creating links to VDMs or Configuration Spaces in a Feature
Model. Three different kinds of links are available:

• Variant Reference

A variant reference is simply a link in a Feature Model to a concrete VDM of another Configuration Space. The
selections in the linked VDM are locked and can not be changed in the resulting variant hierarchy.

• Variant Collection

A variant collection is a link in a Feature Model to another Configuration Space. The VDMs defined in this
Configuration Space are automatically linked. The selections in the linked VDMs are locked and can not be
changed in the resulting variant hierarchy.

• Variant Instance

A variant instance is a link in a Feature Model to another Configuration Space. In a VDM of a Configuration
Space with this Feature Model as input, it is possible to create concrete Instances below the variant instance
link, which just means to construct a new linked VDM with an empty and free editable selection for the linked
Configuration Space.

While Feature Models from a linked Configuration Space are directly linked below the link elements of the parent
Feature Model, the Family Models from the linked Configuration Space are linked into the first Family Model
of a corresponding Configuration Space, flat below the special element LINKED_FAMILY_MODELS that is au-
tomatically created.

Note

Intentionally there is no restriction towards linking VDMs and Configuration Spaces recursively. Thus
it is possible for example to link a VDM which itself links other VDMs or whole Configuration Spaces.

To create a link to a Configuration Space or VDM below an element of a Feature Model select that element, click
right and select the wanted kind of link from the context menu (one of Variant Reference , Variant Collection or
Variant Instance). This opens a wizard that allows to select the Configruation Space or VDM to link. In case of a
variant collection link additionally the variation type of the link element has to be specified. The actual linking of
VDMs and Configuration Spaces is not performed directly in the Feature and Family Models containing the links.
It is performed when opening the VDMs of a corresponding Configuration Space.

If a variant instance link is created, then the VDM Editor provides two additional actions in the context menu
on the corresponding link elements, i.e. New->Instance and Remove Instance . These actions allow to create and
remove the concrete instances, i.e. VDMs, of the linked Configuration Space.

Relations between the variants of a variant hierarchy can be expressed using restrictions and constraints. See
Section 9.7.8, “Name and ID References” for details on how to reference elements from specific variants.

Hierarchical Variant Composition

44

Unique Names and IDs in linked Variants

To distinguish multiple instances of the same variant in a variant hierarchy, all IDs and the element unique names
in the models of each linked variant are changed according to the position of the variant in the hierarchy. Element
unique names are prefixed with the unique name of the corresponding link element in the parent variant, separated
by a colon (":"). If the parent variant is not the top of the variant hierarchy, then the unique names of its elements
also are prefixed this way. Figure 6.7, “Unique Names in a Variant Hierarchy” and shows a hierarchy of three
variants and how the unique names are prefixed in each variant.

Figure 6.7. Unique Names in a Variant Hierarchy

The unique IDs are prefixed in the same way except that the unique ID of the link elements is used as prefix.

Hierarchical Variant Composition

45

Example Variant Hierarchy

Figure Figure 6.8, “Example Variant Hierarchy” shows how a simple house is modeled using Hierarchical Variant
Composition. The VDM house is top-level and contains a Variant Instance Link named rooms . The house contains
a kitchen, a kids room, a living room and a bedroom. The figure shows the kids room and the kitchen. These
rooms are linked VDMs with the name room . This name is prefixed with the name of the corresponding Variant
Instance Link element, i.e. Kids_Room:Rooms . This ensures uniqueness of the element unique names. Same rule
is applied to the element IDs. The room VDM also contains a Variant Instance Link with name doors . It refers
to the doors Configuration Space, visible on the left. For the kids room two doors are available, i.e. Back_Entry
and Front_Entry . Note the exclusions in this model. For the concrete house the kitchen is excluded, and for the
kids room the back door is also excluded. The exclusion causes the Model Evaluator not to propagate selections of
elements that are below the excluded element. Thus the selection is valid although for example kitchen:Doors or
Front_Entry:Material are explicitly selected. Warnings are shown to give the user a hint for this fact, e.g. Excluded
'kitchen' overwrites selection of kitchen:Room .

Inheritance of Variant Descriptions

46

Figure 6.8. Example Variant Hierarchy

6.2.2. Inheritance of Variant Descriptions

pure::variants supports sharing common feature selections/exclusions between several variant descriptions. This
allows users to define the models for each VDM from which selections are to be inherited. Changes in the inherited
model selection will be propagated automatically to all inheriting models. Inheritance is possible across Configu-
ration Spaces and projects. See Section 5.7, “ Inheritance of Variant Descriptions ” for details.

The VDM inheritance hierarchy can be configured on the Inheritance Page of the Model Properties. See Sec-
tion 7.5.3, “ Inheritance Page ” for a detailed description of this page.

Load a Variant Description

47

6.2.3. Load a Variant Description

It is possible to load the feature selection from another VDM into the currently edited VDM. Right-click in the
VDM Editor window and choose Load Selection from VDM from the context menu. This opens the dialog
shown in Figure 6.9, “Load Selection Dialog” .

Figure 6.9. Load Selection Dialog

In this dialog the VDM from which to load the selection has to be selected. All selections in the currently edited
VDM are overwritten with the selections from the loaded VDM.

If this action is called in an instance element the selections are changed for the selected instance only.

6.2.4. Rename Reused Variant Description Model

A reused Variant Description Model ("instance") can be renamed by selecting Rename Instance ... from the
context menu as shown in Figure 6.10, “Rename Reused Variant Description Model” .

Reorder Reused Variant Description Models

48

Figure 6.10. Rename Reused Variant Description Model

The opened dialog lets you choose a new name for the instance at hand and also has the option to allow a name
comparison. If the option is set in two instances with the same name and the same parent, these instances will be
treated as equal in comparisons. If the option is left out, the instance will be treated as unique and independent,
although it might be named and positioned as another instance in another Variant Description Model.

Figure 6.11. Rename Dialog

6.2.5. Reorder Reused Variant Description Models

The reused Variant Description Models ("instances") can be reorder by selecting Reorder Instances from the
context menu as shown in Figure 6.12, “Reorder Reused Variant Description Models” . The context menu can be
found by right clicking on the instance group or any instance in the variant model editor.

The reordering is only allowed for non-inherited variant instances. The order of the inherited instances is the same
as in the inherited models and are grouped together in the order of the inherited models themselfs. Instance order

Reorder Reused Variant Description Models

49

mutation is allowed only between not inherited instances. Nonetheless, it is not allowed to move an instance out
of the containing group.

Figure 6.12. Reorder Reused Variant Description Models

A dialog for reorder instances will pop up as shown in Figure 6.13, “Reorder Instances Dialog”, which lists two
categories of variant instances. Inherited instances are in the immutable list and non-inherited instances are in
mutable list. Any or consecutive number of multiple instances can be selected and moved up or down using Move
up or Move down button. To confirm the order, OK button can be pressed. Then Save the variant model to store
the instance order. The categories themselves are not movable. Inherited instances are always showed at the top
of the group.

Figure 6.13. Reorder Instances Dialog

Transforming Variants

50

6.3. Transforming Variants
pure::variants supports user-defined generation of product variants, described by Variant Description Models, us-
ing an XML-based transformation component. See Section 5.9, “ Variant Transformation ” for a detailed infor-
mation about the transformation process.

A VDM is transformed by opening it in the VDM Editor and clicking on button in the Eclipse toolbar. If more
than one transformation is defined in a Configuration Space then this button can be used to open the list of defined
transformations and to choose one. Additionally this button allows to open the Transformation Configuration Page
of the corresponding Configuration Space to add, remove, or modify transformations.

Figure 6.14. Multiple Transform Button

6.3.1. Setting up a Transformation

The transformation must initially be set up for a specific Configuration Space. Therefore the Configuration Space
properties have to be opened from the Variant Projects view by choosing Properties from the context menu of
the corresponding Configuration Space.

The editor is divided into six separate pages, i.e. the Model List page, the Input-Output page, and the Trans-
formation Configuration page.

Model List Page

This page is used to specify the list of models to be used in the Configuration Space. At least one model must be
selected. By default, only models that are located in a Configuration Space's project are shown.

Figure 6.15. Configuration Space properties: Model Selection

Setting up a Transformation

51

In the second column ("R") of the models list the rank of a model in this Configuration Space is specified. The
model rank is a positive integer that is used to control the model evaluation order. Models are evaluated from
higher to lower ranks i.e. all models with rank 1 (highest) are evaluated before any model with rank 2 or lower.

The third column enables the user to select the variation type of a pure::variant model. Two variation types are
available mandatory and optional . An optional model can be deselected in a variant, mandatory models are
always part of the variant.

The next column ("Default") can be used to specify whether a optional model is default selected in the variants or
not. This semantic is ether equal to the default selected state of pure::variants model elements.

Clicking right in the models list opens a context menu providing operations for changing the model selection, i.e.
Select all , Deselect all , and Negate selection .

Properties Page

This page is used to specify a description for the Configuration Space. You can also retrieve the Configuration
Space ID from here. The description supports different MIME types, like plain or HTML text. The MIME type
can be changed by clicking on the description type combo box. By changing the MIME type, all descriptions of
that Configuration Space are getting converted. The description also supports different languages. You can switch
between the languages by clicking on the dropdown on the bottom left. A Configuration Space can hold different
descriptions, one for each language.

Figure 6.16. Configuration Space properties: Properties

Input-Output Page

This page is used to specify certain input and output options to be used in model transformations. The page can
be left unchanged for projects with no transformations.

Setting up a Transformation

52

Figure 6.17. Configuration Space properties: Transformation input/output paths

The input path is the directory where the input files for the transformation are located. The output path specifies the
directory where to store the transformation results. The transformation log file is used by transformation modules
to log their activities while transformation. All path definitions may use the following variables. The variables are
resolved by the transformation framework before the actual transformation is started. To see which variables are
available for path resolution in transformations refer to Section 9.9, “ Predefined Variables ”

The Clear transformation output directory check box controls whether pure::variants removes all files and direc-
tories in the Output path before a transformation is started. The Ask for confirmation before clearing check box
controls whether the user is asked for confirmation before this clearing takes place. The remaining check boxes
work in a similar manner and control what happens if the Output path does not exist when a transformation is
started.

The Recover time stamp... option instructs the transformation framework to recover the time stamp values for
output files whose contents has not been changed during the current transformation. I.e. even if the output directory
is cleared before transformation, a newly generated or copied file with the same contents retains its old time stamp.
Enable this option if you use tools like make which use the files time stamp to decide if a certain file changed.

The "Save the variant..." option instructs the transformation framework to save the Variant Result Model to the
given location. The Variant Result Model is the input of the transformation framework containing the concrete
variants of the models in the Configuration Space.

The option "Automatically save the variant result model when variant is saved" does instruct pure::variants to save
the Variant Result Model each time the corresponding Variant Description Model is saved.

Transformation Configuration Page

This page is used to define the model transformation to be performed for the Configuration Space. The transfor-
mation configuration is stored in an XML file. If the file has been created by using the wizards in pure::variants it
will be named moduleconfig.xml and will be placed inside the Configuration Space. However, there is no restric-
tion on where to place the configuration file, it may be shared with other Configuration Spaces in the same project
or in other projects, and even with Configuration Spaces in different workspaces.

Setting up a Transformation

53

Figure 6.18. Configuration Space properties: Transformation Configuration

The Transformation Configuration Page allows to define a free number of Transformation Configurations which
all will be available for the Configuration Space. The lower left part of the Transformation Configuration Page
allows to create, duplicate, delete and move Module Configuration entries up and down. After pressing the left
most button Add a Module Configuration a new entry is added immediately whose name can be changed as
desired. If a complex Module Configuration is created it might be useful to create a copy of it and edit it afterwards.
Use the button right to the add button Copy selected Module Configuration for this task. Following buttons allow
to delete and move a Module Configuration .

When a Transformation Configuration is selected on the left side, it can be edited with the lower right part of the
Transformation Configuration Page. A Module Configuration consists of a list of configured modules. Since many
modules have dependencies on other modules they must be executed in a specific order. The order of execution of
the transformation modules is specified by the order in the Configured Modules list and by the kind of modules.
This order in the list can be changed using the Up and Down buttons.

If the Enable Update Support button on the top of the right page is checked, the created output of transformation
modules for a given variant has to support variant update scenario. In that case an already existing output for this
variant may not be overwritten while transformation but can be updated afterwards with the newly created output.

If the Ignore transformation module errors button on the bottom of the right page is checked, errors reported by
transformation modules do not cause the current transformation to be aborted. Use this option with caution, it may
lead to invalid transformation results.

The buttons on the right side allow transformation modules to be added to or removed from the configuration,
and to be edited. When adding or editing a transformation module a wizard helps to enter or change the module's
configuration.

Setting up a Transformation

54

Figure 6.19. Transformation module selection dialog

In the transformation module selection dialog a name has to be entered for the chosen transformation module. The
module parameters are configured in the "Module Parameters" dialog opened when clicking on button Next.

Setting up a Transformation

55

Figure 6.20. Transformation module parameters

A transformation module can have mandatory and optional parameters. A module can not be added to the list
of configured modules as long as there are mandatory parameters without a value. Module parameters have a
name and a type. If there are values defined for a parameter, a list can be opened to choose a value from (see
Figure 6.20, “Transformation module parameters”). If a default value is defined for a parameter, then this value
is shown as its value if no other value was entered. Some modules accept additional parameters that can be added
and removed using the Add and Remove buttons. Additional parameters are always optional and can have any
name, type, and value.

Setting up a Transformation

56

Figure 6.21. Configuration Space properties: Transformation Configuration

For collaboration purposes and for a better overview, it is possible to add a description to a Transformation.
Therefore the Transformation description uses the same MIME type as the related Configuration Space. It is
also possible to define different descriptions for different languages. You can switch the description language by
clicking on the dropdown on the bottom left.

Setting up a Transformation

57

Figure 6.22. Configuration Space properties: Transformation Configuration

For a special Module Configuration it is also possible to specify special Input and Output paths, which overwrite
the settings from Configuration Space. The Input and Output paths can be edited when selecting the Input-Out-
put tab as shown in Figure 4.5, “Transformation configuration in Configuration Space Properties” . Layout and
behavior are identical to the Input-Output Page of the Configuration Space Properties Dialog with the exception
that Transformation log file and the Save the variant result model to fields are not available. The use of Module
Configuration specific Input and Output paths can be enabled with the check button Use configuration specific
input-output settings .

Setting up a Transformation

58

Figure 6.23. Configuration Space properties: Transformation Configuration

The Model List tab allows to specify a transformation configuration specific set of input models. The list can not
contain more then the used models defined for the config space itself. It is not possible to remove feature models
from the input model set. The selected input models will be processed by the defined transformation modules.
The deselected input models are not known by the transformation modules and will be completely ignored during
transformation. The variant evaluation will always use all input models as defined for the configuration space.
The use of a transformation module configuration specific input model set can be enabled with the check button
Enable model filter.

Note
Reducing the set of input models may have an unwanted impact in the transformation result.

Please see Section 5.9, “ Variant Transformation ” for more information on model transformation.

Setting up a Transformation

59

Figure 6.24. Configuration Space properties: Transformation Configuration

The User Parameter tab allows you to specify parameters that can be used to request user input before a transfor-
mation begins. These user parameters function like any other transformation variables, which means they can be
set as values for transformation parameters and allow users to provide values for transformation parameters.

To add a parameter, use the "Add" button and specify the user parameter. A name must be given, as well as the
parameter type. All other fields are optional. An optional parameter does not need to be specified by the user; it
will receive an empty value if no value is given and no default value is defined.

Figure 6.25. Configuration Space properties: Transformation Configuration

During the transformation, a dialog box appears asking the user to provide values for the parameters. Optional
parameters do not need to be set. However, mandatory parameters, which are written in bold letters, must be given
a value. At this point, the transformation has not started and can be aborted.

Standard Transformation

60

6.3.2. Standard Transformation

The standard transformation is suitable for many projects, such as those with mostly file-related actions for creat-
ing a product variant. This transformation also includes some special support for C/C++-related variability mech-
anisms like preprocessor directives and creation of other C/C++ language constructs.

The standard transformation is based on a type model describing the available element types for Family Models
(see Figure 6.26, “The Standard Transformation Type Model”).

Figure 6.26. The Standard Transformation Type Model

The standard transformation supports a rich set of part and source elements for file-oriented variant generation. For
each source and part element type a specific transformation action is defined in the standard transformation. Source
elements can be combined with any part element (and also with part types which are not from the set of standard
transformation part types) unless otherwise noted. For a detailed description of the standard transformation relevant
source element types see Section 9.5, “ Predefined Source Element Types ” .

The supported part element types are intended to capture the typical logical structure of procedural (ps:function
, ps:functionimpl) and object-oriented programs (ps:class , ps:object , ps:method , ps:operator , ps:classalias).
Some general purpose types like ps:project , ps:link , ps:aspect , ps:flag , ps:variable , ps:value or ps:feature are
also available. For a detailed description of the standard transformation relevant part element types see Section 9.6,
“ Predefined Part Element Types ” .

Setting up the Standard Transformation

The transformation configuration for the standard transformation is either set up when a Configuration Space is
created using the wizard, or can be set up by hand using the following instructions:

Standard Transformation

61

• Open the Transformation Configuration page in the Configuration Space properties.

• Add the module Action List Generator using the Add button. Name it for instance Generate Standard Trans-
formation Actionlist .

• Add an Action List Runner module. Name it for instance Execute Actionlist . Usually there should be only one
Action List Runner module, otherwise the action list gets executed twice.

Note: If the standard transformation is used together with the Makefile Generator module to add content to
one and the same file, then the Action List Runner module must not be placed before the Makefile Generator
module. Otherwise all the content added to the Makefile by the Action List Runner module will be overwritten
by the Makefile Generator module.

Providing Values for Part Elements

Some of the part element types have a mandatory attribute Value . The value of this attribute is used by child
source elements of the part, for example to determine the value of a C preprocessor #define generated by a
ps:flagfile source element. Unless noted otherwise any part element with an attribute Value can be combined with
any source element using an attribute Value . For example, it is possible to use a ps:value part with ps:flagfile and
ps:makefile source elements to generate the same value into both a makefile (as Makefile variable) and a header
file (as preprocessor #define).

Calculation of the value of a ps:flag or ps:variable part element is based on the value of attribute Value . The
value may be a constant or calculation. There may be more than one attribute Value defined on a part with maybe
more than one value guarded by restrictions. The attributes and its values are evaluated in the order in which they
are listed in the Attributes page of the element's Properties dialog. The first attribute resp. attribute value with a
valid restriction that evaluates to true or without a restriction is used.

Figure 6.27, “Multiple attribute definitions for Value calculation ” shows typical Value attribute definitions. The
value 1 is restricted and only set under certain conditions. Otherwise the unrestricted value 0 is used.

Standard Transformation

62

Figure 6.27. Multiple attribute definitions for Value calculation

 Modify Files using Regular Expressions

Text based files can be modified during the transformation using a search and replace operation based on regu-
lar expressions. For this purpose the file must be modelled by a source element with a type derived from type
ps:destfile . The regular expression to modify the file is provided in the attribute regex:pattern that has to be added
to the source element. This attribute can have several values, each containing a regular expression, that are applied
to the file in the order they are given.

Standard Transformation

63

Figure 6.28. Sample Project using Regular Expressions

Regular Expression Syntax

The syntax of the regular expressions is sed based:

s/pattern/replacement/flags

Prefix s indicates to substitute the replacement string for strings in the file that match the pattern. Any character
other than backslash or newline can be used instead of a slash to delimit the pattern and the replacement. Within
the pattern and the replacement, the pattern delimiter itself can be used as a literal character if it is preceded by
a backslash.

An ampersand ('&') appearing in the replacement is replaced by the string matching the pattern. This can be
suppressed by preceding it by a backslash. The characters "\n", where n is a digit, are replaced by the text matched
by the corresponding back reference expression. This can also be suppressed by preceding it by a backslash.

Both the pattern and the replacement can contain escape sequences, like '\n' (newline) and '\t' (tab).

The following flags can be specified:

n Substitute for the n-th occurrence only of the pattern found within the file.

g Globally substitute for all non-overlapping strings matching the pattern in the file, rather than just for the first
one.

See http://www.opengroup.org/onlinepubs/000095399/utilities/sed.html for more details about the sed text re-
placement syntax.

http://www.opengroup.org/onlinepubs/000095399/utilities/sed.html

User-defined transformation scripts with JavaScript

64

6.3.3. User-defined transformation scripts with JavaScript

In conjunction with the pure::variants JavaScript extension functions JavaScripts can be used to generate product
variants. No special requirements are placed on the transformation you have to perform and using the extension
functions is quite straightforward:

• Open the transformation configuration page in the Configuration Space properties.

• Add the JavaScript Transformation module using the Add button. Name it for instance Execute JavaScript .

• The module parameters can be changed on next page.

• Enter the path to the script file you want to execute as value of the javascriptfile parameter .

• An (optional) output file can be specified using the outputfile parameter.

• Press Finish to finish set up of the JavaScript transformation.

Example:

To demonstrate how to use JavaScripts for generating a product variant, the following example will show the
generation of a text file, which contains a list of used features and some additional information about them. This
example uses a user-provided JavaScript. The used JavaScript can also be found in the Javascript Transformation
Example project.

Within the JavaScript the pure::variant extensibility options can be used. An API documentation is part of the
pure::variants Extensibility SDK.

The example JavaScript looks like this:

/**
 * To set up JavaScript Transformation open configuration space properties
 * and go to "Configuration Space" -> "Transformation Configuration"
 * and add a JavaScript Transformation Module with this JavaScript.
 */

// global variables

var module = module_instance();

/**
 * Initialize this JavaScript transformation module.
 * This method is optional and does not need to be implemented.
 *
 * @param {IPVVariantModel} vdm
 * The concrete variant description model.
 * @param {IPVModel[]} models
 * The concrete feature and family models.
 * This provides the full view of the current variant including all elements
 * from instances, variant references and variant collections.
 * @param {java.util.Map<String, String>} variables
 * The variables of the transformation configuration.
 * @param {java.util.Map<String, String>} parameter
 * The parameter of the JavaScript transformation module.
 * @param {org.eclipse.core.runtime.IProgressMonitor} monitor
 * The monitor for this operation
 *
 * @return {ClientTransformStatus} the status of this module method
 */
function init(vdm, models, variables, parameter, monitor) {

 var status = new ClientTransformStatus();
 status.setMessage(Constants().EMPTY_STRING);
 status.setStatus(ClientTransformStatus().OK);

 return status;
}

/**

User-defined transformation scripts with JavaScript

65

 * Perform transformation preparation steps.
 *
 * This method is called after all modules have been initialized and before
 * any module is processed.
 *
 * This method is optional and does not need to be implemented.
 *
 * @param {org.eclipse.core.runtime.IProgressMonitor} monitor
 * The monitor for this operation
 *
 * @return {ClientTransformStatus} the status of this module method
 */
function prepare(monitor){
 var status = new ClientTransformStatus();
 status.setMessage(Constants().EMPTY_STRING);
 status.setStatus(ClientTransformStatus().OK);

 return status;
}

/**
 * Do the work of this JavaScript transformation module
 *
 * @param {org.eclipse.core.runtime.IProgressMonitor} monitor
 * The monitor for this operation
 *
 * @return {ClientTransformStatus} the status of this module method
 */
function work(monitor) {

 var status = new ClientTransformStatus();
 status.setMessage(Constants().EMPTY_STRING);
 status.setStatus(ClientTransformStatus().OK);

 var fo = null;

 try {
 var path = module.getVariable("OUTPUT");
 var filename = "FeatureList.txt";
 var outputfile = module.getParameter("outputfile");

 if (outputfile != null && outputfile != "") {
 fo = new java.io.FileWriter(new java.io.File(outputfile));
 } else {
 fo = new java.io.FileWriter(new java.io.File(path, filename));
 }

 var models = module.getModels();
 var steps = calculateWork(models);
 monitor.beginTask("Print Features",steps);

 for (var index = 0; index < models.length; index++) {
 // convert to pure::variants model
 var model = new IPVModel(models[index]);
 // check if model is a concrete feature model
 if (model.getType().equals(ModelConstants().CFM_TYPE) == true) {
 // convert to feature model
 var fmodel = new IPVFeatureModel(model);
 // get the root feature
 var root = fmodel.getRoot();
 // print features starting at root
 printFeatures(fo, root, monitor);
 }
 }
 } catch (e) {
 status.setMessage(e.toString());
 status.setStatus(ClientTransformStatus().ERROR);
 } finally {
 if(fo != null){
 fo.close();
 }
 }

User-defined transformation scripts with JavaScript

66

 return status;
}

/**
 * Perform transformation post-processing steps.
 *
 * This method is called after all modules have been processed and before any
 * module is cleaned up, in reverse order. The first module on which
 * {@link #prepare(IProgressMonitor)} has been called is the last on which
 * this method is called.
 *
 * This method is optional and does not need to be implemented.
 *
 * @param {org.eclipse.core.runtime.IProgressMonitor} monitor
 * The monitor for this operation
 *
 * @return {ClientTransformStatus} the status of this module method
 */
function postpare(monitor){
 var status = new ClientTransformStatus();
 status.setMessage(Constants().EMPTY_STRING);
 status.setStatus(ClientTransformStatus().OK);

 return status;
}

/**
 * Finalize JavaScript transformation module
 *
 * @param {org.eclipse.core.runtime.IProgressMonitor} monitor
 * The monitor for this operation
 *
 * @return {ClientTransformStatus} the status of this module method
 */
function done(monitor) {
 var status = new ClientTransformStatus();
 status.setMessage(Constants().EMPTY_STRING);
 status.setStatus(ClientTransformStatus().OK);

 return status;
}

function calculateWork(models) {
 var total = 0;
 for (var index = 0; index < models.length; index++) {
 // convert to pure::variants model
 var model = new IPVModel(models[index]);
 // check if model is a concrete feature model
 if (model.getType().equals(ModelConstants().CFM_TYPE) == true) {
 total += model.getElementList().size();
 }
 }
 return total;
}

/**
 * Print the information of a feature to the output file
 * and do to the children.
 * @param {java.io.FileWriter} fo
 * The file writer in order to write the information
 * @param {IPVElement} element
 * The element to print
 * @param {org.eclipse.core.runtime.IProgressMonitor} monitor
 * The monitor for this operation
 */
function printFeatures(fo, element, monitor) {
 monitor.subTask("Print: " + element.getName());

 // print information to file
 fo.append("Visible Name: ");
 fo.append(element.getVName());

User-defined transformation scripts with JavaScript

67

 fo.append(Constants().NEWLINE_STRING);
 fo.append("Unique Name: ");
 fo.append(element.getName());
 fo.append(Constants().NEWLINE_STRING);
 fo.append(Constants().NEWLINE_STRING);

 monitor.worked(1);

 // go to children
 var children = element.getChildren();
 var iterator = children.iterator();
 while (iterator.hasNext() == true && monitor.isCanceled() == false) {
 var child = new IPVElement(iterator.next());
 printFeatures(fo, child, monitor);
 }
}

The script consists of three main functions. These three functions will be called by the transformation module.

• init()

This method is optional. Necessary work can be done here, before transformation starts, like initializing the
script. Gets necessary information from transformation module, like the used variant model, the used models in
this variant, some variables and the transformation parameters. All this informations can also be retrieved from
the JavaScript transformation module using getter functions.

• prepare()

This method is optional. It is called after all transformation modules are initialized and before any transformation
module is performed.

• work()

Does the whole transformation work.

• postpare()

This method is optional. This method is called after all modules have been processed and before any module
is cleaned up, in reverse order. The first module on which prepare has been called is the last on which this
method is called.

• done()

This method is optional. After transformation is finished, this function is called, to provide possibility to do
some work after transformation.

If the transformation parameter outputfile was used, the variable out can be used to write directly to the given file.
Otherwise the variable out writes to the Java standard output. The function module_instance() provides access
to the transformation module instance, which is running the JavaScript transformation. This gives access to the
transformation module API.

Evaluate PVSCL rules in a JavaScript Transformation

In general, one of the easiest ways to create variant specific assets is through the use of JavaScript transforma-
tions. It is possible to evaluate pvSCL expressions in the context of the currently transformed variant from within
JavaScript transformations. We made this API as simple as possible, meaning all the cumbersome stuff of setting
up the evaluator as well as putting each and every parameter correctly is hidden. You just take the expression
and give it as parameter into one of two functions depending on having a rule (e.g. restriction or constraint) or
a calculation.

The following two examples show the simple usage:

Evaluator.rule('Feature_A');

Evaluator.calculation('5*6');

Transformation of Hierarchical Variants

68

The first line will evaluate to true or false depending on the selection state of the feature Feature_A and result of
the second line is going to be 30 . As you see very simple. Thus you may concentrate on implementing the heart
of the transformation and not fiddling around on the evaluator in order to set it up in the right manner.

Side note: If you want to have full access to the correct initialized evaluator, you can call

Evaluator.getDefault();

With the object returned by this call, you have the evaluator for the currently transformed variant in hand. See the
related Java API reference in the SDK documentation for more information.

6.3.4. Transformation of Hierarchical Variants

When a transformation of a hierarchical variant is performed then a single transformation is performed for each
variant in the hierarchy. Only those transformations of linked variants are executed that have the name "Default"
or the name of the top-level variant transformation (if not "Default").

The order of the transformations is top-down, i.e. first the top-level variant is transformed, then the variants below
the top-level variant, and so on. Each single transformation is performed on the whole Variant Result Model,
stating two lists of model elements, i.e. the transformation Entry-Points list and the transformation Exit-Points
list. These lists describe the section of the Variant Result Model that represents the variant to transform. Some
transformation modules may not support these lists and always work on the whole Variant Result Model.

There is a special variable $(VARIANTSPATH) that should be used in a transformation of hierarchical variants to
specify the transformation output directory. This variable contains the name of the currently transformed variant
(VDM) prefixed by the names of its parent variants (VDMs) according to the variant hierarchy. The variant names
are separated by a slash ("/"). Using this variable makes it possible to build a directory hierarchy corresponding to
the variant hierarchy. This may also avoid that the results of the transformation of one variant are overwritten by
the results of the transformation of another variant. See Section 9.9, “ Predefined Variables ” for more information
on the use and availability of variables.

Transformations of linked variants have to handle the prefixed unique names and IDs in the models of the variant
(see the section called “Unique Names and IDs in linked Variants”). Especially Conditional Text resp. Conditional
XML transformations have to reference elements with their full, i.e. prefixed, name. If for instance the condition
in a file transformed with Conditional Text is "Foo" then this condition always will fail if evaluated in the context
of a linked variant. The correct condition would be "Link1:Foo", if linked below the link element with unique
name "Link1".

6.3.5. Reusing existing Transformation

The transformation module Reuse Transformation provides the possibility to reuse already existing transformation
configurations. These existing configurations can be run with the first vdm, the last vdm or with each vdm of a
configspace or vdm selection.

The Reuse Transformation module has two mandatory parameter.

The first parameter Triggered by defines for which vdm of the current transformation the reused transformation
configuration is triggered. The three allowed values First VDM , Each VDM and Last VDM are provided in a
combo box. Each VDM is the default.

The second parameter Transformation defines the name of the transformation configuration, which will be trig-
gered by this module.

The configuration space settings are inherited as follows:

Table 6.1. Configuration Space Settings

Input Directory Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Output Directory Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Ant Build Transformation Module

69

Create Out-
put Directory

Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Cleanup Out-
put Directory

Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Create Out-
put Directory

Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Confirm Create
Output Directory

Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Confirm Cleanup
Output Directory

Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Recover Timestamps Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Force Trans-
formation

Always true, because decision was made by us-
er before running Reuse Transformation already.

Save Variant
Result Model

Always false, because cannot be defined in transforma-
tion configurations. It is configuration space settings only.

Ignore Transfor-
mation Errors

Used from the Reuse Transformation configuration.

6.3.6. Ant Build Transformation Module

The transformation module Ant Build Module provides the possibility to call an Ant build during the transforma-
tion. The module has two parameter.

The first parameter Build File defines the location of the Ant build file.

The second parameter Target defines the target for the build. If no target is given the default target of the Ant
build file will be used.

6.4. Validating Models

In the context of pure::variants, Model Validation is the process of checking the validity of feature, family, and
variant description models. Two kinds of model validation are supported, i.e. validating the XML structure of
models using a corresponding XML Schema and performing a configurable set of checks using the model check
framework.

6.4.1. XML Schema Model Validation

This model validation uses an XML Schema to check if the XML structure of a pure::variants model is correct.
This is pure syntax check, no further analyses of the model are performed.

The XML Schema model validation is disabled per default. It can be enabled selecting option "Validate XML
structure of models..." on the Variant Management->Model Handling preferences page (menu Window->Prefer-
ences). If enabled all pure::variants models are validated when opened.

Note

Invalid models will not be opened correctly if the XML Schema model validation is enabled.

For more information about XML Schema see the W3C XML Schema Documentation .

6.4.2. Model Check Framework

The model check framework allows the validation of models using a configurable and extensible set of rules (called
"model checks"). There are no restrictions on the complexity of model checks.

http://www.w3.org/XML/Schema

Model Check Framework

70

Configuring the Framework

The model check framework is configured on the Variant Management->Model Validation preference page
(menu Window->Preferences). On the Check Configurations tab the model check configurations can be man-
aged and activated (see Figure 6.29, “Model Validation Preferences Page”).

Figure 6.29. Model Validation Preferences Page

The two default configurations "All Model Checks" and "All Element Checks" are always available. "All Model
Checks" contains all model checks that perform whole model analyses. Compared with "All Element Checks"
containing all checks that perform analyses on element level. The configuration "All Element Checks" is enabled
per default if the pure::variants perspective is opened the first time.

A model check configuration is activated by selecting it in the Available Configurations list. If more than one
configuration is selected, the checks from all selected configurations are merged into one set that becomes acti-
vated.

The checks contained in a configuration are shown in the Selected Configuration list by clicking on the name
of the configuration. The checks are listed by its names followed by the list of model types supported by a check.

Additionally the icon reveals if the check is enabled for automatic model validation (see the section called
“Performing Model Checks”). A brief description of a check is shown by moving the mouse pointer over the
check name.

All but the two default configurations "All Model Checks" and "All Element Checks" can be deleted by clicking
first on the name of the configuration and then on button Delete .

A new configuration can be created by clicking on button New . This will open the New Check Configuration
dialog as shown in Figure 6.30, “New Check Configuration Dialog” .

Model Check Framework

71

Figure 6.30. New Check Configuration Dialog

For a new check configuration a unique name for the configuration has to be entered. The available checks are
shown in the Available Checks tree and can be selected for the new configuration by clicking on the check boxes
of the checks. Clicking on the root of a sub-tree selects/deselects all checks of this sub-tree.

Detailed information about a check are displayed in the Check Details area of the dialog if the name of a check is
selected. The Model Types field shows the list of model types for which the corresponding check is applicable.
The Description field shows the description of the check.

The same dialog appears for editing and copying check configurations using the Edit and Copy buttons. Only
non-default configurations can be edited.

And with the "Enable check for..." button (or clicking on the icon of a check)

Automatic Model Validation

On the Automatic Validation tab it can be configured which checks are allowed to be performed automatically
(see Figure 6.31, “Automatic Model Validation Preferences Page”). If the automatic model validation is enabled,
after every change on the model those checks are performed from the active check configurations that are enabled
for automatic model validation.

Model Check Framework

72

Figure 6.31. Automatic Model Validation Preferences Page

The Available Checks tree shows all known checks independently from the selected check configuration. Clicking
on the check box of a check toggles the automatic validation state of the corresponding check. Clicking on the
root of a sub-tree toggles all checks of this sub-tree.

A description of the check is shown by moving the mouse pointer over the check name.

Performing Model Checks

A model can be checked using the selected model check configurations by opening the model in a corresponding

model editor and pressing button in the tool bar. This will start a single model validation cycle. The progress
of the model validation is shown in the Progress view.

Refactoring Models

73

Figure 6.32. Model Validation in Progress

If no model check configuration is selected a dialog is opened inviting the user to choose a non-empty check
configuration. This dialog can be disabled by enabling the "Do not show again" check box of the dialog.

The button is used to enable automatic model checking, i.e. after every change on the model a new check cycle
is started automatically. In contrast to the single model validation cycle only those checks are performed from
the active check configurations that are enabled for automatic model validation. Automatic model validation is
enabled by default.

The result of a model check cycle is a list of problems found in the model. These problems are shown in the
Problems view and as markers on the model. A list of quick fixes for a problem can be shown either by choosing
"Quick Fix" from the context menu of the problem in the Problems view or by clicking on the corresponding
marker on the model. For some problems special quick fixes are provided fixing all problems of the same kind.

6.5. Refactoring Models

To simplify the editing of Feature and Family Models pure::variants provides a set of refactoring operations. They
support the user to efficiently change model objects like elements, relations, restrictions and attributes.

The refactoring operations can be accessed via the context menu of the Feature and Family Model Editors, see
Figure 6.33, “Refactoring context menu for a feature” .

Comparing Models

74

Figure 6.33. Refactoring context menu for a feature

The refactoring operations provided in the context menu depend on the selection made in the editor. For instance,
select two or more features and right-click on one of the selected features to open the context menu. The appearing
Refactoring menu contains for example items for changing the variation type. This operation allows to modify the
variation type for all selected features at once. Refactoring operations can include changes beyond the selected
element on references in the selected scope. Therefor, refactoring operations can be long running actions. Further-
more it should be noted, that the appropriate rights have to be granted in all affected models and elements to ensure
a successful operation. If access rights are missing a warning will be shown. Proceeding only on the models and
elements where rights are sufficiently available, can result in references that are not updated.

The following list summarizes the available refactoring operations.

Table 6.2. Refactoring Operations

Operation on Available Operations

Unique Name

Extract

Delete

Variation Type Change

Element Type Change

Elements

Default-Selected State Change

Attribute Name, Type, and Value Change
Attributes

Inheritable and Fixed State Change

Restrictions and Constraints Restriction/Constraint Code Change

Relation Type Change
Relations

Relation Targets Change

To extract an element or feature from a model, the target model has to exist. References to the extracted element
or feature (via unique name or ID) will be updated in restrictions, constraints, and calculations with respect to
the selected scope, e.g. the enclosing project, the project and all referenced projects, or the whole workspace.
Depending on the scope and the amount and size of items to process, the refactoring operations can be long running
actions.

6.6. Comparing Models

In pure::variants two models can be compared using the Model Compare Editor. It is based on the Eclipse Compare.

General Eclipse Compare

75

6.6.1. General Eclipse Compare

In general, comparison of resources is divided into two different types. One is to compare two resources with
each other. This is called a two-way compare. A two-way compare can only reveal differences between resources,
but can not recognize in which resource a change was performed. A two-way compare in Eclipse is obtained by
selecting two resources and then choosing Compare With->Each Other from the context menu. Other two-way
comparisons supported by Eclipse are Compare With->Revision and Compare With->Local History .

A more comfortable compare is the so called three-way compare. In addition it has an ancestor resource from which
is known that this is the unchanged resource. In this way it can be determined which change was performed in
which resource. Such compare editors are opened for instance for synchronizing resources with CVS repositories
which always maintain a third ancestor resource by using Compare With->Latest from Head and Compare With-
>Another Branch or Version .

The compare editor is divided into an upper and a lower part. The upper part shows structural changes in a differ-
ence tree. The lower part presents two text editors located next to each other. Changes are highlighted in colored
lines or rectangles on both sides. Those belonging to one change are connected with a line. For two-way compar-
isons the changes are always grey-colored. In three-way comparisons outgoing (local) changes are grey-colored,
incoming (remote) changes blue-colored, and changes on both sides which are conflicting are red-colored.

A resource compare can be used to view changes for two resources. In addition it provides the possibility to apply
single changes to local models. Therefor the compare editor provides a toolbar, located between the upper and
the lower part, with actions which can be used to apply changes: Copy All from Left to Right , Copy All Non-
Conflicting Changes from Right to Left , Copy Current Change from Left to Right , Copy Current Change
from Right to Left , Select Next Change , Select Previous Change . You can step through the changes and
apply them if the specific buttons are enabled. As stated above refer to the Eclipse Workbench User Guide for
detailed information on this.

6.6.2. Model Compare Editor

In general the Eclipse text compare editor is opened for any resource after calling the actions described in the
previous section. For pure::variants models the special pure::variants Model Compare Editor is opened. This makes
it easier to recognize changes in pure::variants models. Typical changes are for example Element Added, Attribute
Removed, Relation Target Changed .

The upper part of the editor, i.e. the structure view, displays a patch tree with a maximum depth of three. Here
all patches are grouped by their affiliation to elements. Thus Element Added and Element Removed are shown as
top level patches. All other patches are grouped into categories below their elements they belong to. Following
categories exist: General , Attributes , Relations , Restrictions , Constraints and Misc . The names of the
categories indicate which patches are grouped together. Below the category Misc only patches are shown that are
usually not displayed in the models tree viewer. As in the Eclipse text compare you can step through the patches
with the specific buttons. Each step down always expands a model patch if possible and steps into it. The labels for
the patch consist of a brief patch description, the label of the patched model item and a concrete visualization of the
old and the new value if it makes sense. Here is an example: Attribute Constant Changed: attrname = 'newValue' <-
oldValue. In this attribute patch's label a new value is not additionally appended, because it is part of the attributes
(new) label "attrname = 'newValue' ".

The lower part of the model compare editor is realized using the usual model tree viewers also used in the model
editors. They are always expanded to ensure that all patches are visible. As in the text compare editors, patches are
visualized by colorized highlighted rectangle areas or lines using the same colors. In opposite to the text compare
they are only shown if the patch is selected in the upper structure view. For two-way comparisons it is ambiguous
which model was changed. Because of this an additional button is provided in the toolbar which allows to exchange
two models currently opened in the model compare editor. This leads from a remove-patch into an add-patch, and
for a change the new and the old value are exchanged.

The model compare editor compares two model resources on the model abstraction layer. Hence textual differences
may exist between two models where the model compare editor shows no changes. Thus conflicts that would be
shown in a textual compare are not shown in the model compare editor. This allows the user to apply all patches
in one direction as desired and then to override into the other direction.

/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm

Conflicts

76

6.6.3. Conflicts

In three-way comparisons it may occur that an incoming and an outgoing patch conflict with each other. In general
the model compare editor distinguishes between fatal conflicting patches and warning conflicts. In the tree viewer
conflicts are red-colored. A fatal conflict is for example an element change on one side, while this element was
deleted on the other side. One of these patches is strictly not executable. Usually warning conflicts can be merged,
but it is not sure that the resulting model is patched correctly. Typical misbehaviour could be that some items
are order inverted. To view which patch conflicts with which other path just move the mouse above one of the
conflicting patches in the upper structure view. This and the conflicting patch then change their background color
either to red for fatal conflicts or yellow for conflict warnings.

In general a sophisticated algorithm tries to determine conflicts between two patches. These results are very safe
hints, but 100% safety is not given. For a conflicting or non-conflicting patch it may occur that it can not be
executed. Conflict warning patches may be executed without problems and lead to a correct model change. In
general the user can try to execute any patch. If there are problems then the user is informed about that. If there are
problems applying a non-conflicting patch, the editor should be closed without saving and reopened. Then another
order of applying patches can solve this problem. The actions Apply All Changes ... do only apply incoming and
non-conflicting changes. Other patches must be selected and patched separately.

6.6.4. Compare Example

Figure 6.34, “Model Compare Editor” shows an example how a model compare editor could look like for a model
that is synchronized with CVS. The upper part shows the structure view with all patches visible and expanded rep-
resenting the model differences. A CVS synchronize is always a three-way compare. There are incoming changes
(made in the remote CVS model) and outgoing (local) changes. As to see in the figure the incoming changes
have a blue left arrow as icon, while outgoing changes have a grey right-arrow as icon. Added or removed items
have a plus or a minus composed to the icon. Conflicting changes are marked with a red arrow in both directions
displayed only at the element as the patches top level change. In this example a conflict arises at the element
conflicting. In CVS its unique name changed and a relation was added while this element was deleted locally.
Two patches show a red background because the mouse hovered above one of these patches which is not visible
in the figure. Note that the tree viewers in the lower part show only the patches which are selected above. The
colors correspond to the patch direction.

Searching in Models

77

Figure 6.34. Model Compare Editor

6.7. Searching in Models

6.7.1. Variant Search

Feature and Family Models can be searched using the Variant Search dialog. It supports searching for elements,
attributes, attribute values, restrictions, and constraints.

The Variant Search dialog is opened either by choosing the Search->Variant menu item, by clicking on the
Eclipse Search button and switching to the Variant Search tab, or by choosing Search from the context menu
of the model editor.

Variant Search

78

Figure 6.35. The Variant Search Dialog

The dialog is divided into the following sections.

Search String

The search string input field specifies the match pattern for the search. This pattern supports the wild cards "*"
and "?".

Wild card Description

? match any character

* match any sequence of characters

Case sensitive search can be enabled by checking the "Case sensitive" check box. The settings for previous searches
can be restored by choosing a previous search pattern from the list displayed when pressing the down arrow button
of the Search String input field.

Search Type

In this group it is specified what kind of model elements is considered for the search.

Elements Search element names matching the pattern.

Attributes Search element attribute names matching the pattern.

Attribute Values Search element attribute values matching the pattern.

Restrictions Search restrictions matching the pattern.

Constraints Search constraints matching the pattern.

For refining the search the "Element Scope" group is activated for search type Elements and the "Attribute Scope"
group is activated for search type Attribute Values.

Limit To

This group is used to limit the search to a specific model type. The following limitations can be made.

All Occurrences All model types are searched.

Quick Overview

79

Family Models Only Family Models are searched.

Feature Models Only Feature Models are searched.

Element Scope

This group is only activated if Elements search type is selected. Here it can be configured against which element
name the search pattern is matched.

Unique Name Match against the unique name of the element.

Visible Name Match against the visible name of the element.

At least one of the options has to be chosen.

Attribute Scope

This group is only activated if Attribute Values search type is selected. In this group the following refinements
can be made.

Calculations Match against attribute value calculations.

Constants Match against constant attribute values.

At least one has to be selected. To limit the search to values of attributes with a specific name, this name can be
inserted into the Attribute Name input field.

Scope

This group is used to limit the search to a certain set of models. The following options are available.

Workspace Search in all variant projects of the workspace.

Selected resources Search only in the projects, folders, and files that are selected in the Variant Projects
view.

Enclosing projects Search only in the enclosing projects of selected project entries in the Variant
Projects view.

Working set Search only in projects included in the chosen working set.

For more information about working sets, please consult the Workbench User Guide provided with Eclipse (
Help->Help Contents, section "Concepts"->"Workbench"->"Working sets").

Search Results

The results of the search are listed in the Variant Search view supporting a tree and table representation and a
search result history. For more information about the Variant Search view see Section 7.4.3, “ Search View ” .

After the search is finished blue markers are created on the right side of models containing matches. These markers
visualize the matches in the model and provide an easy way to navigate to the matched model items simply by
clicking on a marker.

6.7.2. Quick Overview

Within a model editor it is possible to search using the Quick Overview. Especially in large models it is sometimes
hard to find an element with a known name or a known part of the name. To shorten the navigation through tree
nodes or tables in model editors pure::variants provides a quick overview which you may already know from
Eclipse as Quick Outline . If a model editor (e.g. a Feature Model Editor) is active then pressing the shortcut CTRL
+O opens a small window with a sorted and filtered list of all model elements. Figure 6.36, “Quick Overview in
a Feature Model” shows an example for the quick overview.

/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm

Analyse Models

80

Figure 6.36. Quick Overview in a Feature Model

After the quick overview popped up a filter text can be entered. Shortly after the modification of the filter text
the list of the quick overview will be updated according to the given filter. The filter can contain wild cards like
the question mark ? and the asterisk * as place holders for one arbitrary character and an arbitrary sequence of
characters, respectively. You may also use Camel Case notation. Camel case means that between each capital
letter and the letter in front of it a * wild card is placed internally to the filter text. For example, typing ProS as
filter text would also find elements like Protocol Statistics or Project Settings .

Finally, if the desired element is shown in the quick overview then a double-click on it lets the editor navigate
to that element. You can also use the arrow keys to select the item from the list and press ENTER to get the
same effect.

Note

The quick overview presents only those model objects which the active model editor shows. For instance,
if the editor shows relations then the quick overview presents them, too. Additionally the filter set to the
editor has effect to visibility of elements in the quick overview.

6.8. Analyse Models

Having a configuration space with a lot of variant description models it is very likely, that some of the variants
are very similar or even equal. This section describes tasks, which enable the user to find similar variants and
selection cluster within these variants.

6.8.1. Finding variant description models with similar selections

For finding variant description models with similar selections, pure::variants provides two solutions.

The first one starts with one vdm, selected by the user and calculates the similarity between this base vdm and
all other vdms from the same configuration space. The second possibility is to calculate the similarity between a
selection of vdms from a configuration space.

Finding variant description models similar to one base vdm

To calculate the similarity, between one vdm and the other vdms of the same configuration space, select the base
vdm and start the calculation with the Similar Variants action in the Model and Variant Analysis sub menu of
the context menu.

Finding variant description models with similar selections

81

Figure 6.37.

This opens a dialog, where the input data for the similarity can be configured. It allows the user to select which
inout models and which inout elements shall be used for similarity calculation. Additionally it can be configured
if attributes and instances shall be taken into account.

Finding variant description models with similar selections

82

Figure 6.38. The similarity input configuration dialog

A dialog comes up, as soon as the calculation is finished. This dialog shows all variants of the configuration space
and the similarity to the base vdm in percent. This dialog allows the user to select vdms for further analysis.

Figure 6.39. The similarity calculation result dialog

The selected vdms can be opened using one of the buttons in the lower part of the dialog.

• In Matrix opens the selected vdms in the matrix editor. An already open matrix editor is reused.

• In VDM Editor opens each selected vdm in a variant description model editor.

Finding variant description models with the same selection

83

• In Compare Editor opens one compare editor for each selected vdm, which shows the compare result between
the selected vdm and the base vdm.

Calculating similarity between multiple variant description models

To calculate the similarity between a selection of variant description models from one configuration space the
action Open Similarity Matrix in the Model and Variant Analysis sub menu in the context menu is used. This
action starts the calculation of the similarity between all selected vdms. It is also possible to start this action for
the whole configuration space by selecting the configuration space folder. The used algorithm is the same as for
the Same Selection and Similar Variants actions.

The result of the calculation is presented in the Similarity Matrix . Each row shows the similarity values between
the vdm represented by this row and the vdms represented by the columns.

Figure 6.40. Similarity Matrix

The Open Compare Editor action from the context menu of one similarity value is used to have a detailed look on
the differences between the corresponding vdms. This opens the vdms in a compare editor.

With the Export Similarity Matrix... action from the context menu the similarity matrix can be exported to a
Microsoft Excel document.

Figure 6.41.

6.8.2. Finding variant description models with the same selection

The algorithm, which is used here is the same algorithm used in the Similar Variants analysis. The scope is just set
to 100% similarity. The action is used the same way like the Similar Variant action. Select one base vdm and start
the calculation with the Same Selection action in the Model and Variant Analysis sub menu of the context menu.

Find elements with the same selection states in all variant description models

84

The same selection result dialog comes up, which shows all variants from the same configuration space, that have
the same selections as the base vdm. This dialog allows the user to select vdms for further analysis.

Figure 6.42. The same selection result dialog

The selected vdms can be opened using one of the buttons in the lower part of the dialog.

• In Matrix opens the selected vdms in the matrix editor. An already open matrix editor is reused.

• In VDM Editor opens each selected vdm in a variant description model editor.

• In Compare Editor opens one compare editor for each selected vdm, which shows the compare result between
the selected vdm and the base vdm.

6.8.3. Find elements with the same selection states in all variant
description models

To find elements, which selection state is equal in all variants pure::variants provides the action Element Cluster
Analysis from the context menu of several selected vdms or the whole configuration space folder. Having the same
selection state in all selected variants means, that an element a has the same selection state as element b for all
selected variants. It does not mean, that element a and element b are selected or deselected in all checked variants.
The selection state may change from variant to variant.

This action brings up the input model selection dialog. This dialog allows the user to define the scope of the
analysis. Deselected input models will not contribute to the analysis. The option Include mandatory elements
includes mandatory elements into the calculation, since this elements are automatically selected, they are ignored
during the analysis by default. Option Use suer selection only causes the analysis to ignore all automatic selections
during the calculation and just consider selection made by an user.

Find elements with the same selection states in all variant description models

85

Figure 6.43. The same selection result dialog

The calculation result is presented in the view Element Cluster . Elements, which are having the same selection
state in all vdms are grouped in element cluster. There are 4 types of clusters:

• The cluster Allways On lists all elements, which are selected in all considered variants.

• The cluster Allways Off lists all elements, which are never selected in the considered variants.

• The cluster Multi Selection Cluster lists variable elements. A Multi Selection Cluster contains more than one
element.

• The cluster Single Selection Cluster lists variable elements. A Single Selection Cluster contains exactly one
element.

Each cluster contains the following informations. The number of elements in that cluster, shown in brackets after
the cluster name. The elements grouped by the input models and their selector. For each selector the vdm is shown.

Besides the elements for each vdm is shown, if the elements of that cluster are selected or deselected.

Hint: pure::variants navigates to the elements in the input models after double clicking on the elements in the
result view.

Find constant and variable elements in all variant description models

86

Figure 6.44. The same selection result dialog

For further analysis the result view provides some actions. For each cluster a filter can be created using the Create
Filter for Cluster Elements action in the context menu on a cluster tree item. This creates a filter, which can be
used in all pure::variants editors to set the focus on the elements of that cluster.

The action Export Result to CSV exports the result data to a csv file, which can be used for further data analysis
outside pure::variants. The same output csv can be created using a transformation. The transformation module is
called Element Cluster Report and has the same options as the dialog described above.

6.8.4. Find constant and variable elements in all variant descrip-
tion models

To find out which elements are variable and which elements are constant in all variants pure::variants provides
the action Selection State Analysis from the context menu of several selected vdms or the whole configuration
space folder. An element is considered to be variable, if it is at least selected in one vdm and not selected in all
considered vdms.

This action brings up the input model selection dialog. This dialog allows the user to define the scope of the
analysis. Deselected input models will not contribute to the analysis. The option Include mandatory elements
includes mandatory elements into the calculation, since this elements are automatically selected, they are ignored
during the analysis by default. Option Use suer selection only causes the analysis to ignore all automatic selections
during the calculation and just consider selection made by an user.

Find constant and variable elements in all variant description models

87

Figure 6.45. The same selection result dialog

The calculation result is presented in the view Selection State Cluster . There are 3 types of cluster:

• The cluster Allways On lists all constant elements, which are selected in all considered variants.

• The cluster Allways Off lists all constant elements, which are never selected in the considered variants.

• The cluster Variable lists variable elements.

Each cluster contains the following informations. The number of elements in that cluster, shown in brackets after
the cluster name. The elements grouped by the input models and their selector. For each selector the vdm is shown.
In the label of the elements the number of selections is shown.

Hint: pure::variants navigates to the elements in the input models after double clicking on the elements in the
result view.

Filtering Models

88

Figure 6.46. The same selection result dialog

For further analysis the result view provides some actions. For each cluster a filter can be created using the Create
Filter for Cluster Elements action in the context menu on a cluster tree item. This creates a filter, which can be
used in all pure::variants editors to set the focus on the elements of that cluster.

The action Export Result to CSV exports the result data to a csv file, which can be used for further data analysis
outside pure::variants.

6.9. Filtering Models

Most views and editors support filtering. Depending on the type of view, the filtered elements are either not shown
(table like views) or shown in a different style (tree views). Filters can be defined, or cleared, from the context
menu of the respective view/editor page. When the view/editor has several pages the filter is active for all pages.

Computing Model Metrics

89

Figure 6.47. Filter definition dialog

Arbitrarily complex filters based on comparison operations between feature/element properties (name, attribute
values, etc.) and logical expressions (and/or/not) are supported. Comparison operations include conditions like
equality and containment, regular expressions (matches) and checks for the existence of an attribute for a given el-
ement (empty/not empty). See Section 9.10, “ Regular Expressions ” for more information on regular expressions.

Filters can be named for later reuse using the Named Filter field. The drop-down box allows access to previously
defined filters. Fast access to named filters is provided by the Visualization view, which can be activated using the
Windows->Views->Other->Variant Management->Visualization item. See Section 7.4.2, “ Visualization View ”
for more information on the view.

6.10. Computing Model Metrics

All pure::variants model editors provide an extensible set of metrics for the opened models. These metrics can be
displayed by choosing Show Metrics from the context menu of a model editor. If metrics shall be displayed only
for a sub-tree of a model, the root of this sub-tree has to be selected before the context menu is opened.

Extending the Type Model

90

Figure 6.48. Metrics for a model

The available metrics are listed in a tree showing the name and overall results of the metrics on top level. Partial
results and detailed information provided by a metric are listed in the corresponding sub tree. An explaining
description of a metric is displayed in the Description field if the name of the metric is marked.

The radio buttons at the bottom of the metrics dialog are used to switch between whole model and selected elements
metric calculation. For VDMs, metrics are always calculated for the whole model. If a VDM has not been evaluated
yet, the calculated metrics may be outdated and can show incorrect values.

On the Variant Management->Metrics preferences page (menu Window->Preferences), the set of metrics to
apply can be configured.

6.11. Extending the Type Model

For every project a Type Model can be created extending the global Type Model. This model belongs to the project
and can be shared like any other pure::variants model. This is an easy and a straight forward way to contribute
own types to be used in the Feature and Family Models of the project containing the Type Model.

To create a Type Model right-click on a project in the Variant Project View and choose New->Type Model from
the context menu. This creates a new file in the project named like the project and with extension ".typemodel".
Note that only one Type Model can be created per project. The new Type Model is opened in the Type Model
Editor. This editor also is opened by double-clicking on an existing Type Model file (see Figure 6.50, “Type Model
Editor Example”).

The Type Model Editor consists of two parts. The left part shows the list of types defined in the model, while the
right part provides an editing area for the type selected on the left. Additionally the left part provides a context
menu for adding and removing types of the type model.

The Type Model Editor allows to add element and attribute types. After adding an attribute type the right part
allows to change the Name , Base Type (that is the type which this type is specializing), whether this type is
Abstract (and thus can only be used as base type for other types), and whether this is an enumeration type only
allowing one of the listed values.

Extending the Type Model

91

The editor provides for element types to change the Label , Name and the Base Type . Additionally the element
type may be set Abstract and if there shall be a generic New Wizard, which would allow to easily create an element
of that type. Since 5.0.9 a custom icon can for element types can be defined. The editor allows to set and delete
custom icons for element types.

The option Show Wizard enables or disables a specific new element wizard for the specified element type in the
model editors. The new element wizard can be found in the context menu: New -> More -> the new element.
We strongly recommend enabling it, if a new element type contains mandatory attributes, since the wizard will
automatically create the attribute for the corresponding element type.

Figure 6.49. Type Model Editor Example

For an element type attributes can be created. Those attributes present the default attributes which are defined for
a concrete element of that type. For each attribute a Name , a Type , whether it is a Single Value , List or Set can be
specified. Following flags can be set for an attribute: Optional (whether this attribute is required for an element),
Fixed (whether it has a constant value or can be overridden in a VDM), Read Only (whether the user can provide
a value for it) and Invisible (whether it is visible to the user).

After a Type Model was created or changed, the types defined in the Type Model are immediately available for
modeling in the corresponding project.

Figure 6.50. Type Model Editor Example

Using Multiple Languages in Models

92

6.12. Using Multiple Languages in Models

pure::variants is able to deal with multiple languages for the visible name of elements and for all descriptions.
This allows to define Feature and Family Models in more than one language.

The default language for models is defined in the preferences on the visualization page. Select Window->Prefer-
ences... from menu and then Variant Management->Visualization to change it. The default language is used for
all views and editors.

To edit visible names or descriptions for a particular language use the language button () in the element
properties dialog as in Figure 6.51, “Language selection in the element properties dialog” . Clicking on the arrow
of that button shows a list of languages currently in use in the model. By selecting a language from that list the
visible name and all descriptions in the element properties dialog are shown in that language. You can change them,
switch to another language and then change them again. pure::variants saves the visible name and all descriptions
for each chosen language. If the desired language is not present in the language list then select the More... item
to chose the language in the upcoming dialog. The selected language will be added to the language list.

Figure 6.51. Language selection in the element properties dialog

Note

There is a language with name Unspecified and abbreviation ?? available. This language can be used like
others. Typically, it is used when the language of visible names and descriptions do not play a role. After
installation of pure::variants it is set as the first default language. All texts of old models are treated as
if they were entered for the language Unspecified .

The visible name and the description fields sometimes show texts from another language than the active, usually
with an annotation like [Language: EN] . This occurs when no visible name or description was entered for the

Importing and Exporting Models

93

active language, to point out that there is a text for another language (in the example EN stands for English).
However, simply modify the text to specify a text for the active language. Or, you may replace it by its translation.

Multiple languages of visible names and descriptions are also supported in the properties view (see Section 7.4.6,
“ Properties View ”) and in the model properties page as well as in the general properties page of a model (see
Section 7.5.1, “ Common Properties Page ” and Section 7.5.2, “ General Properties Page ”). Look for the language

button and use it like described above.

6.13. Importing and Exporting Models

6.13.1. Exporting Models

Models may be exported from pure::variants in a variety of formats. An Export item is provided in the Navigator
and Variants Project views context menus and in the File menu. Select Variant Resources from category Variant
Management and choose one of the provided export formats.

Currently supported export data formats are HTML, XML, CSV and Directed Graph. The Directed Graph format
is only supported for some models. Additional formats may be available if other plug-ins have been installed.

HTML export format is a hierarchical representation of the model. XML export format is an XML file containing
the corresponding model unchanged.

CSV, character separated values, export format results in a text file that can be opened with most spreadsheet
programs (e.g. Microsoft Excel or OpenOffice). CSV export respects the filters set in the editor of the model to
export, i.e. only the matching elements are exported. The export wizard permits the columns to be generated in
the output file to be selected.

HTML Export

The HTML Export generates representations for feature and family models in HTML. The generated HTML file
can be opened by any browser (e.g. "Internet Explorer", "Firefox", etc.).

The export will generate a navigation section which represents all model elements hierarchical in a tree and the
data of the elements on the right side of the generated html page. The navigation tree will help to navigate to
elements quickly. The selected element in the navigation section will be shown on top of the content section. Each
section of an element includes the following paragraphs:

• General Properties

• Description

• Properties

• Relations, Restrictions and Constraints

The General Properties paragraph shows information like Unique Name , Element Class , Variation Type , Element
Type and Default Selected .

The following two pictures are showing the HTML Export wizard. The first page enables the user to define an
absolute path for the output file. Using pure:variants path variables is supported. The style of the html output can
be adjusted individually by referencing your own stylesheet (*.css) either as web URL or local file. The stylesheet
can either be linked or inlined in the html output file.

Exporting Models

94

Figure 6.52. HTML Export Wizard

Define output path and css file path.

On the second configuration page a filter can be selected, which applies to the selected model. Elements which
apply to the filter are not included in html output. Please see Section 6.9, “ Filtering Models ” for further instruc-
tions. To hide specific information (e.g. "Restrictions", "Specific Attributes",...) in the selected model a tree layout
can be selected in the combo box Layouts . For further Information see the section called “ Tree Editing Page ” .

Exporting Models

95

Figure 6.53. HTML Export Wizard

Define filter and tree layout.

The following stylesheet classes are supported in the HTML Export.

Table 6.3. Table of CSS classes

CSS Class Description

.section All sections including "General Properties", "Descrip-
tion", "Properties" and ...

.ps-general "General Properties" section placed beneath Feature
headline

.ps-description "Description" section placed beneath "General Proper-
ties"

.ps-properties "Properties" section placed beneath "Description"

.ps-relations "Relations, Restrictions, Constraints" placed beneath
"Properties"

.ps-breadcrumb Breadcrumb navigation path beneath Feature's headline

.ps-feature Section of a Feature

Is the html output opened in a browser the following interactions are available:

• Breadcrumb navigation placed beneath each element headline to navigate quickly to the parents of the element.

• Expand/Collapse tree buttons on the bottom of the navigation on the left side of the website to expand/collapse
the navigation tree.

• Expand/Collapse model buttons on the right bottom of the website to expand/collapse all element sections.

• Expand/Collapse buttons on any element sections and headline to expand/collapse all element sections and
headline of the same type in the whole html document.

Exporting Models

96

• Elements having a relation have a hyperlink to quickly navigate to the related elements.

The following image shows a typical html export.

Figure 6.54. HTML Export Result

HTML Export example.

It is not possible to export a Variant Description Model using the export wizard as described above. For exporting
a vdm a transformation module is used. The transformation is described in the next section.

HTML Transformation Module

For exporting a vdm to a html document the transformation module HTML Transformation Module is used. See
below the module in the transformation module selection dialog.

Exporting Models

97

Figure 6.55. HTML Transformation Module

Selection of HTML Transformation Module

The next image shows the parameter of this transformation module.

The parameter Output enables the user to define a different output folder, for the result of the HTML transforma-
tion.

The transformation module for HTML has three different modi, called Result Models Tailored , Result Models
Annotated and Input Models Only . The modus is selected with the parameter Mode

The Result Models Tailored mode executes a transformation of on variant description model and will output the
transformed feature and family models as html representation. Each model will generate a single html output file.
The name of this file will be the name of the model suffixed with the model type. In this mode only elements part
of the variant will get exported to the html.

The Result Models Annotated mode exports all elements defined in the input models, but it will gray out all the
elements, which are not part of the transformed variant..

The Input Models Only mode doesn't execute a transformation but exports all input models defined in the used
configuration space. Furthermore are all configuration parameters definable except the filter parameter.

Third parameter Layout is optional. If used it defines a tree layout, which will be used during the transformation.
(the section called “ Tree Editing Page ”)

Fourth parameter Stylesheet defines whether No Stylesheet is used or if a Link Stylesheet is used, or if a Inline
stylesheet is used.

Parameter Stylesheet Path is optional, but needed if Link Stylesheet or Inline Stylesheet was selected. It defines
the path to the local css file or a URL to a remote css file.

The last two optional parameter allow the user to filter the input models of the configuration space. The Model
Type Filter allows the user to filter the input models regarding their type. Additionally the parameter Model Name
Filter allows the user to specify a regular expression, which is used to filter the models by their names.

Exporting Models

98

Figure 6.56. HTML Transformation Module Parameters

Configuration of HTML Transformation Module.

Directed Graph Export

The directed graph export format generates a model graphs in the DOT language and with appropriate tools in-
stalled also images in many other image format such as JPEG, PNG, BMP. This can be used for generation of
images for use in documentation or for printing. If the DOT language interpreter from the GraphViz package (
http://www.graphviz.org/) is installed in the computers executable path or the packages location is provided as a
preference (Windows->Preferences->Variant Management->Image Export), many image formats can be generat-
ed directly. The dialog shown in Figure 6.57, “Directed graph export example” permits many details of the output,
such as paper size or the layout direction for the model graph, to be specified. Graphs for sub-models may be
exported by setting the root node to any model element. The Depth field is used to specify the distance below the
root node beyond which no nodes are exported. The Colored option specifies whether Feature Models are exported
with a colored feature background indicating the feature relation (yellow= ps:mandatory , blue= ps:or , magenta=
ps:option , green= ps:alternative). Figure 6.58, “Directed graph export example (options LR direction, Colored)”
shows the results of a Feature Model export using the Left to Right graph direction and Colored options.

http://www.graphviz.org/

Importing Models

99

Figure 6.57. Directed graph export example

Figure 6.58. Directed graph export example (options LR direction, Colored)

6.13.2. Importing Models

An Import item is provided in the Navigator and Variants Project views context menus and in the File menu.
Select Variant Models or Projects from category Variant Management and choose one of the provided import
sources.

Currently there exists following generic imports which are discussed below:

• Import a Family Model from source directories. This import creates a Family Model or parts of a Family Model
from an existing directory structure of Java or C/C++ source code files.

• Import a Feature Model from a CSV file.

• Import a Feature Model from an Excel file.

To learn more about how to import pure::variants server projets, see the documentation pure::variants Server
Support Plug-In Manual. The Following steps explain how to import a Feature or a Family model from a CSV
file accordingly:

Importing Models

100

• Make sure you change the perspective to "Variant Management" or " Variant Projects view" respectively.

• Import item is provided in the Navigator and in the context menu and in the file menu

• To Open the Import Wizard dialog, right click on the file and select import from the menu option. Select "Variant
Models or Projects" as shown in the below dialog. Click "next" to continue.

Figure 6.59. Import Dialog

• Choose "Import a pure::variants Model from a CSV file" and click "next" to continue.

Importing Models

101

Figure 6.60. Select Variant Import Format

• Select the source file from your local directory and press "next"

Importing Models

102

Figure 6.61. Specify Source file

• Specify the pure::variants model, enter the model name of your choice and press "Finish"

Importing Models

103

Figure 6.62. Specify pure::variants model

• The import is completed successfully and you can now see the imported model as shown in the below figure

Figure 6.63. Imported Feature Model

While importing, a few fields are directly used by pure::variants to build the model. Other fields are imported as
attributes to the elements. These fields are:

Table 6.4. Import Fields

Unique Name Unique name of an element.

Unique ID Unique Id of an element

Visible Name Visible name of an element.

Variation Type The variation type of an element. Possible values are:
ps:mandatory, ps:optional, ps:or and ps:alternative.
If no variation type is given ps:mandatory is used.

Parent Unique ID The Unique ID of the parent element.

Importing Models

104

Parent Unique Name The Unique Name of the parent element.

Parent Visible Name The Visible Name of the parent element.

Parent Type The Type of the parent element.

Class The class of an element, most likely ps:feature for
Feature Model or ps:component for Family Model.

Type The type of an element, most likely ps:feature for
Feature Model or ps:component for Family Model.

For importing a CSV to a Feature Model the field Unique Name is necessary. If you like to import a hierarchical
model either the fields Unique ID and Parent Unique ID or Unique Name and Parent Unique Name are
necessary as well. In case of importing an hierarchical model the element without Parent Unique ID will be the
root element, if no Parent Unique IDs given, the first element without will be the model root.

Please note, the CSV export of pure::variants exports more fields as the CSV import of pure::variants can import.
Fields such as Relations , Restriction and Constraint are ignored by CSV import. Therefore a full round trip
with the help of the CSV data format is not possible.

The third generic import, imports a Feature Model from an Excel file. While importing a few fields are directly
used by pure::variants to build the model.

The Excel file needs a specific structure so pure::variants can interpret the information and generate models auto-
matically from an Excel file. See below example shows this structure.

Figure 6.64. Excel File Structure

All cells named with name "Features" are used as unique names for features during the import. Names, which
contains newlines become hirarchical. Meaning first name is the parent name and names after the newline are
becoming childs of the first feature.

Cells names with "Variants" are considered to define variants during the import. In this example three variants
will be created: Indoor, Outdoor and Thermometer. Those variants will be created in a configuration space named
"Variants". The Selections are created based on regular expressions, which can configured. By Default "X" and
"x" are considered as selection and "-" is considered to be an Exclusion. All other values become values of an
attribute called "value". Empty cells are considered as unselection of the corresponding element.

The cells of the "Types" named range define the variation types of the cerated features.

Importing Models

105

This table can be alligned vertical or horizontal and all names for the named ranges and regular expressions for
the selections are configurable in the import wizard.

The Following steps explain how to import a feature model from an example excel file accordingly:

• Make sure you change the perspective to "Variant Management" or " Variant Projects view" respectively.

• Import item is provided in the Navigator and in the context menu and in the file menu

• To Open the Import Wizard dialog, right click on the file and select import from the menu option. Select "Variant
Models or Projects" as shown in the below dialog. Click "Next" to continue.

Figure 6.65. Import Dialog

• Choose "Import Feature Model and Variants from Excel" and click "next" to continue.

Importing Models

106

Figure 6.66. Select Variant Import Format

• Select a target container and fill in the "pure::variants model name" and the "File name" as follows. Also, select
the source from your local directory and press "next"

Importing Models

107

Figure 6.67. Select Target and Specify Source file

• The default expressions for the selected, excluded and the value patterns are as follows. The default named
ranges are also set. Here, changes can be done as per the requirement and press "Finish"

Importing Models

108

Figure 6.68. Select Pattern for feature Selection

• The import is completed successfully and you can now see the imported feature model as shown in the below
figure. If variants are defined additionally those models will created in a configuration space called "Variants".
The picture below shows the import result of the sample Excel file of picture Figure 6.64, “Excel File Structure” .

Importing Models

109

Figure 6.69. Imported Feature Model

User-defined import manipulator with JavaScript

For customization of an imported pure::variants model a JavaScript Manipulator is provided. This manipulator
is available for all importer, which support import manipulators.

Figure 6.70. JavaScript Manipulator Wizard Page

External Build Support (Ant Tasks)

110

On the JavaScript Manipulator wizard page a JavaScript file needs to be given, which is performed after the import
is done, to customize the resulting pure::variants model. It is allowed to use pure::variants path variables in the
JavaScript path.

Additionally Parameter for the JavaScript can be defined on this page. Parameters are simple name value pairs.
The JavaScript can also define parameter and default values in a comment at the top of the script. These parameters
are automatically added to the parameters table, if the script is loaded.

Note
An example JavaScript is generated using the "New -> JavaScript Manipulation Script" entry from the
context menu in the projects view. This script shows a basic model manipulation and how parameters
are defined in a JavaScript.

6.14. External Build Support (Ant Tasks)

Eclipse comes with an integrated Ant support. This can easily be used to automate build actions. To integrate
variant management actions into these build processes, pure::variants provides a number of Ant tasks. They can
be used with build files inside Eclipse or in headless mode.

A simple Ant script to trigger a pure::variants transformation looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<project name="example" default="transform">
 <target name="transform">
 <pv.import path="C:\Projects\WeatherStation"/>
 <pv.transform name="CustomConfigFile" vdm="WeatherStation/Variants/Berlin.vdm"/>
 <eclipse.refreshLocal resource="WeatherStation"/>
 </target>
</project>

This script runs the transformation CustomConfigFile on the variant description model Berlin.vdm in project
WeatherStation . The transformation will generate some output in the project's directory.

First the pv.import task is used to import the project into the Eclipse workspace if it doesn't exist. Then the
pv.transform task is used to start the CustomConfigFile transformation. And to let Eclipse reload and show the
transformation results in the project directory, the Eclipse Ant task eclipse.refreshLocal is executed as the last
build step.

To run this Ant script, create a file build.xml with the above content in the project directory. Then right-click file
build.xml and choose Run As -> Ant Build… from the context menu.

Figure 6.71. Ant Build Action

External Build Support (Ant Tasks)

111

To let Ant find the pure::variants provided Ant tasks, the correct JRE needs to be selected. Switch to the JRE tab
and select option Run in the same JRE as the workspace .

Figure 6.72. Ant Build JRE Parameter

Click Run to start the script execution.

The build.xml script can also be executed from outside of Eclipse (so-called headless mode). There are several
ways to do this. Please note for Linux based operating systems the X Window System needs to be installed and
started. Eclipse will not start if it is not able initialize GTK, which needs the X Window System to be installed
and started.

You can use the Eclipse console application to run the script as follows:

%ECLIPSE%/eclipsec -nosplash --launcher.suppressErrors
 -application org.eclipse.ant.core.antRunner
 -data C:\workspace -buildfile build.xml -DPVLICENSE=C:\pv.de.lic

This command directly starts the Ant script runner of Eclipse with the Ant script build.xml , the path to an existing
or temporary Eclipse workspace, and the definition of variable PVLICENSE pointing to a valid pure::variants license
as arguments.

To simplify this, pure::variants comes with two batch scripts located in the cli sub-directory of the pure::variants
installation directory.

• runant.bat starts the given Ant build file with the internal Eclipse Ant runner

runant.bat build.xml

• variantscli.bat starts the given transformation configuration on all provided VDMs

cd WeatherStation
variantscli.bat CustomConfigFile Variants/Berlin.vdm Variants/Paris.vdm Variants/London.vdm

Both scripts support the following environment variables to configure the execution.

Table 6.5. Environment Variables

Variable Description

PVHOME Path to the eclipse sub-directory in the pure::variants installation directory

Example: C:\Program Files\Parametric Technology\pv_Enterprise_6.0\eclipse

External Build Support (Ant Tasks)

112

Variable Description

PVLIC Path to the pure::variants license file

Example: C:\pv.de.lic

PVJAVA Path to Java executable

Example: C:\Java\bin\java.exe

PVCONFIG Name of the Eclipse configuration to use

Example: AntRun

The PVHOME variable is automatically added to the runant.bat and varianstcli.bat if pure::variants has been in-
stalled using the pure::variants installer executable.

The runant.bat (Windows) and runant.sh (on Linux and Mac) scripts have the following command line param-
eters which must be given in the order they are listed in the following table. Optional parameters can be omitted.

Table 6.6. runant Command Line Parameters

Parameter Description

-l Optional parameter to enable printing the pure::variants and Eclipse logs on exit.

Example: runant.bat -l build.xml

-t target Optional parameter to run the given target of the Ant script instead of the default target.

Example: runant.bat -t "Transform and Refresh" build.xml

-w workspace Optional parameter to specify the path to an existing Eclipse workspace in which to run the
Ant script. If not given, a temporary workspace directory is created, and deleted on exit.

Example: runant.bat -w C:\workspace build.xml

antfile The path to the Ant script to run.

Example: runant.bat "C:\Ant Scripts\script5.xml"

vmargs Every argument following the path to the Ant script is passed as command line option to
the Java VM. Please refer to the official Java documentation for the complete list of Java
command line options.

Example: runant.bat "C:\Ant Scripts\count.xml" -DFrom=1 -DTo=100

This command line runs the print_report.xml script with two variables From and
To passed to the Java VM using option -D . The Ant script then could access
these variables using expressions ${From} and ${To} . Java transformation mod-
ules and JavaScript scripts run by the Ant script could access these variables using
PVProperty.getPVProperty("From") and PVProperty.getPVProperty("To") .

The variantscli.bat (Windows) and variantscli.sh (on Linux and Mac) scripts have the following command line
parameters which must be given in the order they are listed in the following table. Optional parameters can be
omitted.

Table 6.7. variantscli Command Line Parameters

Parameter Description

-l Optional parameter to enable printing the Eclipse log on exit.

Example: variantscli.bat -l Report C:\WS\Project\Variants\V5.vdm

transformation The name of the transformation to execute (see the section called “Transformation Con-
figuration Page”).

pv.import

113

Parameter Description

Example: variantscli.bat Report C:\WS\Project\Variants\V5.vdm

VDM VDM VDM ... Every argument following the transformation name must be the path to a VDM to trans-
form. At least one VDM must be specified.

Example: variantscli.bat Report C:\WS\Project\Variants\V5.vdm C:\WS\Project
\Variants\V6.vdm C:\WS\Project\Variants\V9.vdm

6.14.1. pv.import

The pv.import task imports a pure::variants project into the workspace. If the project is already part of the
workspace nothing happens.

Example:

<pv.import path="C:\Projects\Weather Station" importreferences="false" />
<pv.import server="http://pv.server.com" name="Weather Station" revision="v2"/>
<pv.import url="pvrm://pv.server.com/projects/iqRjtaATGwbmd2tGi#v2"/>

This task has the following attributes:

• importreferences if true the references to other projects are also imported (default is true) If the referenced
project was stored with a revision, the referenced project is imported in that revision.

• path is the absolute path to the project in the file system

• server, name, revision are the server URL, the name of the project, and optionally the version of a remote
project to import

• url is the url of a remote project to import

6.14.2. pv.evaluate

The pv.evaluate task performs an evaluation and stores the result in the given result model file.

Example:

<pv.evaluate vdm="Weather Station\Config\Indoor.vdm" vrm="Weather Station\Indoor.vrm"/>
<pv.evaluate vdm="Weather Station\Config\Outdoor.vdm" vrm="Weather Station\Outdoor.vrm">
 <property name="autoresolve" value="extended"/>
 <property name="timeout" value="120"/>
 <property name="severity" value="error"/>
 <modelset>
 <include path="Weather Station\config*.vdm" nature="com.ps.consul.nature">
 <property name="modelHeadProperty" value="value"/>
 <jsfilter script="Weather Station\antJsFilter.js" />
 </include>
 <exclude path="Weather Station*\NotSelected.vdm" nature="com.ps.consul.nature">
 <property name="modelHeadProperty" value="value"/>
 </exclude>
 </modelset>
</pv.evaluate>

This task has the following attributes:

• vdm is the path to the Variant Description Model to evaluate

• vrm is the path to the Variant Result Model

• continueOnError If this property is set to true the task does not throw BuildExceptions, but writes problems
to standard out and finishes successfully.

The pv.evaluate task supports optional properties which influence the evaluation:

pv.transform

114

• autoresolve sets the mode of the auto resolver. Possible values are off, simple, extended

• timeout sets the maximal time used for the evaluation in seconds

• severity sets the minimal severity for problems to output. Possible values are info, warning, error. The default
value is info.

Instead of using the vdm attribute for defining one variant model model for the evaluation the modelset can be
used. It allows to define multiple variant models, which will be run in the context of the same evaluation task.
This simplifies the definition of multiple models with the same evaluation settings.

For defining the set of relevant models several possibilities exist. A model is part of the model set, if it matches at
least one include rule, but no exclude rule. If no include rule is defined the model must not match an exclude rule.
If neither an include nor an exclude rule is defined all models of a workspace are part of the model set. If multiple
options within the same include/exclude rule are used all of the defined options have to match.

• path is the workspace relative path to the model. The path attribute allows to use wildcards, * for any character
in the same folder and ** for any character including the file separator.

E.g. Weather Station\config*.vdm matches all Variant Description Models directly located in the config folder
inside the "Weather Station" project.

Weather Station**.vdm matches all Variant Description Models in the Weather Station project, even if they
are located in subfolders.

• nature pure::variants uses natures to identify models imported by a specific importer from a specific external
source. This nature can be used to filter the models.

E.g. com.ps.consul.eclipse.ui.doorsng.syncronizable.nature is the nature for the IBM Doors Next Generation
importer.

• Defining model head properties Any model property can be used to filter models. The value property is
optional. If the value is not given the existance of a property with the defined name is sufficient, that a model
matches the rule. If the value is given the value also has to match.

• jsfilter enables model filtering based on more complex criteria. The mandatory attribute script defines the
location of the JavaScript filter script either as an absolute path or relative to the workspace. The filter script
has to fulfill a particular interface. To create a template script with this interface, invoke pure::variants' project
context menu and click New -> pure::variants JavaScript Script. In the wizard dialog that opens, choose ANT
ModelSet Filter as the execution context.

6.14.3. pv.transform

The pv.transform task performs a transformation of a Variant Description Model or Variant Result Model.

Example:

<pv.transform vdm="Weather Station\Config\Indoor.vdm" name="Default" force="true"
 input="C:/somewhere/input" output="C:/somewhere/output">
 <property name="autoresolve" value="extended"/>
 <property name="timeout" value="120"/>
 <property name="severity" value="error"/>
 <inputmodelset>
 <include path="Weather Station*.ccfm" nature="com.ps.consul.nature">
 <property name="modelHeadProperty" value="value"/>
 <jsfilter script="Weather Station\antJsFilter.js" />
 </include>
 <exclude path="Weather Station\NotSelected.ccfm" nature="com.ps.consul.nature">
 <property name="modelHeadProperty" value="value"/>
 </exclude>
 </inputmodelset>
 <modelset>
 <include path="Weather Station\config*.vdm" nature="com.ps.consul.nature">
 <property name="modelHeadProperty" value="value"/>

pv.transform

115

 </include>
 <exclude path="Weather Station*\NotSelected.vdm" nature="com.ps.consul.nature">
 <property name="modelHeadProperty" value="value"/>
 </exclude>
 </modelset>
</pv.transform>
<pv.transform vrm="Weather Station\Outdoor.vrm" name="Default"/>

This task has the following attributes:

• vdm is the Variant Description Model to transform

• vrm is the Variant Result Model to transform

• name is the name of the Transformation Configuration (default is Default)

• force if true the transformation runs always also if the result has errors (default is false)

• continueOnError If this property is set to true the task does not throw BuildExceptions, but writes problems
to standard out and finishes successfully. (default is false)

• input is the input path the transformation uses. It overwrites the input path defined in the transformation con-
figuration.

• output is the output path the transformation uses. It overwrites the output path defined in the transformation
configuration.

The pv.transform task supports optional properties which influence the evaluation, which runs before the trans-
formation:

• autoresolve sets the mode of the auto resolver. Possible values are off, simple, extended (default is extended)

• timeout sets the maximal time used for the evaluation in seconds (default is 120)

• severity sets the minimal severity for problems to output. Possible values are info, warning, error. The default
value is info. (default is info)

The pv.transform task supports filtering of the input model set, meaning it is possible to reduce the number of
input models after evaluation for a specific Transformation Configuration. The definition of input model filtering
is applied on top of the input model set defined in the used Transformation Configuration. There is no possibility
to add new models into the transformation. It is not allowed to filter feature models from the input model set.
Rules to filter feature models are simply ignored. To define input model filtering the inputmodelset tag is used.
It allows to define multiple include and exclude rules.

An input model is part of the input model set, if it matches at least one include rule, but no exclude rule. If no
include rule is defined the model must not match an exclude rule. If neither an include nor an exclude rule is
defined all input models are part of the input model set.

For filtering the input models several possibilities exist. The options can be combined. If multiple options within
the same include/exclude rule are used all of the defined options have to match.

• path is the workspace relative path to the input model. The path attribute allows to use wildcards, * for any
character in the same folder and ** for any character including the file separator.

E.g. Weather Station*.ccfm matches all family models directly located in the Weather Station project folder.

Weather Station**.ccfm matches all family models in the Weather Station project, even if they are located in
sub folders.

• nature pure::variants uses natures to identify models imported by a specific importer from a specific external
source. This nature can be used to filter the input models.

E.g. com.ps.consul.eclipse.ui.doorsng.syncronizable.nature is the nature for the IBM Doors Next Generation
importer.

pv.validate

116

• Defining model head properties Any model property can be used to filter models. The value property is
optional. If the value is not given the existance of a property with the defined name is sufficient, that a model
matches the rule. If the value is given the value also has to match.

• jsfilter enables model filtering based on more complex criteria. The mandatory attribute script defines the
location of the JavaScript filter script either as an absolute path or relative to the workspace. The filter script
has to fulfill a particular interface. To create a template script with this interface, invoke pure::variants' project
context menu and click New -> pure::variants JavaScript Script. In the wizard dialog that opens, choose ANT
ModelSet Filter as the execution context.

Instead of using the vdm attribute for defining one Variant Description Model for the transformation the modelset
can be used. It allows to define multiple variants description models, which will be run in the context of the same
transforamtion task. This simplifies the definition of multiple variants from the same configuration space with the
same transformation settings. The model set definition has the same options like the input model set definition.

6.14.4. pv.validate

The pv.validate task runs all available element and model checks on the given model.

Example:

<pv.validate model="Weather Station\WS.xfm">
 <property name="severity" value="warning"/>
 <modelset>
 <include path="Weather Station*.ccfm" nature="com.ps.consul.nature">
 <property name="modelHeadProperty" value="value"/>
 <jsfilter script="Weather Station\antJsFilter.js" />
 </include>
 <exclude path="Weather Station\NotSelected.ccfm" nature="com.ps.consul.nature">
 <property name="modelHeadProperty" value="value"/>
 </exclude>
 </modelset>
</pv.validate>

This task has the following attributes:

• model is the model to validate

The pv.validate task supports optional properties which influence the output of the validation:

• severity set the minimal severity for problems to output. Possible values are info, warning, error. (default
is info)

Instead of using the model attribute for defining one model model for the evaluation the modelset can be used. It
allows to define multiple models, which will be run in the context of the same evaluation task. This simplifies the
definition of multiple models with the same evaluation settings.

For defining the set of relevant models several possibilities exist. A model is part of the model set, if it matches at
least one include rule, but no exclude rule. If no include rule is defined the model must not match an exclude rule.
If neither an include nor an exclude rule is defined all models of a workspace are part of the model set. If multiple
options within the same include/exclude rule are used all of the defined options have to match.

• path is the workspace relative path to the model. The path attribute allows to use wildcards, * for any character
in the same folder and ** for any character including the file separator.

E.g. Weather Station\config*.ccfm matches all family models directly located in the config folder inside the
"Weather Station" project.

Weather Station**.vdm matches all Variant Description Models in the "Weather Station" project, even if they
are located in sub folders.

• nature pure::variants uses natures to identify models imported by a specific importer from a specific external
source. This nature can be used to filter the models.

pv.inherit

117

E.g. com.ps.consul.eclipse.ui.doorsng.syncronizable.nature is the nature for the IBM Doors Next Generation
importer.

• Defining model head properties Any model property can be used to filter models. The value property is
optional. If the value is not given the existance of a property with the defined name is sufficient, that a model
matches the rule. If the value is given the value also has to match.

• jsfilter enables model filtering based on more complex criteria. The mandatory attribute script defines the
location of the JavaScript filter script either as an absolute path or relative to the workspace. The filter script
has to fulfill a particular interface. To create a template script with this interface, invoke pure::variants' project
context menu and click New -> pure::variants JavaScript Script. In the wizard dialog that opens, choose ANT
ModelSet Filter as the execution context.

6.14.5. pv.inherit

The pv.inherit task changes the inheritance between VDMs.

Example:

<pv.inherit vdm="Weather Station\Config\Indoor.vdm">
 <super vdm="Weather Station\Config\Base.vdm"/>
</pv.inherit>

This task has the following attributes:

• vdm is the Variant Description Model which inherits (pv.inherit tag), or which is inherited (super tag)

6.14.6. pv.connect

The pv.connect task connects to a server and login as given user.

Example:

<pv.connect server="http://pv.server.com" user="example" pass="example"/>

This task has the following attributes:

• server is the pure::variants server to connect to

• user is the name of the user

• pass is the password for the user

6.14.7. pv.sync

The pv.sync task updates a model imported by a connector. The connector specific synchronization job is called
to update the model's data.

Example:

<pv.sync model="Weather Station\Sources.ccfm">
 <modelset>
 <include path="Weather Station*.ccfm" nature="com.ps.consul.nature">
 <property name="modelHeadProperty" value="value"/>
 <jsfilter script="Weather Station\antJsFilter.js" />
 </include>
 <exclude path="Weather Station\NotSelected.ccfm" nature="com.ps.consul.nature">
 <property name="modelHeadProperty" value="value"/>
 </exclude>
 </modelset>
</pv.sync>

pv.syntaxsemanitccheck

118

This task has the following attributes:

• model is the model to update

Instead of using the model attribute for defining one model for the synchronization the modelset can be used. It
allows to define multiple pure::variants models, which will be run in the context of the same synchronization task.
This simplifies the definition of multiple models from the same configuration space with the same transformation
settings.

6.14.8. pv.syntaxsemanitccheck

The pv.syntaxsemanitccheck task checks the given configspace for semantic and syntactic errors. This is running
the same checks as the Perform Syntax and Semantic Check action on configuration spaces.

Example:

<pv.syntaxsemanitccheck configspace="Weather Station\Variants" reportfile="Weather Station
\CheckResult.html" />

This task has the following attributes:

• configspace is the configuration space to be checked.

• reportfile the location the resulting report is stored.

6.14.9. pv.mergeselection

The pv.mergeselection task creates or updates a variant description model by merging all selections from the
given variant description models. The following rules are applied. If an element is excluded in at least one source
model the element is also excluded in the result. If an element is selected in at least one source model it is also
selected in the result if not excluded by any other source model.

Example:

<pv.mergeselection vdm="Weather Station\Config\Merged.vdm">
 <source vdm="Weather Station\Config\IndoorBase.vdm"/>
 <source vdm="Weather Station\Config\TempOnly.vdm"/>
 <source vdm="Weather Station\Config\CommUSB.vdm"/>
</pv.mergeselection">

This task has the following attributes:

• vdm is the result model (pv.mergeselection tag) or the source model (source tag)

6.14.10. pv.javascript

The pv.javascript task performs a given javascript in a specific context. This allows the user to automate existing
javascripts. The script can be performed in the context of one model or in the context of one project. If both a
project and a model is given, the model is used for the context.

Example:

<pv.javascript script="C:\Temp\javascript.js" project="Weather Station"
 model="$(PROJECT)\Sources.ccfm" />

This task has the following attributes:

• script is the path to the performed javascript. This path has to be absolute or relative to the used ANT workspace.

• model is the path to the context model. This property is optional. Variant path variables can be used here.

• project is the path to the context project. This property is optional. Variant path variables can be used here.

pv.offline

119

6.14.11. pv.offline

The pv.offline task switches the server project into offline mode. The project is selected by the name attribute.
This task does nothing if the project is already offline or if the project is a local project.

Example:

<pv.offline name="Weather Station"/>

This task has the following attributes:

• name is the name of the project

6.14.12. pv.online

The pv.online task switches the server project into online mode. The task performs a "Override and update" if
there are differences between the remote project and the local representation. Meaning the local data is overwritten
with the current state of the project on the pure::variants Server. The project is selected by the name attribute. This
task does nothing if the project is already online or if the project is a local project.

Example:

<pv.online name="Weather Station"/>

This task has the following attributes:

• name is the name of the project

6.14.13. pv.userrolesync

The pv.userrolesync task is used to synchronize users and roles of a pure::variants model server with their data
sources (e.g. LDAP directory servers).

Example:

<project>
 <property name="server" value="http://server:1234"/>
 <pv.connect server="${server}" user="admin" pass="123"/>
 <pv.userrolesync server="${server}" username="cn=reader,dc=company,dc=com" password="456">
 <role name="Modeler"/>
 <role name="User"/>
 <role name="Tester"/>
 <user name="*"/>
 </pv.userrolesync>
</project>

This task has the following attributes:

• server is the pure::variants model server

• username is the name of the data source user (e.g. an LDAP bind user)

• password is the password of the data source user

The users and roles to synchronize are listed using user and role elements. Both elements have the attribute name
which specifies the name or a name pattern for the users or roles to synchronize. The name can contain the special
characters "*" to match any text and "?" to match a single character.

If the data source of a user or role to synchronize is a server that uses a certificate which is not trusted by
pure::variants, then the synchronization with that data source server will fail. To register this certificate with
pure::variants, start pure::variants and open the User Management of the pure::variants server (see "pure::variants
Server Administration Manual" about details on how to do this). Then try to synchronize the same users and roles
from within pure::variants. You will be asked by pure::variants to accept the certificate of the data source server
permanently. After you agreed, run the Ant task again. It will not fail anymore due to an untrusted certificate.

pv.property

120

6.14.14. pv.property

The pv.property task is used to define a runtime property, which can be used in several pure::variants connectors.
For example runtime properties are used for defining user credentials for external tools used by some connector
transformations.

Example:

<project>
 <pv.property name="propertyName" value="property value" />
</project>

This task has the following attributes:

• name is name of the property to set

• value is the value of the property to set

6.14.15. pv.about

The pv.about task lists the pure::variants environment including the installed pure::variants features and infor-
mation about the used Eclipse and Java version.

Example:

<pv.about/>

This task does not support attributes:

6.15. Linking between pure::variants and external resources
pure::variants model objects can be linked with any external resource in both directions. To create a link to an

external resource inside a pure::variants object's HTML description, use the "Insert/Edit Link" () action in
the description editor to add the link location to your description. Alternatively you can also drag an URL and
drop it directly into the editor or on the model element. All links from the description of the selected element are
shown in the Relations View.

Figure 6.73. Relations View with external Links

A double click on a link results in navigating to the link's destination if a link hander is registered for the respective
link type.

To support linking in the inverse direction, pure::variants model elements can also be accessed by URL links.
To get a model element's URL use the "Copy URL" context menu action on that element. The URL is made
available in the Clipboard and can be pasted into any other resource or application. If external applications are
able to handle drop events, a simple drag of the model element with the mouse and dropping it on the external
application will work too.

Manipulating Text Files

121

The pure::variants installer for Windows will setup a link handler, which allows direct navigation from exter-
nal applications to the linked pure::variants model element. However, the handler only works if an instance of
pure::variants is running and the linked model element is available in the currently used workspace.

6.16. Manipulating Text Files

The pure::variants standard transformation can be used to manipulate text files based on pvSCL conditions and
calculations. To achieve this, the transformation and family model needs to be set up for transforming a text file,
and the file needs to be annotated with pvSCL conditions and calculations.

6.16.1. Setting Up the Transformation

For setting up the standard transformation, please refer to the section called “Setting up the Standard Transforma-
tion” . Now the text file to transform still needs to be referenced. This is done in the family model. Figure 6.74,
“Family Model with ps:pvscltext transformation setup” shows an example family model referencing the input file
"ConditionalPVSCLText.txt". To create the necessary family model elements, the easiest way is to use a wizard.
To do this, add an element of class ps:part to the family model and select "New"->"PVSCL Conditional Text"
from the part's context menu. Please refer to Section 9.5.7, “ ps:pvscltext ” , for details about supported attributes.

Figure 6.74. Family Model with ps:pvscltext transformation setup

6.16.2. Editing Conditions and Calculations in Text Files

Conditions and calculations are added to the text file as special statements, such as PVSCL:IFCOND(pvSCL condi\
tion) or PVSCL:EVAL(pvSCL calculation) . See Section 9.5.7, “ ps:pvscltext ” for a list of all statements and
a small example text document.

To edit conditions and calculations, use the actions "Add PVSCL Condition" (), "Add PVSCL Calculation" (

), and "Edit PVSCL Condition/Calculation" (), which are available in the toolbar. These actions give you
the same support in writing pvSCL rules as already known from editing restrictions or constraints.

For adding a condition to a section of your text, mark a section of your text and press . Now a pvSCL editor
opens, in which you can write the pvSCL rule that should apply to this text section (see Figure 6.75, “Editing
pvSCL conditions or calculations”). For using auto-completion, syntax highlighting, and error checks, the editor
still needs to know the pure::variants project, in which context the written rule should be evaluated. Therefore,

select the context model by pressing . Only feature models are allowed as context model. However, all other
models of the same and referenced projects are considered automatically. After pressing "OK", the new condition
is wrapped around the selected text.

Adding a calculation to your text works in a similar way. Press and use the pvSCL editor to write your rule.
After closing the editor, the marked text is replaced with the calculation.

To edit an existing condition or calculation, move the text selection to a place inside the calculation or condition and

press . For conditions, any place between the beginning of PVSCL:IFCOND(and the beginning of PVSCL:ENDCOND
is ok. For calculations, any place between the beginning of PVSCL:EVAL(and the closing) is accepted. If a condition
or calculation is found at your current text selection or caret position, the pvSCL editor opens, and you can edit
your rule.

Using Known Servers Preferences

122

Figure 6.75. Editing pvSCL conditions or calculations

6.17. Using Known Servers Preferences

Known servers can be organized from Window->Preferences->Variant Management->Known Servers in
pure::variants. Known servers are used by many connectors. This page provides an organized view and actions
for servers of the corresponding connectors. The known server table has following components.

Category Each existing connectors are represented as categories. Categories have unique ID and name. It is
possible to see the ID by hoovering mouse pointer on any category.

Server Servers are shown under each corresponding connector categories. Each server has a name and an
URL. More information of the server can be viewed through tooltip.

Figure 6.76. Known Servers page

Central deployment mechanism of servers

123

The following actions can be performed on the list.

• Add: The Add button only enables when a category is selected. To add a server, select any connector category,
then click Add . A dialog box will open, enter server name in Name text box and server URL in URL text box.
Press OK to add the server into the category.

If the server fails to connect, a Save anyway dialog will open if user want to keep it.

• Edit: The Edit button enables if any server is selected. A server name or URL can be modified by clicking Edit
button. A dialog box pops up where changes can be made.

• Remove: To remove a server from any category, select it from the list and press Remove button.

• Password: Password change is only available for servers which are in pure::variants Model Server category.
To change the password of such server, press Password button.

• Import: Servers from a external XML file can be added to their corresponding categories. Use Import button
to perform an import. The import XML has to have the similar structure as central deployment XML.

An example is shown in Central deployment XML structure [124]

• Export: The list of all categorized servers can be exported to an XML file. By clicking Export , a save file
dialog will open to create the XML file in prefered location.

6.17.1. Central deployment mechanism of servers

The predefined XML file with categorized servers can be stored in file named "pv.servers.xml" on "C:\Program-
Data\pure-variants-5" directory for central deployment of servers with user's choices of category/categories. An
example XML is shown in Central deployment XML structure [124] .

Note
To create such an xml file for central deployment we recommend using the known servers preference
page. All necessary Server should be added on that page. Afterwards just export the server list and deploy
the resulting XML file.

These servers can not be edited by the user and will be shown in their corresponding connector categories with

"lock" () decorated icons. For example, a pure::variant model server from central deployment file would look

like ().

Category IDs are mandatory for central deployment XML. pure::variants connectors of corresponding server cat-
egories are using category IDs with the following schema: We take the feature ID of the connector and replace
"pure-variants" with "servercategory".

Example: For connector with ID com.ps.consul.eclipse.pure-variants.toolxyz the category ID
com.ps.consul.eclipse.servercategory.toolxyz is used.

There are some categories which do not follow this schema:

Note

User can have proposal for pure::variants Floating License server in Window-> Preferences-> Variant
Management-> pure::variants License-> License Server by adding a License category server in the
central deployment file. The pure::variants Floating License Server category is not shown in Known
Servers preference page but can be used from central deployment file.

Table 6.8. Table of server category IDs

Server Category Name Server Catagory ID

pure::variants Model Server com.ps.consul.pvserver.model

Convert a pure::variants 4 project into a pure::variants 5 project

124

Server Category Name Server Catagory ID

pure::variants Floating License Server com.ps.consul.pvserver.license

Uncategorized Server com.ps.consul.pvserver.unknown.category

The structure of the central deployment server xml file is:

<?xml version="1.0" encoding="UTF-8"?>
<servers>
 <server name="Name of the server 1"
 description="Description of the server 1"
 category="ID of the category"
 url="URL of the server 1" />
 <server name="Name of the server 2"
 description="Description of the server 2"
 category="ID of the category"
 url="URL of the server 2" />
 ...
</servers>

Name, category and url are mandatory. The description is optional.

<?xml version="1.0" encoding="UTF-8"?>
<servers>
 <server name="PV Model Server"
 description="This is an example server"
 category="com.ps.consul.pvserver.model"
 url="http://127.0.0.1:4711" />
 <server name="Another Model Server"
 category="com.ps.consul.pvserver.model"
 url="http://model.server.local:8080" />
</servers>

Note

Eclipse restart is required to reflect the modification of central deployment file.

6.18. Convert a pure::variants 4 project into a pure::variants 5
project

To enable some new pure::variants features a pure::variants project with version 5 is necessary. All newly created
pure::variants projects are created with version 5. An existing project created with an older pure::variants release
can be converted to a pure::variants project with version 5.

To convert a project open the properties dialog on the pure::variants project. Select Project Version in the nav-
igation on the left side of the properties dialog. The selected page now shows the current project version along
with some additional informaton. The conversion is started with the Convert to Version 5 button at the bottom
of the page.

Note
After converting a pure::variants project to version 5 it can not be converted back to version 4. The
converted pure::variants project is not compatible to pure::variants releases prior to 5.0.0.

Customizing the Variant Configuration Process

125

Figure 6.77. pure::variants Project Version

If the project to convert has references to other pure::variants projects in the workspace, the user will be asked
if the referenced projects shall be converted as well. Chose Yes to convert all referenced projects together with
the initial project. If the

6.19. Customizing the Variant Configuration Process

As of pure::variants 5, it is possible to customize the variant configuration process with the help of a Variant
Configuration Wizard. A configuration space that is intended to use a Variant Configuration Wizard has to be
configured with a Variant Configuration Wizard Model . See the section called “ Guided Variant Configuration
” for detailed information about the Variant Configuration Wizard.

This section describes how to create and configure the Variant Configuration Wizard Model.

6.19.1. Creating a Variant Configuration Wizard Model

Start the New Variant Configuration Wizard Model (VCWM) wizard from the New menu of the context menu
in the Variant Projects view. The following wizard opens. On the first page select a target container and define
the name for the new Variant Configuration Wizard Model.

Creating a Variant Configuration Wizard Model

126

Figure 6.78. New Variant Configuration Model

The wizard can be finished now and the new Variant Configuration Wizard Model will be created. Using the Next
> button instead switches to the next page where it is possible to select the configuration spaces to which the new
model will be added automatically. The page lists configuration spaces from the target project and all projects
which reference the target project. The configuration spaces to which the Variant Configuration Wizard Model is
added can also be changed later on. See the following section for more information on how to do that.

Figure 6.79. Add the new Variant Configuration Model to Configuration Spaces

Adding the Variant Configuration Wizard Model to a Configuration Space

To add a Variant Configuration Wizard model to a configuration space, open the properties of the configuration
space and navigate to the Configuration Wizard tab. The Variant Configuration Model is selected with the

Configure a Variant Configuration Wizard Model

127

Browse ... button. The Clear button allows the user to remove a Variant Configuration Model from the confgu-
ration space.

Figure 6.80. Add a Variant Configuration Model to a Configuration Space

6.19.2. Configure a Variant Configuration Wizard Model

The Variant Confiuration Wizard Model provides options to configure the Variant Configuration Wizard. These
options are configured in the Variant Configuration Wizard Model editor. The editor is divided into 3 sections, the
General Wizard Setting section at the top, the Start Page Section in the middle and the Finish Page Section
at the bottom of the editor.

The General Wizard Settings section defines the configuration step wizard pages that will be displayed on the
left side of the wizard. The pages can be defined in two ways. The first way is to select the Root of Wizard
Pages using the Set button. All direct children of this element are automatically added as configuration pages. The
resulting wizard pages are listed in the table below. Sorting or removing them is not possible. The Clear button
removes the selected root element. If a root element is already defined, clicking Clear will discard all previously
defined Wizard Pages .

The second way to define the wizard pages is to select the defining elements manually. Use the plus icon next to
the table to add wizard pages. Each entry in the table will be one wizard page in the wizard. The order in the table
is also the order of the pages in the wizard. The table allows to sort the entries using the up and down buttons as
well as to remove elements using the x button.

The right side defines general options for the wizard's behavior. If the first option is enabled the wizard automat-
ically excludes all non-selected elements when the user switches from one wizard page to the next. This prevents
the auto resolver from automatically selecting elements (based on rule knowledge from the input models) whose
configuration was already completed in a previous configuration step.

The second option in the right half of the General Wizard Settings section enables or disables the navigation
part of the Variant Configuration Wizard. If this option is selected, the resulting wizard will show the list of
configuration steps. Otherwise, the configuration steps will be hidden.

Finally, if more than one wizard theme is available, then the desired theme can be selected with the combo box
of the third option.

Configure a Variant Configuration Wizard Model

128

Figure 6.81. VCWM Editor General Settings Section

The Start Page Settings section defines the user message and the page title on the left side. The right side of the
section defines which start page options will be available on the start page and, if more than one mode is selected,
the default mode needs to be specified.

Selecting Enable review mode enables the review mode. This is the default start mode of the wizard, but this can
be changed by the user, if at least one other start mode is available.

Figure 6.82. VCWM Editor Start Page Section

The Finish Page Settings section defines the user message and the title of the final wizard page, as shown in
the list of configuration steps on the left side. The right side of the Finish Page Settings section defines which
finishing options will be presented to the user on the finish page and which one is the default. Three options are
available. Finalize Configuration , Lock Configuration and Disable Wizard . The meaning of each of these
options is explained on the right side of the Finish Page Settings section (see Figure 6.83, “VCWM Editor Finish
Page Section”). The combo boxes below each option allow to choose if and how an option is presented on the
wizard's finish page. The choices are Disabled by default , which means that the option is disabled on the finish
page but the user can select it, Enabled by default , which means that the option is enabled on the finish page but
the user can deselect it, Always disabled , which means that the option is disabled and not shown on the finish
page and, finally, Always enabled , which means that the option is enabled and not shown on the finish page.

Configure a Variant Configuration Wizard Model

129

Figure 6.83. VCWM Editor Finish Page Section

130

131

Chapter 7. Graphical User Interface
The layout and usage of the pure::variants User Interface closely follows Eclipse guidelines. See the Workbench
User Guide provided with Eclipse (Help->Help Contents) for more information on this.

7.1. Getting Started with Eclipse
This section gives a short introduction to the elements of the Eclipse UI before introducing the pure::variants UI.
Readers with Eclipse experience may skip this section.

Eclipse is based around the concepts of workspaces and projects . Workspaces are used by Eclipse to refer to
enclosed projects, preferences and other kinds of meta-data. A user may have any number of workspaces for dif-
ferent purposes. Outside of Eclipse, workspaces are represented as a directory in the file system with a subdirec-
tory .meta-data where all workspace-related information is stored. A workspace may only be used by a single
Eclipse instance at a time. Projects are structures for representing a related set of resources (e.g. the source code
of a library or application). The contents and structure of a project depends on the nature of the project. A project
may have more than one nature. For example, Java projects have a Java nature in addition to any project-specific
natures they may have. Natures are used by Eclipse to determine the type of the project and to provide specialised
behaviour. Project-specific meta information is stored in a .project file inside the project directory. This directory
could be located anywhere in the file system, but projects are often placed inside a workspace directory. Projects
may be used in more than one workspace by importing them using (File->Import->Import Existing Project).

Figure 7.1, “Eclipse workbench elements” shows an Eclipse workbench window. A perspective determines the
layout of this window. A perspective is a (preconfigured) collection of menu items, toolbar entries and sub-win-
dows (views and editors). For instance this figure shows the standard layout of the Resource perspective. Per-
spectives are designed for performing a specific set of tasks (e.g. the Java perspective is used for developing Java
programs). Users may change the layout of a perspective according to their needs by placing views or editors in
different locations, by adding or closing views or editors, menu items and so on. These custom layouts may be
saved as new perspectives and reopened later. The standard layout of a perspective may be restored using Win-
dow->Reset Perspective .

Editors represent resources, such as files, that are in the process of being changed by the user. A single resource
cannot be open in more than one editor at a time. A resource is normally opened by double-clicking on it in a
Navigator view or by using a context menu. When there are several suitable editors for a given resource type
the context menu allows the desired one to be chosen. The figure below shows some of the main User Interface
elements:

Figure 7.1. Eclipse workbench elements

Eclipse uses Views to represent any kind of information. Despite their name, data in some types of view may be
changed. Only one instance of a specific type of view, such as the Outline view, may be shown in the workbench
at a time. All available views are accessible via Windows->Show View->Other.

/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm
/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm

Variant Management Perspective

132

7.2. Variant Management Perspective

pure::variants adds a Variant Management perspective to Eclipse to provide comprehensive support for variant
management. This perspective is opened using Window->Open Perspective->Other->Variant Management . Fig-
ure 7.2, “Variant management perspective standard layout” shows this perspective with a sample project.

Figure 7.2. Variant management perspective standard layout

7.3. Editors

pure::variants provides specialized editors for each type of model. Each editor can have several pages representing
different model visualizations (e.g. tree-based or table-based). Selecting the desired page tab within the editor
window changes between these pages.

7.3.1. Common Editor Pages

Since most models are represented as hierarchical tree structures, different model editors share a common set of
pages and dialogs.

 Tree Editing Page

The tree-editing page shows the model in a tree-like fashion (like Windows Explorer). This page allows multi-
ple-selection of elements and supports drag and drop . Tree nodes can also be cut, copied, and pasted using the
global keyboard shortcuts (see Section 9.11, “ Keyboard Shortcuts ”) or via a context menu.

Selection of a tree node causes other views to be updated, for instance the Properties view. Conversely, some
views also propagate changes in selection back to the editor (e.g. the outline views).

Common Editor Pages

133

A context menu enables the expansion or collapse of all children of a node. The level of details shown in the tree
can be changed in the "Tree Layout" sub-menu of the context menu. If an attribute is selected in the tree and the
context menu is opened, this sub-menu contains the special entry "Hide Attribute: name" is shown. It is used to
hide this attribute in the tree view. Hidden attributes can be made visible again with the sub-menu action Table
Layout->Change . A dialog is opened which presents a list of all visible attributes and all invisible attributes.
This list can be adapted as desired. Additionally the tree layout allows to generally show or hide "Restrictions",
"Constraints", "Relations", "Attributes" and "Inherited Attributes". If attributes are set as hidden, the tables men-
tioned above have no effect. In addition the layouts can be given a name to store them permanently in the eclipse
workspace. A named layout can be set as default layout, which can apply for only one tree layout, which then
always is used for any newly opened model (see Section 7.4.2, “ Visualization View ” for more information on it).

Double-clicking on a node opens a property dialog for it.

The labels of the elements shown in the tree can be customized on the Variant Management->Visualization pref-
erence page.

 Table Editing Page

The table view is available in many views and editors. This view is a tabular representation of the tree nodes.
The visible columns and also the position and width of the columns can be customized via a context menu (Table
Layout->Change). A layout can be given a name. Named layouts are shown in, and can be restored from, the
Visualization view (see Section 7.4.2, “ Visualization View ”). Named layouts and layout changes for each table
are stored permanently in the Eclipse workspace. As for tree layouts a table layout can be set as default. Clicking
on a column header sorts that column. The sort direction may be reversed with a second click on the same column
header.

Tip

Double clicking on a column header separator adjusts the column width to match the maximal width
required to completely show all cells of that column.

Most cells in table views are directly editable. A single-click into a cell selects the row; a second click opens the
cell editor for the selected cell. The context menu for a row permits addition of new elements or deletion of the
row. A double-click on a row starts a property dialog for the element associated with the row.

 Constraints Editing Page

The Constraints page is available in the Feature and Family Model Editor and shows all constraints in the current
model. For pure::variant 5 projects constraint can also be added to variant models Constraints can be edited or
new created on this page. It also supports to change the element defining a constraint. The defining element is
not available for variant models.

Figure 7.3, “Constraints view” shows the Constraints page containing two constraints formulated in pvSCL . The
first column in the table of the page contains the name of the constraint. The constraint expression is shown in the
second column. In column three the type of the element defining the constraint is shown. The defining element
itself is shown in the last column.

Common Editor Pages

134

Figure 7.3. Constraints view

New constraints can be added by pressing button "New". The name of a constraint can be changed by double-click-
ing into the name field of the constraint and entering the new name in the opened cell editor. Double-clicking
into the "Defining Element" column of a constraint opens an element selection dialog allowing the user to change
the defining element.

Clicking on a constraint shows the constraint expression in the editor in the bottom half of the page. The kind of
editor depends on the language in which the constraint is formulated (see the section called “ Advanced Expression
Editor ” for more information about the editor). The language for the constraint expression can be changed by
choosing a different language from the "Language" list button.

Changes to constraints are applied using the "Apply" button and discarded using the "Restore" button.

 Graph Visualization Page

The graph visualization page is primarily intended for the graphical representation and printing of models. Al-
though the usual model editing operations like copy, cut, and paste and the addition, editing, and deletion of model
elements also are supported.

Note

The graph visualization is only available if the Graphical Editing Framework (GEF) is installed in the
Eclipse running pure::variants. More information about GEF are available on the GEF Home Page .

For nearly all actions on a graph that are explained in the next sections keyboard shortcuts are available listed in
Section 9.11, “ Keyboard Shortcuts ” .

Graph Elements

Model elements are represented in the graph as boxes containing the name of the element and an associated icon.
Feature model elements are represented as shown in the next figure.

The representation of Family Model elements slightly differs for part and source elements.

Parent-child relations are visualized by arrows between the parent and child elements.

http://www.eclipse.org/gef

Common Editor Pages

135

Other relations are visualized using colored connection lines between the related elements. The color of the con-
nection line depends on the relation and matches the color that is used for this relation on the tree editing page.

If an element has children a triangle is shown in the upper right-hand corner of the element box. Depending on
whether the element is collapsed or expanded a red or white corner is shown.

Graph Layout

The layout of the graph can be changed in several ways. Graph elements can be moved, expanded, collapsed, hid-
den, and automatically aligned. The graph can be zoomed and the layout of the connections between the elements
of the graph can be changed.

Two automatic graph layouts are supported, i.e. horizontal aligned and vertical aligned. Choosing "Layout Hori-
zontal" from the context menu of the graph visualization page automatically layouts the elements of the graph from
left to right. The elements are layouted from top to bottom choosing "Layout Vertical" from the context menu.

Depending on the complexity of a graph the default positioning of the connection lines between the elements of
the graph may not be optimal, e.g. the lines overlap or elements are covered by lines. This may be changed by
choosing one of three available docking rules for connection lines from the submenu "Select Node Orientation"
of the context menu.

No Docking Rule The connection lines point to the center of connected elements. Thus con-
nection lines can appear everywhere around an element.

Dock Connections on Left or Right The connection lines are positioned in the middle of the left or right side
of connected elements. This is especially useful for horizontally layouted
graphs.

Common Editor Pages

136

Dock Connections on Top or Bot-
tom

The connection lines are positioned in the middle of the top or bottom
side of connected elements. This is especially useful for vertically layouted
graphs.

The graph can be zoomed using the "Zoom In" and "Zoom Out" items of the context menu of the graph visualization
page.

Several elements can be selected by holding down the SHIFT or STRG key while selecting further elements, or
by clicking somewhere in the empty space of the graph visualization page and dragging the mouse over elements.
A dashed line appears and all elements that are partially or wholly enclosed in it will be selected.

If an element has children the element can be expanded or collapsed by clicking on the triangle in the upper right-
hand corner of the element's box. Another way is to use the "Collapse Element", "Expand Element", and "Expand
Subtree" context menu items. In contrast to the "Expand Element" action, "Expand Subtree" expands the whole
subtree of an element, not only the direct children.

To hide an element in the graph this element has to be selected and "Hide Element" has to be chosen from the
context menu. Attributes, relations, and the connection lines between related elements (relations arrows) also can
be hidden by choosing one of the items in the "Show In Graph" submenu of the context menu.

Elements can be moved by clicking on an element and move the mouse while keeping the mouse button pressed.
This only works if the element selection tool in the tool bar is selected.

Figure 7.4. Selected Element Selection Tool

Common Editor Pages

137

Graph Editing

Basic editing operations are available for the graph. The elements shown in the graph can be edited by choosing
"Properties" from the context menu of an element. Elements can be copied, cut, pasted, and deleted using the
corresponding context menu items.

New elements can be created either by choosing one of the items below the "New" context menu entry or by using
the element creation tool provided in the tool bar of the graph visualization page.

Figure 7.5. Feature/Family Model Element Creation Tools

Graph Printing

Printing of a graph is performed by choosing the File->Print menu item. The graph is printed in the current layout.

Note

Printing is only available on Windows operating systems.

 Element Properties Dialog

The properties dialog for an element contains a General, Relations, Attributes, Restrictions, and Constraints page.

 General Page

This page configures the general properties of a model element. According to the model type the available element
properties differ (see Figure 7.6, “Family Model Element Properties”).

Common Editor Pages

138

Figure 7.6. Family Model Element Properties

The following list describes the properties that are always available.

Unique ID The unique identifier for the model element. This identifier is generated
automatically and cannot be changed. Every Feature Model element has to
have a unique identifier.

Unique Name The unique name for the model element. The name must not begin with
a numeric character and must not contain spaces. The uniqueness of the
name is automatically checked against other elements of the same model.
The unique name can be used to identify elements instead of their unique
identifier. Unique names are required for each feature, but not for other
model elements. The Unique name is displayed by default (in brackets if
the visible name is also displayed).

Visible Name The informal name for the model element. This name is displayed in views
by default. This name can be composed of any characters and doesn't have
to be unique.

Class/Type The class and type of the model element. In feature models elements can
only have class ps:feature . Thus the element class for features cannot be
changed. Elements in Family Models can have one the following classes:
ps:component , ps:part , or ps:source . The root element of a family mod-
el always has the class ps:family . The type of a model element is freely
selectable.

Variation Type The Variation type of a model element. The variation type specifies, which
selection group applies to the element. One of "mandatory" , "optional" ,
"alternative" or "or" can be selected.

Common Editor Pages

139

Range For variation type Or it is possible to specify the number of features / fam-
ily elements that have to be selected in a valid configuration in terms of
a range expression. These range expressions can either be a number, e.g.
2, or an inclusive number range given in square brackets, e.g. [1,3], or a
set of number ranges delimited by commas, e.g. [1,3], [5, 8]. The asterisk
character * or the letter n may be used to indicate that the upper bound is
equal to the number of elements in the Or group.

Default Selected This property defines the default selection state of a model element. Default
selected elements are selected automatically if the parent element is select-
ed. To deselect this element either the parent has to be deselected or the
element itself has to be excluded by the user or the auto resolver. Note, that
by default the default selection state is disabled for features and enabled for
family elements.

Description The description of the model element. For formatted text editing see Sec-
tion 7.5.1, “ Common Properties Page ” . The description field is also avail-
able on the other pages.

 Relations Page

This page allows definition of additional relations between an element and other elements, such as features or
components (see Figure 7.7, “Element Relations Page”). Typical relations between features, such as requires or
conflicts, can be expressed using a number of built-in relationship types. The user may also extend the available
relationship types. For defining a new custom relation type the name of the new type can be entered into the text
filed into the Type column instead of selection on predefined relation from the dropdown list.

More information on element relations can be found in Section 5.2.3, “ Element Relations ” .

Figure 7.7. Element Relations Page

Common Editor Pages

140

 Attributes Page

Every element may have an unlimited number of associated attributes (name-value pairs).

The attributes page uses a table of trees to visualize the attribute declaration (root row) and optional attribute value
definitions (child rows).

Each attribute has an associated Type and may have any number of Value definitions associated with it. The values
must be of the specified Type. The number of attribute value definitions is shown in the # column. In the example
in Figure 7.8, “Sample attribute definitions for a feature” , the attribute DemoAttribute has two value definitions
(1 and 0).

Figure 7.8. Sample attribute definitions for a feature

Each attribute of type ps:integer or ps:float may define a range which the attribute values have to fit in. This range
can be defined in the "Attribute page" of an element while creating the attribute or the Section 7.4.6, “ Properties
View ” after selecting the corresponding attribute. The syntax of the ranges is described in Section 5.2.4, “ Element
Attributes ”

Attributes can be inherited from parent elements. Checking the inheritable cell (column icon) in the parent
elements Attribute page does this. An inherited attribute may be overridden in a child element by defining a new
attribute with the same name as the inherited attribute. The new attribute may or may not be inheritable as required.

Attributes can be fixed by checking the cell in the column. Fixed attributes are calculated from value definitions
in the model in which they are declared, in contrast to non-fixed attributes for which the value is specified in
a VDM. Default values can be (optionally) defined here for non-fixed attributes. These are used if no value is
specified in the VDM.

An attribute may have a restricted availability. This is indicated by a check mark in the column. Clicking on a
cell in this column activates the Restrictions editor. To restrict the complete attribute definition use the restriction
cell in the attribute declaration (root) row. To restrict an attribute value, expand the attribute tree and click into
the restriction cell of the value. In the appearing dialog restrictions can either be entered directly into a cell or by
using the Restrictions editor. Clicking on the button marked ... which appears in the cell when it is being edited
opens this editor. See the section called “ Restrictions Page ” for detailed information.

During model evaluation, attribute values are calculated in the listed order. The Move Up and Move Down buttons
on the right side of the page can be used to change this order. The first definition with a valid restriction (if any)
and a constant, or a valid calculation result, defines the resulting attribute value.

Common Editor Pages

141

Values can be entered directly into a cell, or by choosing a value from a list (combo box) of predefined values,
or by using the Value editor. Clicking on the button marked ..., which appears in the cell when it is being edited,
opens this editor. The editor also allows the value definition type to be switched between constant and calculation.
The calculation type can use the pvSCL language to provide more complex value definitions. More information
on calculating attribute values is given in the section called “ Attribute Value Calculations with pvSCL ” .

The name of an attribute can be inserted directly or chosen from a list of attributes defined for the corresponding
element type in the pure::variants type model. When choosing an attribute from the list, the attribute type and the
fixed state of the attribute are set automatically.

It is also possible to provide attributes which have a configurable collection of values as data type. Each contained
value is available in a variant if the corresponding restriction holds true. To use this feature, square brackets ("[]")
for list values or curly brackets ("{}") for set values have to be appended to the data type of the attribute in column
Type , e.g. ps:string{} , ps:boolean[] , or ps:integer{} .

The use of attributes is covered further in Section 5.2.4, “ Element Attributes ” .

 Restrictions Page

The Restrictions page defines element restrictions. Any element that can have restrictions can have any number
of them. A new restriction can be created using the Add button. An existing restriction can be removed using
Remove . Restrictions are OR combined and evaluated in the given order. The order of the restrictions may be
changed using the Move Up and Move Down buttons on the right side of the page.

Figure 7.9. Restrictions page of element properties dialog

For each restriction a descriptive name can be specified. It has no further meaning other than a short description
of what the restriction checks. A restriction can be edited in place using the cell editor (shown in the right side of
figure Figure 7.9, “Restrictions page of element properties dialog”). Note the difference in restriction #1 in the left
and right sides of the figure. Unless they are being edited, the element identifiers in restrictions are shown as their
respective Visible names (e.g. 'Wind Speed Sensor) when available. When the editor is opened the unique name
is shown (e.g. 'WindSpeed'), and no element identifier substitution takes place. The ... button opens an advanced
editor that is more suitable for complex restrictions. This editor is described more detailed in the section called
“ Advanced Expression Editor ” .

 Constraints Page

The Constraints page defines model constraints. Any element that can have constraints can have any number of
them. A new constraint can be created using the Add button. An existing constraint can be removed using Remove

Common Editor Pages

142

. The order of constraints may be changed using the Move Up and Move Down buttons on the right side of the
page. This has no effect on whether a constraint is evaluated or not; constraints are always evaluated.

Figure 7.10. Constraints page of element properties dialog

For each constraint a descriptive name can be specified. It has no further meaning other than a short description
of what the constraint checks. A constraint can be edited in place using the cell editor (shown in the right side
of figure Figure 7.10, “Constraints page of element properties dialog”). The ... button opens an advanced editor
dialog that is more suitable for complex constraints. This editor is described more detailed in the section called
“ Advanced Expression Editor ” .

 Advanced Expression Editor

The advanced expression editor is used everywhere in pure::variants where more complex expressions may be
inserted. This is for instance when writing more complex restrictions, constraints, or calculations.

Currently it supports the pvSCL language. A special editor is available for the pvSCL language. Figure 7.11,
“Advanced pvSCL expression editor” shows the pvSCL editor editing a constraint.

Common Editor Pages

143

Figure 7.11. Advanced pvSCL expression editor

This dialog supports syntax highlighting for pvSCL keywords and auto completion for identifiers. There are two
forms of completion. Pressing CTRL+SPACE while typing in an identifier opens a list with matching model
elements and pvSCL keywords as shown in the figure. If the user enters "<ModelName>." or "@<ModelId>/" a list
with the elements of the model is opened automatically. When pressing CTRL+SPACE the opened list contains
all kind of proposals: models, elements and operations, if there is no context information available. Therefore
an typing of '"' opens the list with only elements contained. When then one of the elements is selected, the full
qualified name of the element is inserted into the code, i.e. "<ModelName>.<ElementName>". There is always
a special entry at the end of such a list, "Open Element Selection Dialog...", which opens the Element Selection
dialog supporting better element selection. This dialog is described more detailed in the section called “ Element
Selection Dialog ” .

 Element Selection Dialog

The element selection dialog (figure Figure 7.12, “Element selection dialog”) is used in most cases when a single
element or a set of elements has to be selected, e.g. for choosing the relation target elements when inserting a new
relation. The left pane lists the potentially available elements, the right pane lists the selected elements. To select
additional elements, select them in the left pane and press the button ==> . Multiple selection is also supported.
To remove elements from the selection, select them in the right pane and use the button <== .

Feature Model Editor

144

Figure 7.12. Element selection dialog

The model selection and filter fields in the lower part of the dialog control the elements that are shown in the left
Label field. By default, all elements for all models within the current project are shown. If a filter is selected, then
only those elements matching the filter are shown. If one or more models are selected, then only elements of the
selected models are visible. If the scope is set to Workspace then all models from the current workspace are listed.
The model selection is stored, so for subsequent element selections the previous configuration is used.

Tip

The element information shown in the left and right Label fields is configurable. Use Table Lay-
out->Change... from the context menu to select and arrange the visible columns. See the section called
“ Table Editing Page ” for additional information on table views.

7.3.2. Feature Model Editor

Every open Feature Model is shown in a separate Feature Model editor tab in Eclipse. This editor is used to add
new features, to change features, or to remove features. Variant configuration is not possible using this editor.
Instead, this is done in a variant description model editor (see Section 7.3.4, “ Variant Description Model Editor
” and Section 4.4, “Using Configuration Spaces” for more information).

The default page of a Feature Model Editor is the tree-editing page. The root feature is shown as the root of the
tree and child nodes in the tree denote sub-features. The icon associated with a feature shows the relation of that
feature to its parent feature (see Table 9.4, “Element variation types and its icons”).

Feature Model Editor

145

Figure 7.13. Feature Model Editor with outline and property view

Some keyboard shortcuts are supported in addition to mouse gestures (see Section 9.11, “ Keyboard Shortcuts ”).

Creating and Changing Features

Whenever a new Feature Model is created, a root feature of the same name is automatically created and associated
with the model.

Additional sub-features may be added to an existing feature using the New context menu item. This opens the
New Feature wizard (see Figure 7.14, “New Feature wizard”) where the user must enter a unique name for the
feature and may enter other information such as a visible name or some feature relations. All feature properties
can be changed later using the Property dialog (context menu entry Properties , see the section called “Changing
feature properties”).

A feature may be deleted from the model using the context menu entry Delete. This also deletes all of the feature's
child features.

Cut, copy and paste commands are supported to manipulate sub-trees of the model. These commands are avail-
able on the Edit menu, the context menu of an element and as keyboard shortcuts (see Section 9.11, “ Keyboard
Shortcuts ”).

Feature Model Editor

146

Figure 7.14. New Feature wizard

Changing feature properties

Feature properties, other than a feature's Unique Identifier , may be changed using the Property dialog. This
dialog is opened by double-clicking the feature or by using the context menu item Properties (see Figure 7.15,
“Feature Model Element Properties”).

Family Model Editor

147

Figure 7.15. Feature Model Element Properties

See the section called “ Element Properties Dialog ” for more information about the dialog.

7.3.3. Family Model Editor

The Family Model Editor shows a tree view of the components, parts, and source elements of a solution space.
Each element in the tree is shown with an icon representing the type of the element (see Table 9.8, “Predefined

part types”). The element may additionally be decorated with the restriction sign if it has associated restriction
rules. For more information on Family Model concepts see Section 5.4, “ Family Models ” .

Variant Description Model Editor

148

Figure 7.16. Open Family Model Editor with outline and property view

7.3.4. Variant Description Model Editor

The VDM Editor is used to specify the configuration of an individual product variant. This editor allows the user to
make and validate element selections, to set attribute values, and to exclude model elements from the configuration.

In this editor there are two tree views, one showing all feature models in the Configuration Space and another
showing all family models in the Configuration Space.

 Element Selection

A specific model element can be explicitly included in the configuration by marking the check box next to the
element. Additional editing options are available in the context menu. For instance, there are menu entries for
deselecting or excluding one or whole sub-trees of elements. It is not supported to make a selection for two elements
with the same unique name of models with the same name.

Elements may also be selected automatically, e.g. by the Auto Resolver enabled by pressing button . However,
the context menu allows the exclusion of an element; this prevents the Auto Resolver from selecting the element.

Each selected element is shown with an icon indicating how the selection was made. The different types of icons
are documented in Table 9.5, “Types of element selections” . If the user selects an element that has already been
selected automatically its selection type becomes user selected and only the user can change the selection.

When the icon is shown instead of the selection icon, the selection of the element is inadvisable since it will
probably cause a conflict.

Since automatically calculated selections may be changed during evaluation by the auto resolver to make the
selectgions valid the Variant Description Model editor provides an action to make the current selection explicit.

Variant Description Model Editor

149

Meaning the current automatic calculated selection can be changed to explicit user selections to prevent the auto
resolver from changing them. This is done with the Finalize Configuration from the editors context menu. This
action opens a new dialog whioch allows the user to select which selections will be changed to explicit selections.

Figure 7.17. Finalize Configuration Dialog

First the scope allows the user to selected wether the feature or family models or both shall be considered. The
modes allow the user to select wether auto selections shall be converted into user selection and if unselected
elements shall be excluded. Additionally the converted selections can be locked, so the user can not change them
by accident.

The Reopen Configuration action reverts the finalization.

 Guided Variant Configuration

In addition to configuring variants in the Variant Description ModelEditor , pure::variants offers the possibility
to create Variant Configuration Wizards that guide the user through the configuration process. The Variant Con-
figuration Wizard is available in the Variant Description Model Editor and as part of the Model Viewer in the
pure::variants Web Components .

If a configuration space is configured to use a Variant Configuration Wizard Model the Variant Description
Model editor shows an additonal editor viewer named Wizard . See Section 6.19, “Customizing the Variant
Configuration Process” for detailed information on how to configure the Variant Configuration Wizard.

The wizard is divided into two areas. The left area lists the configurations steps that the wizard provides. The
bigger area on the right is the configuration area. It allows the user to make selections and also displays the start
and finish page of the wizard.

When the configuration wizard is launched, the start page of the wizard displays startup options. (See Figure 7.18,
“Variant Configuration Wizard Start Page”) Depending on the configuration of the Variant Configuration Wiz-
ard the start page lists the following startup options. Start configuration from scratch discards all previous se-
lections and resets the variant model to its initial, unconfigured state. Resume configuration resumes the config-
uration at the point where the user left the configuration the last time. Review configuration allows the user to
view the configuration without being able to change any selection. This is the only mode which allows the user
to navigate through the pages without changing selections.

Variant Description Model Editor

150

Figure 7.18. Variant Configuration Wizard Start Page

After clicking the Start button, the user is guided through the configuration process step by step. Each configura-
tion step is displayed on a single page in the wizard, and this page lists all the configuration items that are necessary
to complete the corresponding configuration step. (See Figure 7.19, “Variant Configuration Wizard Step Page”
) If a configuration item has an associated description, this description is shown below the item. In addition to
individual configuration items, a configuration step itself can also have a description. This description is shown
at the top of the page.

In this example, shown in Figure 7.19, “Variant Configuration Wizard Step Page” an or group is shown, which
means that at least one element has to be selected. Selecting elements may change the content of the step page. Since
selecting Temperature requires configuring the values of the attribute Maximum Temperature and Warning
Temperature those two attributes automatically become visible on the page.

The buttons Prev and Next allow page navigation. Next is avilable only after all items in the current configuration
step have been configured. Using the Prev button resets all configuration decisions that have been made on the
current page and navigates back to the previous page.

Variant Description Model Editor

151

Figure 7.19. Variant Configuration Wizard Step Page

After all configuration steps are done, the finish Page is shown (See Figure 7.20, “Variant Configuration Wizard
Finish Page”). The finish page lists the following options: Finalize configuration automatically converts derived
selections and values into user selections and values. The effect of this conversion is that all configuration deci-
sions made in the wizard, even those that were computed by the auto resolver, are treated as if they were made
manually by the user. As such, the auto resolver will not change these decisions accidentally if the variant model is
reopended later on. The only possibility to revise these configuration choices is through explicit user interaction.
Lock configuration locks all user selections so they can not be changed later. Disable wizard disables the wiz-
ard for the currently configured Variant Description Model. This means the wizard is not shown, if the Variant
Description Model is opened again.

Pressing the Finish button performs the selected actions and saves the Variant Description Model.

Figure 7.20. Variant Configuration Wizard Finish Page

Variant Description Model Editor

152

 Attribute Overriding

The value of non-fixed attributes is specified in the VDM. Therefore, the Variant Description Model Editor allows
to change non-fixed attributes. There are three possibilities:

• with the Properties view (see Section 7.4.6, “ Properties View ”)

• with the Attributes view (see Section 7.4.1, “ Attributes View ”)

• with the cell editors of the Variant Description Model Editor itself

Only the first possibility will be explained in detail. The other two possibilities are similar to the first.

First make sure the VDM editor displays attributes (use context menu Table Layout -> Attributes). Next,
double-click on the attribute you would like to specify a value for. A cell editor opens and a text can be entered
for the attribute or pressing the ... button opens the Value editor dialog. The given value will be applied with a
click somewhere else in the tree.

Alternatively, values can be added to a non-fixed/editable attribute of a VDM or other models by right-click on it
and navigating to New -> Attribute value. This action will provide relevant dialogs to input values. By pressing
OK in the dialogs, the value can be stored in the attribute.

Figure 7.21. Specifying an attribute value in VDM with cell editor

For list and set attributes a special dialog appears when editing attribute values in VDMs. The table represents the
values and provides possibility to add (using Add value button), edit (by double clicking the table cells), remove
(one or multi select) or re-arrange values.

Attributes of grey color mean that there is currently no value set for the attribute and that the default value of the
attribute is taken from the associated Feature or Family Model. If no value is specified in VDM for an attribute
with default value then a warning will be shown, calling attention to that issue. Attributes with no value in VDM
and no default value will produce an error during evaluation.

 Element Selection Outline View

The outline view of the VDM shows the selected elements with their selection state. You can click on an element
to navigate to it in the VDM. This view may be filtered from the views filter icon or context menu.

Variant Result Model Editor

153

Figure 7.22. Outline view showing the list of available elements in a VDM

7.3.5. Variant Result Model Editor

The Variant Result Model Editor (VRM Editor) is used to view a saved Variant Result Model. To open a Variant
Result Model, double-click on the corresponding file (suffix .vrm) in the Variant Projects View. This opens the
editor in the style of the VDM Editor.

A Variant Result Model can not be changed because it already represents a concrete variant. Thus the shown
element selection is read-only.

If a Variant Result Model is located below a Configuration Space folder, transformation of the Variant Result
Model is possible. The required information for the transformation is taken from the Configuration Space. If no
valid transformation configuration is found, the transformation will be rejected. A warning is shown if the models
of the Configuration Space do not conform to the models in the Variant Result Model.

Figure 7.23, “VRM Editor with outline and properties view” shows a sample variant result model.

Model Compare Editor

154

Figure 7.23. VRM Editor with outline and properties view

See Section 5.9.2, “ Variant Result Models ” for more information about Variant Result Models.

7.3.6. Model Compare Editor

The Model Compare Editor is a special editor provided by pure::variants to view and treat differences between
pure::variants models. The behaviour of this editor is very similar to that of the Eclipse text compare editor. For
general information about the Eclipse compare capabilities please refer to the Eclipse Workbench User Guide .
The Task section contains a subsection Comparing resources which explains the compare action in detail. For
more information on the use of the pure::variants Model Compare Editor see Section 6.6, “ Comparing Models ” .

7.3.7. Matrix Editor

The matrix editor gives an overview of feature selections and attribute values across the variants in a configuration

space. The editor is opened by double-clicking on the configuration space icon in the Variant Projects view
(see Figure 7.24, “Matrix Editor of a Configuration Space”). The editor may be filtered based on the selection
states of features in the individual Variant Description models: one filter shows the features that have not been
selected in any model, one filter shows the features that have been selected in all models, and one filter shows
the features that have been selected in at least one model. The filters are accessed via the context menu for the
editor (Show elements). The general filtering mechanism can also be used to further specify which features are
visible (also accessible from the context menu).

/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm

Matrix Editor

155

Figure 7.24. Matrix Editor of a Configuration Space

The Matrix Editor allows to change selections and attribute values per VDM. As for the table, the columns of the
Matrix Editor can be changed via the same context menu (Table Layout->Change...) . The first column, which
shows the Configuration Space relevant Input Models in the order as they would appear for the VDM Editor, can
not be (re)moved. The Input Model Values column, which is visible by default, can be shown but not moved,
since its supposed to show the values of attributes as they are defined in the input model and needs those next to
it. Additionally the table layout allows the user to define the VDMs visible in the matrix. This selection can be
stored in a Matrix Variant Filter . Those filters can be used to open the matrix on the VDMs only matching the
filter as well as starting transformation and evaluation on the same filter matching VDMs.

To store the currently opened VDMs in a filter use the Create Matrix Variant Filter action from the context mennu
of the Matrix Editor. The second possibility to create such a filter is to select a number of VDMs in the projects
view and use the Create Matrix Variant Filter action from the context menu of the project view. A dialog comes
up to define a name for the new filter.

In addition the Matrix Editor allows to evaluate the VDMs. This is done with the Evaluate Models button in the
editors toolbar, identical to the VDM Editor. Evaluation capability of the Matrix Editor also includes the buttons
in the toolbar Enable automatic checking... and Enable auto resolver... . If an evaluation is performed, only the
currently visible VDMs are evaluated. The result of the evaluation will be visible in different ways depending on
the type of the object the cell represents. A Restriction will show its evaluation state. A not evaluated Restriction

will be shown as , whereas a possitively or negatively evaluated Restriction will show , or respectively.

A Constraint will always show a , since it will produce an error, if the condition is not met. If no value for

an attribute can be calculated, a is shown in the corresonding cell to indicate that the attribute has no value at
all under the current configuration.

Lastly it is even possible to perform transformation of the visible VDMs. Use the Transform all models button to
perform transformation. See Section 5.9, “ Variant Transformation ” for detailed information.

The Matrix shown in the editor can be exported to various output formats using the Export Matrix... action from
the context menu. The dialog, which opens, allows the user to chose the output format and location for the export.

Note
The Export Matrix... action is available only, if the pure::variants - Connector for Reporting with BIRT
is installed.

Views

156

Figure 7.25. Export Matrix Dialog

The action export the visible content of the matrix editor, it does even take the expansion state of a element into
acount. Meaning collapsed elements and attributes will not be visible in the export result. As well as filtered
elements and varaints not opened in the editor.

In the dialog a custom report template can be selected. As a starting point we recommend to use the stadard report
template, which can be saved with the Save Report Template.... After customizing the report template, it can be
used for future matrix exports.

Note
The template contains a table, which is named "Matrix". This table is the entry point for the matrix
exporter. The table can be modified, but there has to be a variant column, which defines the the layout
for the columns inserted by the exporter. Which column is the variant column is defined with a user
property on the table. Name of the property is "VariantColumn", type is integer. The value is the index
of the variant column. The index is 0 based, so third column has index 2. This column is replaced by the
exporter with the necessary variant columns.

The Save ANT Build File... button generates an ANT Build file, which can be used to run the report generation in
head less mode automatically by any build system. See Section 6.14, “External Build Support (Ant Tasks)”

The generated build file uses the same tree and table layout like currently configured in the confguration space
editor, including model item visibility and expansion state for the shown model data. Elements not visible due to
an applied filter will not be visible in the report if you run the generated ANT build file.

7.4. Views

7.4.1. Attributes View

The attributes view shows for a VDM the available attributes of the associated Feature and Family Models. The
user can set the value of non-fixed attributes in this view by clicking in the Value column of an attribute. If no
value is set for an attribute then the value set in the associated Feature / Family Model is shown in grey in the
Value column. This view may also be filtered to show only the attributes of selected features and/or where no
value has been set.

Visualization View

157

Figure 7.26. Attributes view (right) showing the attributes for the VDM

7.4.2. Visualization View

The model editors and most of the views support named layouts and filters. The Visualization view shows all
named layouts and named filters defined in the current Eclipse workspace (see Figure 7.27, “Visualization view
(left) showing 2 named filters and 2 named layouts”).

Figure 7.27. Visualization view (left) showing 2 named filters and 2 named layouts

Search View

158

When the Visualization view is opened, the first level of layouts and filters is expanded. To expand or collapse the
visualizations manually use the "Expand.." and "Collapse.." buttons in the tool bar of the view. Additional filters
and layouts may be imported from a file by choosing "Import" from the context menu. To export all visualizations
listed in the Visualization view choose "Export" from the context menu. Exported visualizations are stored in a file
which can be imported into another Eclipse installation or shared in the project's team repository. Visualizations
can be applied either by double clicking on the name of the visualization or by choosing "Apply Item" from the
context menu of a visualization. Other actions on visualizations are Delete and Rename by choosing the corre-
sponding context menu entries.

Three top-level categories are available in the visualization view. These are Filters , Table Layouts and Tree
Layouts . The corresponding items can only be created in the editors. See the section called “ Table Editing
Page ” , the section called “ Tree Editing Page ” and Section 6.9, “ Filtering Models ” for information on it. Tree
Layouts can only be applied to Editors Tree Viewers, Table Layouts to Editors Table Viewers and Filters to all
pure::variants Model Editors. Note that some filters may not work as expected on different models. For example
a Variant Model Filter, filtering on selections will not work for a Feature Model Editor.

Additionally the layout and filter items may be organized within categories. Layouts or filters, created once appear
at first directly below their top-level category. The view allows to create a category by choosing "Create Catego-
ry..." from the context menu on a parent Category. The context menu provides an action "Move To" on an item
selection, which allows to move it to any desired category.

7.4.3. Search View

Feature and Family Models can be searched using the Variant Search dialog. The Variant Search view shows the
result of this search and is opened automatically when the search is started. The search results are listed in a table
or in a tree representation.

The tree representation structures the search results in a simple tree. The first level of the tree lists the models
containing matches. On the second level the matched elements are listed. The next levels finally list the matched
attributes, attribute values, restrictions, and constraints.

Figure 7.28. Variant Search View (Tree)

Behind every element in the tree that is a root element of a sub-tree the number of matches in this sub-tree is
shown. Double-clicking on an item in the tree opens the corresponding model in an editor with the corresponding
match selected. The search results can be sorted alphabetically using the button "Sort by alphabet" in the tool bar
of the Search view.

By pressing button "Switch to Table" the table representation of the seach results is enabled. The table shows the
matched model items in a flat list. Double-clicking on an item in the list opens the corresponding model in an
editor with the corresponding match selected. The search results can be sorted alphabetically by clicking on the
"Label" column title.

Outline View

159

Figure 7.29. Variant Search View (Table)

A search result history is shown when the button "Show Previous Searches" in the tool bar of the search view is
pressed. With this history previous search results can be easily restored. The history can be cleared by choosing
"Clear History" from the "Show Previous Searches" drop down menu. Single history entries can be removed using
the "Remove" button in the Previous Searches dialog.

Note

The history for many consecutive searches with a lot of results may lead to high memory consumption.
In this case clear the whole history or remove single history entries using the Previous Searches dialog.

A new search can be started by clicking on button "Start new Search".

For more information about how to search in models using the Variant Search see Section 6.7, “ Searching in
Models ” .

7.4.4. Outline View

The Outline view shows information about a model and allows navigation around a model. The outline view for
some models has additional capabilities. These are documented in the section for the associated model editor.

7.4.5. Problem View/Task View

pure::variants uses the standard Eclipse Problems View to indicate problems in models. If more than one element
is causing a problem, clicking on the problem selects the first element in the editor. For some problems a Quick
Fix (see context menu of task list entry) may be available.

7.4.6. Properties View

pure::variants uses the standard Eclipse Properties View. This view shows important information about the se-
lected object and allows editing of most property values. To open the view chose menu Window->Show View-
>Properties .

Properties View

160

Figure 7.30. Properties view for a feature

Figure 7.30, “Properties view for a feature” shows the properties view after a feature was selected in the Feature
Model Editor. At the left side there are selectable tabs, each containing a set of properties that logically belong
together. Usually, tabs General and Description are shown. The middle area of the properties view presents the
properties for the active tab.

The properties view depends on the selection in the workbench made by the user. For instance, selecting a family
element like a component allows to edit unique and visible names, whereas for a selected relation the type and
the relation targets can be changed in the General tab. At the moment, general properties of elements, relations,
attributes, attribute values and restrictions can be modified and each of them can have descriptions given in the
Description tab (see Figure 7.31, “Description tab in Properties view for a relation”).

Figure 7.31. Description tab in Properties view for a relation

Properties that are edited won't be applied until the edited field loses the input focus or the ENTER key is pressed.
That allows you to discard the current change in a text field with the ESCAPE key if you like.

If a VDM Editor is active in the workbench and an attribute of the variant is selected then the properties view
allows to define the value of the attribute for that variant.

Figure 7.32. Properties view for a variant attribute

Relations View

161

For the visible name of features and family elements as well as for descriptions it is possible to specify text
in different languages. See Section 6.12, “ Using Multiple Languages in Models ” for more information about
language support. For formatted text editing of descriptions see Section 7.5.1, “ Common Properties Page ” .

7.4.7. Relations View

The Relations view shows the relations of the currently selected element (feature/component/part/source element)
to other elements. The relations shown in the view are gathered from different locations. The basic locations are:

Model Structure From the model structure, the relations view gathers information about the parent
and child elements of an element.

Element Relations From the relations defined on an element, the relations view gathers information
about the elements depending on the selected element according to the defined rela-
tions. Related elements can be elements from the same model or from other models.
If a relation to an element of another model cannot be resolved, it may be necessary
to explicitly open the other model to let the relations view resolve the element.

Restrictions From the restrictions defined on an element or on a relation, property, or property
value of the element, the relations view gathers information about the elements ref-
erenced in these restrictions. According to the language used to formulate the re-
striction, pvSCL, the relations view shows the referenced elements below the entry
"Simple Constraint Language".

Constraints From the constraints defined on an element, the relations view gathers information
about the elements referenced in these constraints. According to the language used to
formulate the constraint, pvSCL, the relations view shows the referenced elements
below the entry "Simple Constraint Language".

Element Properties From the properties of an element, the relations view gathers information about
mapped features. For this purpose there must be a property with the value type
"ps:feature". Mapped features can be elements from the same model or from other
models. If the mapped feature is an element of another model, it may be necessary
to explicitly open the other model to let the relations view resolve the element.

The relations view can be extended to view other relations than the basic relations described above. Please see the
pure::variants Extensibility Guide for more information about extending the relations view.

Double-clicking on a related element shown in the Relations View selects that element in the editor. The small
arrow in the lower part of the relation icon shows the direction of the relation. This arrow always points from

the relation source to the relation destination. For some relations the default icon is shown. The number in
parentheses shown after an element's name is the count of child relations. So, in the figure below the element has
one requires relation indicated by (1) .

Result View

162

Figure 7.33. Relations view (different layouts) for feature
with a ps:requires to feature 'Main Component Big'

The Relations view is available in four different layout styles: two tree styles combined with two table styles.
These styles are accessed via icons or a menu on the Relations view toolbar.

The relations view supports filtering based on relation types. To filter the view use the Filter Types menu item
from the menu accessible by clicking on the down arrow icon in the view's toolbar.

Attribute values of type "ps:url" are shown as links to external documents in the relations view. A double-click on
the appropriate entry opens the assigned system application for the referenced URL.

7.4.8. Result View

The result view shows the results of model evaluation after a selection check has been performed. In full config-
uration mode, it lists all selected Feature and Family Model elements representing the given variant. In partial
configuration mode, it lists both selected and open Feature and Family Model elements of the given variant.

The result view also provides a special operation mode where, instead of a result, the difference (delta) between
two results are shown, similar to the model compare capability for Feature and Family Models.

Toolbar icons allow the view to be shown as a tree or table (), allow the sort direction to be changed (),

and control activation/deactivation of the result delta mode ().

Filtering is available for the linear (table like) view, (). The Model Visibility item in the result view menu (third
button from right in toolbar) permits selection of the models to be shown in the result view.

The result view displays a result corresponding to the currently selected VDM. If no VDM is selected, the result
view will be empty. The result view is automatically updated whenever a VDM is evaluated.

Result View

163

Figure 7.34. Result View

 Result Delta Mode

The result delta mode is enabled with the plus-minus button () in the result view's toolbar. In this mode the
view displays the difference between the current evaluation result and a reference result - either the result of the
previous evaluation (default) or an evaluation result set by the user as a fixed reference . In the first case, the
reference result is updated after each evaluation to become the current evaluation result. The delta is therefore
always calculated from the last two evaluation results. In the second case the reference result does not change. All
deltas show the difference between the current result and the fixed reference result.

The fixed reference can be either set to the current result or can be loaded from a previously saved variant result
(a .vrm file). The reference result is set from the result view menu (third button from right in toolbar). To set a
fixed result as reference use Set current result as reference . To load the reference from a file use Load reference
result from file . To activate the default mode use Release reference result . The Switch Delta Mode submenu
allows the level of delta details shown to be set by the user.

Impact View

164

Figure 7.35. Result View in Delta Mode

Icons are used to indicate if an element, attribute or relation was changed, added or removed. A plus sign indicates
that the marked item is only present in the current result. A minus sign indicates that the item is only present in
the reference result. A dot sign indicates that the item contains changes in its properties or its child elements. Both
old and new values are shown for changed attribute values (left hand side is new, right hand side is old).

7.4.9. Impact View

Variant description models are used to configure variation points in pure::variants. These vdms are connected
to a configuration space, which lists all input models. Variation points can be either feature-based or manually
configured. The feature-based configuration is used to automatically configure variation points based on selections
of features. The feature-based configuration depends directly on the inout models of the configuration space.
Changing the input models may have an impact on the existing variation point configurations.

The impact view shows possible impacts on the variant configurations while changing the input models.

To open the Impact View use the Show View -> Impact View action form the Window menu.

Impact View

165

Figure 7.36. Open Impact View

After opening the view work on the input models can be started. The impact analysis is disabled by default and
needs to be explicitly enabled for each input model, which shall be considered by the impact analysis. To enable

the analysis open an input model and click on the Enable Imput Analysis button (). The initial analysis is
performed now for all variant models, which use the input model. The impact view shows the state of each variant
model after the analysis is done. There are 5 different states:

• the variant is currently analysed by the impact analysis

• the variant is valid and not changed by the input model changes

• the variant is valid but changed by the input model changes

• the variant is invalid

• the variant is deactivated

The impact is calculated automatically for every change on the input models, for which the impact analysis is

activated. With the button the automatic calculation can be paused, if the user is performing a lot of changes

and can be resumed after the changes are done. Reseting the impact analysis is triggered with the button. This
removes the current analysis result and starts a fresh calculation of the impact. The result is the same as enabling
the impact claculation the first time on the current state of the input models.

Impact View

166

Figure 7.37. Impact Calculation Result

Figure Figure 7.37, “Impact Calculation Result” shows an example result for the impact analysis. If there are
problems the result contains details on the problem. The same applies to changes in the variant description models.
For changes it is possible to see more details with the action Show in Text Compare from the context menu of
one change.

The context menu of the impact view allows the user to change the scope of the impact analysis. The Actions in
sub menu Add Variant Models allows the user to add additional variant models to the analysis. Manually From
Workspace... lets the user chose the variants to be added to impact analysis from all variant models currently
imported to the workspace. Automatically All Related From Workspace does check all variant models currently
imported to the workspace and adds all variants using the input model currently used in the impact view. Related
from Server Projects lets the user decide which variants to import from all related server projects.

Remove Variant Model removes the selected models from the impact analysis. Deactivate deactivates the analysis
for the selected variant models. This action keeps them in the impact view and just ignores them during calculation.

pvSCL IDE

167

Figure 7.38. Impact View Context Menu

Navigation from the information shown in the impact view to the corresponding elements or models is enabled
using the Go to ... action from the context menu or by just double clicking the elements or models in the impact
view.

7.4.10. pvSCL IDE

Writing complex pvSCL rules in the modal Code Editor dialog is notvery comfortable since it is not possible to
look at your feature models until you closed the dialog. To avoid that you can use the pvSCL IDE view to prepare
the pvSCL rules and than just copy them to the Code Editor after you have finished them.

Essentially, the pvSCL IDE is a live expression evaluator which can be used to successfully developed large and
complex expressions with it.

It is used in three steps.

pvSCL IDE

168

Figure 7.39. Open pvSCL IDE View

Step 1: Open the pvSCL IDE view. Go to Window -> Show View -> Other and chose pvSCL IDE in the opening
dialog. After ending this dialog the pvSCL IDE view opens.

Figure 7.40. Open pvSCL IDE View

Step 2: Select an element as expression context in a variant model. This initializes the evaluation ontext for the
pvSCL IDE. This usually should be the element, which will be the parent of the constraint, restriction or calculation.

Variant Projects View

169

Figure 7.41. Assign context element to pvSCL IDE

To do so, right-click on the element, select pvSCL IDE --> Assign VDM and Model Element. Alternatively you
can press [Ctrl]+[7].

Step 3: Enter your expression in the Code Editor part of the pvSCL IDE.

Figure 7.42. The pvSCL IDE View

Enter the text of your pvSCL expression. You can use auto-completion using [Ctrl]+[Space], as usual. You also
have on-the-fly syntax and error highlighting. The expression in the Code Editor is evaluated on the variant model
immediately as you type. The result appears on the right side instantly.

Make sure you use the rigth rule type setting. The rule type constraint and restriction have a result of type
ps:boolean only. Calculations on the pther hande can also have results of other types.

If the evaluation of your expression would generate error, warning or information marker the Evaluation Result
control will indicate that with a small marker at the top left corner of the control.

7.4.11. Variant Projects View

The Variant Projects View (upper left part in Figure 7.43, “The Variant Projects View”) shows all variant man-
agement projects in the current workspace. Projects and folders or models in the projects can be opened in a
tree-like representation. Wizards available from the project's context menu allow the creation of Feature Models,
Family Models, and Configuration Spaces. Double-clicking on an existing model opens the model editor, usually
shown in the upper right part of the perspective. In Figure 7.43, “The Variant Projects View” one editor is shown
for a variant description model with some features selected.

Model Properties

170

Figure 7.43. The Variant Projects View

7.5. Model Properties

pure::variants models have a set of properties. Each model has at least a name. Optionally it can have an author,
version, description, and a set of custom properties. Model properties are set by right-clicking on a model in the
Variant Projects view and choosing Properties from the context menu. Depending on the kind of model and the
registered extensions, several property pages are available.

7.5.1. Common Properties Page

The common properties are provided on the Model page (see Figure 7.44, “Feature Model Properties Page”).

The common properties of all models are the name, author, version, and description of the model. Additionally
the description type can be changed. Available types are plain text and HTML text. Models created with a version
lower than 3.0 of pure::variants usually have the plain text type. Setting to HTML text description type allows to
format descriptions with styles like bold and italic or with text align like left, center and right (see again Figure 7.44,
“Feature Model Properties Page”). For a full set of HTML formatting possibilities open the extended HTML

description dialog by pressing the button in the tool bar of the description field.

General Properties Page

171

Figure 7.44. Feature Model Properties Page

7.5.2. General Properties Page

Custom model properties are defined on the General Properties page (see Figure 7.45, “General Model Properties
Page”).

Inheritance Page

172

Figure 7.45. General Model Properties Page

For each property a name, type, and value has to be specified. Optionally a description can be provided.

New properties are added by clicking on button Add or by double-clicking in the first empty row of the table.
Additional attribute values can be added by selecting the property and then clicking on button Add value . To
remove a value select it and click on button Remove value . A whole property can be removed by selecting the
attribute and clicking on button Remove .

As for element attributes, model properties can also have a list type by simply adding square brackets ("[]") to the
type name, e.g. ps:string[] , ps:integer[] .

Special model properties, like the name, author, version, and description of the model usually configured on other
model property pages, are not shown in the General Properties list. To include these properties in the list, check
option "Include invisible properties in list".

7.5.3. Inheritance Page

The Inheritance page is only available for VDMs. It is used to select the models from which a VDM inherits (see
Figure 7.46, “Variant Description Model Inheritance Page”).

Inheritance Page

173

Figure 7.46. Variant Description Model Inheritance Page

The left table shows the models which can be inherited. To avoid inheritance cycles models inheriting from the
current model are greyed out and can not be inherited. The right table shows the models from which the current
model inherits.

Models can be selected from the current Configuration Space, the current project, and referenced projects. See
Section 5.7, “ Inheritance of Variant Descriptions ” for more information on variant description model inheritance.

174

175

Chapter 8. Additional pure::variants
Extensions
The features offered by pure::variants may be further extended by the incorporation of additional software exten-
sions. An extensions may just contribute to the Graphical User Interface or it may extend or provide other func-
tionality. For instance an extensions could add a new editor tab for model editors or a new view. The online version
of this user guide contains documentation for additional extensions. Printable documentation for the additional
extensions is distributed with the extensions and can be accessed from the online documentation via a hyperlink.

Currently available extensions can be found on our web site (https://www.Parametric Technology.com/purevari-
ants/purevariants-connectors)

8.1. Installation of Additional pure::variants Extensions

Additional pure::variants extensions are distributed and installed in several ways:

• Installation from an Update Site Installation via the Eclipse update mechanism is a convenient way of installing
and updating pure::variants from an internet site. See task "Updating features with the update manager" resp.
"Updating and installing software" in the Eclipse Workbench User Guide for detailed information on the Eclipse
update mechanism (menu Help -> Help Contents and then Workbench User Guide->Tasks).

The location of the site depends on the pure::variants product variant. Visit the Parametric Technology web site
(https://www.Parametric Technology.com) or read your registration e-mail to find out which site is relevant
for the version of the software your are using. Open the page in your browser to get information on how to
use update sites with Eclipse.

• Archived Update Site pure::variants uses also archived update sites, distributed as ZIP files, for offline instal-
lation into an existing Eclipse installation.

Archived update sites are available for download from the pure::variants internet update site. The location
of the site depends on the pure::variants product variant. Visit the Parametric Technology web site (https://
www.Parametric Technology.com) or read your registration e-mail to find out which site is relevant for the
version of the software your are using. Open the page in your browser to get additional information on how
to use update sites with Eclipse. pure::variants archived update site file names start with updatesite followed
by an identification of the contents of the update site. The installation process is similar to the internet update
site installation.

https://www.Parametric Technology.com/purevariants/purevariants-connectors
https://www.Parametric Technology.com/purevariants/purevariants-connectors
https://www.Parametric Technology.com
https://www.Parametric Technology.com
https://www.Parametric Technology.com

176

177

Chapter 9. Reference

9.1. Element Attribute Types

Table 9.1. Supported Attribute Types

Attribute Type Description Allowed Values

ps:boolean boolean value true and false

ps:integer integer number a valid integer number of
format ('0x' [0-9a-fA-
F]+) | ([+-]? [0-9]+)

ps:float floating point number a valid floating point number of for-
mat [+-]? [0-9]+ ('.' [0-9]+)?

([eE] [+-]? [0-9]+)?

ps:string any kind of unspecific text any

ps:path path to a file in a file system any

ps:directory path to a directory in a file system any

ps:url a URL or URI any

ps:html HTML code any

ps:datetime date and time (e.g.
in IS0 8601 format)

any

ps:version a version string (with wildcards) a string of format [0-9]+
('.' [*0-9]+ ('.' [*0-9]+

('.' [*0-9a-zA-Z_-]+)?)?)?

ps:filetype file type identifier def , impl , misc , app , undefined

ps:insertionmode value type of source el-
ement type ps:fragment

before and after

ps:element feature or family mod-
el element reference

a valid ID of an element

ps:feature feature reference a valid ID of a feature

ps:class ps:class source element reference a valid ID of a ps:class
source element

9.2. Element Relation Types

Relations can be defined between the element containing the relation on one side and all other elements of the same
or other models on the other side. In the following table, showing the supported element relations, the defining
element D is the element on which the relation is defined, and EL is the list of related elements E 1 ... E n .

Note
Users can use their own custom relation types, which are ignored during evaluation. Some of the sup-
ported and thus evaluated relation types exist only since a specific release version of pure::variants. In
previous versions they are treated as customer relations and are not evaluated at all. So, using models
containing such relations in previous versions of pure::variants, which does not support them yet, can
lead to invalid variant configurations. To avoid this source of error, the user is responsible to ensure
that these models are not used in previous versions. One possibility for that is to add a pvSCL version
guard constraint in each feature or family model, which uses such a new relation. See the section called
“pv:PVVersion()” for that.

Element Relation Types

178

Table 9.2. Supported relations between elements (I)

Relation Description Logical equivalent

ps:requires(EL) At least one element in EL has to be se-
lected if the defining element is select-
ed.

D implies (E 1 or ... or E n)

ps:requiresAll(EL) All elements in EL have to be selected
if the defining element is selected.

D implies (E 1 and ... and E n)

ps:requiredFor(EL) If at least one element in EL is selected,
then the defining element has to be se-
lected.

(E 1 or ... or E n) implies D

ps:requiredForAll(EL) If all elements in EL are selected, then
the defining element has to be selected.

(E 1 and ... and E n) implies D

ps:conditionalRequires(EL) Similar to ps:requires , but the relation
is considered only for elements whose
parent element is selected.

D implies ((parentSel(E 1) implies E
1) or ... or (parentSel(E n) implies E n
)) , where parentSel(root) = true

ps:recommends(EL) Like ps:requires , but not treated as er-
ror if not complied.

D implies (E 1 or ... or E n)

ps:recommendsAll(EL) Like ps:requiresAll , but not treated as
error if not complied.

D implies (E 1 and ... and E n)

ps:recommendedFor(EL) Like ps:requiredFor , but not treated as
error if not complied.

(E 1 or ... or E n) implies D

ps:recommendedForAll(EL) Like ps:requiredForAll , but not treated
as error if not complied.

(E 1 and ... and E n) implies D

ps:equalsAny(EL)

(available since
pure::variants 4.0.7)

If the defining element is selected, at
least one element in EL has to be select-
ed. If the defining element is not select-
ed, none of the elements in EL may be
selected.

D equals (E 1 or ... or E n)

ps:equalsAll(EL)

(available since
pure::variants 4.0.7)

If the defining element is selected, all
elements in EL have to be selected. If
the defining element is not selected, not
all of the elements in EL may be select-
ed.

D equals (E 1 and ... and E n)

ps:conflicts(EL) If all element in EL are selected, then
the defining element must not be select-
ed.

(E 1 and ... and E n) implies not(D)

ps:conflictsAny(EL) If any element in EL is selected, then the
defining element must not be selected.

(E 1 or ... or E n) implies not(D)

ps:discourages(EL) Like ps:conflicts , but not treated as er-
ror if not complied.

(E 1 and ... and E n) implies not(D)

ps:discouragesAny(EL) Like ps:conflictsAny , but not treated as
error if not complied.

(E 1 or ... or E n) implies not(D)

ps:influences(EL) The elements in EL are influenced in
some way by the selection of the defin-
ing element. The interpretation of the
influence is up to the user.

ps:provides(EL) The "inverse" relation to ps:requires .
For all selected elements in EL at least
one defining element has to be selected.

E implies (D 1 or ... or D n)

Element Variation Types

179

Relation Description Logical equivalent

ps:supports(EL) Like ps:provides , but not treated as er-
ror if not complied.

E implies (D 1 or ... or D n)

Table 9.3. Supported Relations between Elements (II)

Relation Description Use for Partner relation

ps:exclusiveProvider(id) In a valid configuration at most
one exclusiveProvider or one set
of sharedProvider for a given id
is allowed. Thus, the relation de-
fines a mutual exclusion relation
between elements.

Concurrent implemen-
tations for an abstract
concept.

ps:requestsProvider

ps:sharedProvider(id) In a valid configuration at most
one exclusiveProvider or one set
of sharedProvider for a given id
is allowed. Thus, the relation de-
fines a mutual exclusion relation
between elements.

Shared implementa-
tions for an abstract
concept.

ps:requestsProvider

ps:requestsProvider(id) In a valid configuration for each
requestsProvider with the giv-
en id there must be an exclu-
siveProvider or any number of
sharedProvider with the same id.
There may be any number of re-
questsProvider relations for the
same id.

Request existence of an
abstract concept.

ps:exclusiveProvider

ps:expansionProvider(id) In a valid configuration at most
one expansionProvider for a giv-
en id is allowed. Thus, the rela-
tion defines a mutual exclusion re-
lation between elements.

Provides mechanism
for implementing varia-
tion points with default
solution.

ps:defaultProvider

ps:defaultProvider(id) If an element marked as ex-
pansionProvider is additionally
marked as defaultProvider for the
same given id and there is more
than one possible element claim-
ing to be an expansionProvider
for this id, then all default-
Provider are excluded. If there are
more than one defaultProvider se-
lected and no non- defaultProvide
r selected, one defaultProvider
must be chosen manually.

Provides mechanism
for implementing varia-
tion points with default
solution.

ps:expansionProvider

9.3. Element Variation Types

Table 9.4. Element variation types and its icons

Short name Variation Type Description Icon

mandatory ps:mandatory A mandatory element is automatically selected if its parent element
is selected.

optional ps:optional Optional elements are selected independently.

Element Selection Types

180

Short name Variation Type Description Icon

alternative ps:alternative Alternative elements are organized in groups. Exactly one element has
to be selected from a group if the parent element is selected (although
this can be changed using range expressions). pure::variants allows
only one ps:alternative group for the same parent element.

or ps:or Or elements are organized in groups. At least one element has to be
selected from a group if the parent element is selected (although this
can be changed using range expressions). pure::variants allows only
one ps:or group for the same parent element.

9.4. Element Selection Types

Table 9.5. Types of element selections

Type Description Icon

User Explicitly selected by the user. Auto resolver will never change the selection state
of a user selected element.

Auto resolved An element selected by the auto resolver to correct problems in the element selection.
Auto resolver may change the state of an auto resolved element but does not deselect
these elements when the user changes an element selection state.

Excluded The user may exclude an element from the selection process (via a context menu).
When the selection of an excluded or any child element of an excluded element is
required, an error message is shown.

Auto Excluded An element excluded by the auto resolver to correct conflicts. When the selection
of an excluded or any child element of an excluded element is required, an error
message is shown.

Non-Selectable For a specific element selection the auto resolver may recognize elements as non-
selectable. This means, selection of these elements always results in an invalid ele-
ment selection. For other element selections these elements may not non-selectable.

9.5. Predefined Source Element Types

Table 9.6. Predefined source element types

Source Type Description Icon

ps:dir Maps directly to a directory.

ps:file Maps directly to a file.

ps:fragment Represents a file fragment to be appended to another file.

ps:condxml Maps directly to an XML document containing variation points (conditional parts)
using XPath expressions.

Deprecated since 6.0.0, please use pvsclxml instead.

ps:condtext Maps directly to a text document containing variation points (conditional parts) using
XPath expressions.

Deprecated since 6.0.0, please use pvscltext instead.

ps:pvsclxml Maps directly to an XML document containing variation points (conditional parts)
using pvSCL expressions.

ps:pvscltext Maps directly to a text document containing variation points (conditional parts) using
pvSCL expressions.

ps:dir

181

Source Type Description Icon

ps:flagfile Represents a file that can hold flags such as a C/C++ header file containing prepro-
cessor defines.

ps:makefile Represents a make (build) file such as GNU make files containing make file vari-
ables.

ps:classaliasfile Represents a file containing an alias e.g. for a C++ class that can be concurrently
used in the same place in the class hierarchy.

ps:symlink Maps directly to a symbolic link to a file.

The following sections provide detailed descriptions of the family model source element types that are relevant
for the standard transformation (see Section 6.3.2, “ Standard Transformation ”).

All file-related source element types derived from element type ps:destfile specify the location of a file using
the two attributes dir and file . Using the standard transformation the corresponding file is copied from <Con\
figSpaceInputDir>/<dir>/<file> to <ConfigSpaceOutputDir>/<dir>/<file> . Source element types de-
rived from ps:srcdestfile optionally can specify a different source file location using the attributes srcdir and
srcfile . If one or both of these attributes are not used, the values from dir and file are used instead. The source
file location is relative to the <ConfigSpaceInputDir> .

9.5.1. ps:dir

Attributes: dir [ps:directory]
srcdir? [ps:directory]

This source element type is used to copy a directory from the source location to the destination location. All
included subdirectories will also copied. The optional attribute srcdir ist used for directories that are located in
a different place in the source hierarchy and/or have a different name.

9.5.2. ps:file

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
srcdir? [ps:directory]
srcfile? [ps:path]
srcurl? [ps:url]

This source element type is used for files that are used without modification. The source file is copied from the
source location to the destination location. The optional attributes srcdir and srcfile are used for files that are
located in a different place in the source hierarchy and/or have a different source file name.

The optional attribute srcurl is used to specify a source directory with an url. This supports basic authentification.
If this srcurl property is set srcdir is ignored. The standard transformation supports the protocls http and https.

The value of attribute type should be def or impl when the file contains definitions (e.g. a C/C++ Header) or
implementations. For most other files the type misc is appropriate.

Type Description

impl This type is used for files containing an implementation, e.g. .cc or .cpp files

def This type is used for files containing declarations, e.g. C++ header files. In the context of
ps:classalias calculations this information is used to determine the include files required
for a given class.

misc This type is used for any file that does not fit into the other categories.

app This type is used for the main application file.

ps:fragment

182

Type Description

undefined This type is for files for which no special meaning and/or action is defined.

9.5.3. ps:fragment

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
srcdir? [ps:directory]
srcfile? [ps:path]
mode [ps:insertionmode]
content? [ps:string]
encoding? [ps:encoding]

This source element type is used to append text or another file to a file. The content is taken either from a file
if srcdir and srcfile are given, or from a string if content is given. If taken from a string, attribute encoding
can be used to specify the character encoding of the string content. The attribute mode is used to specify the point
at which this content is appended to the file, i.e. before or after the child parts of the current node's parent part
are visited. The default value is before .

9.5.4. ps:condxml

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
srcdir? [ps:directory]
srcfile? [ps:path]
conditionname? [ps:string]
copycondition? [ps:boolean]

Deprecated since 6.0.0, please use pvsclxml instead.

This source element type is used to copy an XML document and optionally to save the copy to a file. Special
conditional attributes on the nodes of the XML document are dynamically evaluated to decide whether this node
(and its subnodes) are copied into the result document. The name of the evaluated condition attribute is specified
using the attribute conditionname and defaults to condition . If the attribute copycondition is not set to false ,
the condition attribute is copied into the target document as well.

Note

Before pure::variants release 1.2.4 the attribute names pv.copy_condition and pv.condition_name were
used. These attributes are still supported in existing models but should not be used for new models.
Support for these attribute names has been removed in pure::variants release 1.4.

The condition itself has to be a valid XPath expression and may use the XSLT extension functions defined in the
following namespaces. Calls to these functions have to be prefixed by the given namespace prefix followed by
a colon (":"), e.g. F .

Table 9.7. Registered XSLT Extensions

Namespace Prefix Namespace

pv http://www.Parametric Technology.com/purevariants

pvpath http://www.Parametric Technology.com/path

pvstring http://www.Parametric Technology.com/string

xmlts http://www.Parametric Technology.com/xmlts

ps:condtext

183

Namespace Prefix Namespace

dynamic http://exslt.org/dynamic

math http://exslt.org/math

sets http://exslt.org/sets

strings http://exslt.org/strings

datetime http://exslt.org/dates-and-times

common http://exslt.org/common

crypto http://exslt.org/crypto

For a description of the pure::variants XSLT extension functions see Table 9.10, “Extension functions providing
model information” . For a description of the EXSLT extension functions see http://www.exslt.org .

In the example document given below after processing with an ps:condxml transformation, the resulting XML
document only contains an introductory chapter if the corresponding feature WithIntroduction is selected.

Example 9.1. A sample conditional document
for use with the ps:condxml transformation

<?xml version='1.0'?>
<text>
 <chapter condition="WithIntroduction">
 This is some introductory text.
 </chapter>
 <chapter>
 This text is always in the resulting xml output.
 </chapter>
</text>

A special XML node is supported for calculating and inserting the value of an XPath expression. The name of
this node is pv:value-of (namespace "pv" is defined as "http://www.Parametric Technology.com/purevariants").
The expression to evaluate has to be given in the attribute select . The pv:value-of node is replaced by the
calculated value in the result document.

Example 9.2. Example use of pv:value-of

Source document:

<?xml version='1.0'?>
<version xmlns:pv="http://www.Parametric Technology.com/purevariants">
 <pv:value-of select="pv:getAttributeValue('Version','ps:feature','version')"/>
</version>

Result document:

<?xml version='1.0'?>
<version xmlns:pv="http://www.Parametric Technology.com/purevariants">
 1.0
</version>

9.5.5. ps:condtext

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
srcdir? [ps:directory]
srcfile? [ps:path]
encoding? [ps:encoding]

Deprecated since 6.0.0, please use pvscltext instead.

http://www.exslt.org

ps:pvsclxml

184

This source element type is used to copy a text document and optionally to save the copy to a file. Special statements
in the text document are evaluated to decide which parts of the text document are copied into the result document,
or to insert additional text. If no text document encoding is given, then UTF-8 encoding is assumed.

The statements (macro-like calls) that can be used in the text document are listed in the following table.

Macro Description

PV:IFCOND(condition)

PV:IFCONDLN(condition)

Open a new conditional text block. The text in the block is included in the result-
ing text output if the given condition evaluates to true. The opened conditional
text block has to be closed by a PV:ENDCOND call.

PV:ELSEIFCOND(condition)

PV:ELSEIFCONDLN(

condition)

This macro can be used after a PV:IFCOND or PV:ELSEIFCOND call. If the condition
of the preceding PV:IFCOND or PV:ELSEIFCOND is failed, the condition of this
PV:ELSEIFCOND is checked. If it evaluates to true, the enclosed text is included
in the resulting text output.

PV:ELSECOND

PV:ELSECONDLN

This macro can be used after a PV:IFCOND or PV:ELSEIFCOND call. If the condi-
tion of the preceding PV:IFCOND or PV:ELSEIFCOND is failed, the enclosed text is
included in the resulting text output.

PV:ENDCOND

PV:ENDCONDLN

Close a conditional text block. This macro is allowed after a PV:IFCOND ,
PV:ELSEIFCOND , or PV:ENDCOND call.

PV:EVAL(expression)

PV:EVALLN(expression)

Evaluate the given expression and insert the expression value into the result doc-
ument.

These macros can occur everywhere in the text document and are directly matched, i.e. independently of the
surrounding text. The conditions of PV:IFCOND and PV:ELSEIFCOND and the expression of PV:EVAL are the same
as the conditions described for source element type ps:condxml (see Section 9.5.4, “ ps:condxml ” for details).

Conditional text blocks can be nested. That means, that a PV:IFCOND block can contain another PV:IFCOND block
defining a nested conditional text block that is evaluated only if the surrounding text block is included in the
resulting text output.

For each macro a version with suffix LN exists, i.e. PV:IFCONDLN , PV:ELSEIFCONDLN , PV:ELSECONDLN ,
PV:ENDCONDLN , and PV:EVALLN . These macros affect the whole line and are only allowed if there is no other macro
call in the same line. All characters before and behind such a macro call are removed from the line. It is allowed
to mix macros with and without suffix LN , e.g. PV:IFCONDLN can be followed by PV:ENDCOND and PV:IFCOND by
PV:ENDCONDLN .

In the example document given below after processing with an ps:condtext transformation, the resulting text doc-
ument only contains an introductory chapter if the corresponding feature WithIntroduction is selected.

Example 9.3. A sample conditional document
for use with the ps:condtext transformation

PV:IFCOND(WithIntroduction)
 This text is in the resulting text output
 if feature WithIntroduction is selected.
PV:ELSEIFCOND
 This text is in the resulting text output
 if feature WithIntroduction is not selected.
PV:ENDCOND
 This text is always in the resulting text output.

9.5.6. ps:pvsclxml

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
srcdir? [ps:directory]

ps:pvscltext

185

srcfile? [ps:path]
conditionname? [ps:string]
copycondition? [ps:boolean]
valuesubstitution? [ps:boolean]

This source element type is used to copy an XML document and optionally to save the copy to a file. Special
conditional attributes on the nodes of the XML document are dynamically evaluated to decide whether this node
(and its subnodes) are copied into the result document. The name of the evaluated condition attribute is specified
using the attribute conditionname and defaults to pv:condition . If the attribute copycondition is not set to false ,
the condition attribute is copied into the target document as well. If the attribute valuesubstitution is set to true
, the content of all attribute values of the XML document will be handled as Section 9.5.7, “ ps:pvscltext ” .

The condition itself has to be a valid pvSCL expression. For details on writing pvSCL expressions, see Section 9.7,
“Expression Language pvSCL” .

In the example document given below after processing with an ps:pvsclxml transformation, the resulting XML
document only contains an introductory chapter if the corresponding feature WithIntroduction is selected.

Example 9.4. A sample conditional document
for use with the ps:pvsclxml transformation

<?xml version='1.0'?>
<text xmlns:pv="http://www.Parametric Technology.com/purevariants">
 <chapter pv:condition="WithIntroduction">
 This is some introductory text.
 </chapter>
 <chapter>
 This text is always in the resulting xml output.
 </chapter>
</text>

A special XML node is supported for calculating and inserting the value pvSCL expression. The name of this node
is pv:eval (namespace "pv" is defined as "http://www.Parametric Technology.com/purevariants"). The pv:eval
node is replaced by the calculated value in the result document.

Example 9.5. Example use of pv:eval

Source document:

<?xml version='1.0'?>
<version xmlns:pv="http://www.Parametric Technology.com/purevariants">
 <pv:eval>Version->version</pv:eval>
</version>

Result document:

<?xml version='1.0'?>
<version xmlns:pv="http://www.Parametric Technology.com/purevariants">
 1.0
</version>

9.5.7. ps:pvscltext

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
srcdir? [ps:directory]
srcfile? [ps:path]
encoding? [ps:encoding]

This source element type is used to copy a text document and optionally to save the copy to a file. Special statements
in the text document are evaluated to decide which parts of the text document are copied into the result document,
or to insert additional text. If no text document encoding is given, then UTF-8 encoding is assumed.

ps:pvscltext

186

The statements (macro-like calls) that can be used in the text document are listed in the following table.

Statement Description

PVSCL:IFCOND(condition) Open a new conditional text block. The text in the block is included in the result-
ing text output if the given condition evaluates to true. The opened conditional
text block has to be closed by a PVSCL:ENDCOND call.

PVSCL:ELSEIFCOND(

condition)
This macro can be used after a PVSCL:IFCOND or PVSCL:ELSEIFCOND call. If the
condition of the preceding PVSCL:IFCOND or PVSCL:ELSEIFCOND is failed, the con-
dition of this PVSCL:ELSEIFCOND is checked. If it evaluates to true, the enclosed
text is included in the resulting text output.

PVSCL:ELSECOND This macro can be used after a PVSCL:IFCOND or PVSCL:ELSEIFCOND call. If the
condition of the preceding PVSCL:IFCOND or PVSCL:ELSEIFCOND is failed, the en-
closed text is included in the resulting text output.

PVSCL:ENDCOND Close a conditional text block. This macro is allowed after a PVSCL:IFCOND ,
PVSCL:ELSEIFCOND , or PVSCL:ENDCOND call.

PVSCL:EVAL(expression) Evaluate the given pvSCL expression and insert the value of the expression into
the result document.

These statements can occur everywhere in the text document and are directly matched, i.e. independently of the
surrounding text. The conditions of PVSCL:IFCOND and PVSCL:ELSEIFCOND and the expression of PVSCL:EVAL are
the same as the conditions described for source element type ps:pvsclxml (see Section 9.5.6, “ ps:pvsclxml ” for
details), except for a list of comma-separated flags that can follow the pvSCL code. Following flags are supported.

Flag Description

LINE Clear or remove the line containing the pvSCL conditional text statement.

Example for a multi-line if-statement utilizing flag LINE :

/* PVSCL:IFCOND(Temperature,LINE) */
initializeSensor("temperature",PVSCL:EVAL(Temperature->max));
/* PVSCL:ELSECOND */
disableSensor("temperature");
/* PVSCL:ENDCOND */

Result if feature Temperature is selected:

initializeSensor("temperature",60);

Example for a single-line if-statement utilizing flag LINE :

//PVSCL:IFCOND(WindSpeed,LINE)updateSensor("wind");PVSCL:ENDCOND

Result if feature WindSpeed is selected:

updateSensor("wind");

BLANKS Clear the line containing the pvSCL conditional text statement. In contrast to the
flag LINE does BLANKS replace each character with a whitespace. This ensures the
location of the parts remaining in the file is the same as in the input document.

Example for a multi-line if-statement utilizing flag BLANKS :

/* PVSCL:IFCOND(Temperature,BLANKS) */
initializeSensor("temperature",PVSCL:EVAL(Temperature->max));
/* PVSCL:ELSECOND */
disableSensor("temperature");
/* PVSCL:ENDCOND */

Result if feature Temperature is selected:

ps:flagfile

187

Flag Description

/* */
initializeSensor("temperature",60);
/*

 */

Example for a single-line if-statement utilizing flag BLANKS :

//PVSCL:IFCOND(WindSpeed,BLANKS)updateSensor("wind");PVSCL:ENDCOND

Result if feature WindSpeed is selected:

// updateSensor("wind");

Conditional text blocks can be nested. That means, that a PVSCL:IFCOND block can contain another PVSCL:IFCOND
block defining a nested conditional text block that is evaluated only if the surrounding text block is included in
the resulting text output.

In the example document given below after processing with an ps:pvscltext transformation, the resulting text
document only contains an introductory chapter if the corresponding feature WithIntroduction is selected.

Example 9.6. A sample conditional document
for use with the ps:pvscltext transformation

PVSCL:IFCOND(WithIntroduction)
 This text is in the resulting text output
 if feature WithIntroduction is selected.
PVSCL:ELSECOND
 This text is in the resulting text output
 if feature WithIntroduction is not selected.
PVSCL:ENDCOND
 This text is always in the resulting text output.

9.5.8. ps:flagfile

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
flag [ps:string]
encoding? [ps:encoding]

This source element type is used to generate C/C++-Header files containing #define <flag> <flagValue> state-
ments. The <flagValue> part of these statements is the value of the attribute Value of the parent part element. The
name of the flag is specified by the attribute flag . See the section called “Providing Values for Part Elements”
for more details. The same file location can be used in more than one ps:flagfile definition to include multiple
#define statements in a single file.

Example 9.7. Generated code for a ps:flagfile for flag "DEFAULT" with value "1"

#ifndef __guard_DEBUG
#define __guard_DEBUG
#undef DEBUG
#define DEBUG 1
#endif

9.5.9. ps:makefile

Attributes: dir [ps:directory]
file [ps:path]

ps:classaliasfile

188

type [ps:filetype]
variable [ps:string]
set? [ps:boolean]
makesystem? [ps:makesystemtype]
encoding? [ps:encoding]

This source element type is used to generate makefile variables using a <variable> += '<varValue>' statement.
The <varValue> part of the statement is the value of the attribute Value of the parent part element. The name of
the variable is specified by the attribute variable . See the section called “Providing Values for Part Elements”
for more details. The attribute set defines if the variable is set to the value (true) or if the variable is extended by
the value (false). The generated code is compatible with the gmake system. To generate code for a different make
system the attribute makesystem can be used. The same file location can be used for more than one ps:makefile
element to include multiple makefile variables in a single file.

Example 9.8. Generated code for a ps:makefile for
variable "CXX_OPTFLAGS" with value "-O6"

CXX_OPTFLAGS += "-O6"

9.5.10. ps:classaliasfile

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
alias [ps:string]
includebasedir? [ps:directory]
encoding? [ps:encoding]

This source element type is used to support different classes with different names that are concurrently used in the
same place in the class hierarchy. This transformation is C/C++ specific and can be used as an efficient replacement
for templates in some cases. This definition is only used in conjunction with the part type ps:classalias . A typedef
className alias; statement is generated by the standard transformation for this element type. className is the
name of the class referenced by the parent ps:classalias part element. Furthermore, in the standard transformation
#include directives are generated for each of the referenced class' ps:file source elements that have a type attribute
with the value 'def'. The optional attribute includebasedir defines how the #include directives referencing the
class header files will be generated. If this attribute is missing or it has an empty value, the generated #include
directives will reference the class header file by absolute file paths. Otherwise the value will be used as the base
directory path. In that case the generated #include directives will reference the class header files by a file paths
relative to that base directory. If the alias name contains a namespace prefix, corresponding namespace blocks are
generated around the typedef statement.

Example 9.9. Generated code for a ps:classalias for
alias "io::net::PCConn" with aliased class "NoConn"

#ifndef __PCConn_include__
#define __PCConn_include__
#include "C:/Weather Station Example/output/usr/wm-src/NoConn.h"
namespace io {
namespace net {
typedef NoConn PCConn;
}
}
#endif __PCConn_include__

Example 9.10. Generated code for a ps:classalias for alias "io::net::PCConn"
with aliased class "NoConn" with includebasedir set to "usr/wm-src"

#ifndef __PCConn_include__
#define __PCConn_include__

ps:symlink

189

#include "NoConn.h"
namespace io {
namespace net {
typedef NoConn PCConn;
}
}
#endif __PCConn_include__

9.5.11. ps:symlink

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
linktarget [ps:string]

This source element type is used to create a symbolic link to a file or directory named <linktarget> .

Note

Symbolic links are not supported under Microsoft Windows operating systems. Instead files and direc-
tories are copied.

9.6. Predefined Part Element Types

Table 9.8. Predefined part types

Part type Description Icon

ps:class Maps directly to a class in an object-oriented programming language.

ps:classalias Different classes may be mapped to a single class name. Value restrictions must ensure
that in every possible configuration only one class is assigned to the alias.

ps:object Maps directly to an object in an object-oriented programming language.

ps:variable Describes a configuration variable name, usually evaluated in make files. The variable
can have a value assigned.

ps:flag A synonym for ps:variable . This part type maps to a source code flag . A flag can
be undefined or can have an associated value that is calculated at configuration time.
ps:flag is usually used in conjunction with the flagfile source element, which generates
a C++-preprocessor #define <flagName> <flagValue> statement in the specified file.

ps:project ps:project can be used as the part type for anything that does not fit into other part types.

ps:aspect Maps directly to an aspect in an aspect-oriented language (e.g. AspectJ or AspectC++).

ps:feature Maps directly to a feature in a Feature Model.

ps:value General abstraction of a value.

ps:method Maps directly to a method of a class in an object-oriented programming language.

ps:function Describes the declaration of a function.

ps:functionimpl Describes the implementation of a function.

ps:operator Maps directly to a programming language operator or operator function.

ps:link General abstraction for a link. This could be for instance a www link or file system link.

The following sections provide detailed descriptions of the family model part element types that are relevant for
the standard transformation (see Section 6.3.2, “ Standard Transformation ”).

ps:classalias

190

9.6.1. ps:classalias

Attributes: class [ps:class]
Value [ps:string]

A class alias is an abstract place holder for variant specific type instantiations. It allows to use concepts similar
to interface inheritance with virtual methods in C++ without any overhead. The corresponding source element
ps:classaliasfile can be used to generate the required C++ code. The class or class alias to be aliased can be
either referenced by the attribute class or the attribute Value.

Using attribute class the class or class alias element is directly referenced. The referenced element has to be of
part type ps:class or ps:classalias. Alternatively, using the attribute Value the class or class alias element can
be referenced by its unique name.

For more information and an example see Section 9.5.10, “ ps:classaliasfile ” .

9.6.2. ps:class

Attributes: classname? [ps:string]

A class represents a class in the architecture. It can be used in conjunction with ps:classalias .

The value of the optional attribute classname represents the fully qualified name of the class (e.g. std::string)
to be used when generating code using the standard transformation. Otherwise the unique name of the element
is used for this purpose.

For more information and an example on using ps:class together with ps:classalias see Section 9.5.10, “
ps:classaliasfile ” .

9.6.3. ps:flag

Attributes: Value [ps:string]

A flag represents any kind of named value, e.g. a C/C++ preprocessor constant. For the standard transformation
the value of attribute Value is evaluated by ps:flagfile resp. ps:makefile source elements to generate C/C++
specific preprocessor definitions resp. make file variables.

For more information about the ps:flagfile and ps:makefile source element types see Section 9.5.8, “ ps:flagfile
” and Section 9.5.9, “ ps:makefile ” .

9.6.4. ps:variable

Attributes: Value [ps:string]

A variable represents any kind of named value, e.g. a make file or programming language variable. For the standard
transformation the value of attribute Value is evaluated by ps:flagfile resp. ps:makefile source elements to
generate C/C++ specific preprocessor definitions resp. make file variables.

For more information about the ps:flagfile and ps:makefile source element types see Section 9.5.8, “ ps:flagfile
” and Section 9.5.9, “ ps:makefile ” .

9.6.5. ps:feature

Attributes: fid [ps:feature]

This special part type is used to define features which have to be present if the part element is selected. If
pure::variants detects a selected part of type ps:feature , the current feature selection must contain the feature
with the id given as value of the attribute fid . Otherwise the result is not considered to be valid. The selection
problem Auto Resolver (if activated) tries to satisfy feature selections expected by ps:feature part elements. This
functionality does not depend on the use of any specific transformation modules.

Expression Language pvSCL

191

9.7. Expression Language pvSCL

The pure::variants expression language pvSCL is a simple language to express constraints, restrictions and calcu-
lations. It provides logical and relational operators to build simple but also complex Boolean expressions.

The language is based on a simple object model. An object has an identity, attributes (data) and functions which
can be applied to it. Some functions can be used without an explicit object context. Objects represent either simple
data items such as numbers, or collections of objects; or in many cases they represent pure::variants model items
such as elements or models.

Both full and partial configuration mode is fully supported when evaluating pvSCL expressions. See also Sec-
tion 5.8.2, “ Partial Evaluation ” for details about model evaluation in these modes. In partial evaluation, calcu-
lations are done also with a special open value. So, the result of a constraint, restriction, or calculation can be
also open.

9.7.1. How to read this reference

The reference use the term context to denote the object to which an operator or function is applied to. This term is
not to be confused with the keywords context/CONTEXT, which deliver a special object, see details below.

9.7.2. Comments

Expressions can be commented. A comment is started with a slash immediately followed by a star. The comment
itself can span multiple lines. It is ended with a star immediately followed by a slash. Comments are ignored when
an expression is evaluated.

Syntax /* comment text */

Examples A /* The first character in the alphabet. */ OR
Z /* The last character in the alphabet.*/

9.7.3. Boolean Values

Expressions can resolve to a boolean value, i.e. TRUE or FALSE. An expression is said to fail if its boolean value
is FALSE, and to succeed otherwise. Boolean values have type ps:boolean.

Syntax TRUE
FALSE

Examples NOT(TRUE = FALSE)

9.7.4. Numbers

Numbers can either be decimal and hexadecimal integers, or floating point numbers. Hexadecimal integers are
introduced by 0x or 0X followed by digits and / or characters between a and f. Floating point numbers contain a
decimal point and / or positive or negative exponent.

Integers have type ps:integer, and floating point numbers have type ps:float.

Examples 100
10e2
150e-3
0xFF00
1.5
5.5E+3

9.7.5. Strings

Strings are sequences of characters and escape sequences enclosed in single quotation marks. The allowed char-
acters are those of the Unicode character set. Strings have type ps:string.

Collections

192

Following escape sequences are supported.

Escape Sequence Meaning

\n New line

\t Horizontal tabulator

\b Backspace

\r Carriage return

\f Form feed

\' Single quotation mark

\" Quotation mark

\\ Backslash

\0 - \777 Octal character code

\u0000 - \uffff Unicode character code

Strings can be concatenated with other strings and numbers using the plus operator. The result is a new string
containing the source strings and numbers in the order they were concatenated.

Syntax 'characters including escape sequences'

Examples 'Hello'
'10\44' = '10$'
'10\u20AC' = '10€'
'Line ' + 1 + '\n' + 'Line ' + 2

9.7.6. Collections

Collections are lists or sets of values of the same type. Lists may contain one and the same value twice, whereas sets
only contain unique values. The type of lists either is ps:list or the value type followed by [], e.g. ps:string[] for a
list of strings. The type of sets either is ps:set or the value type followed by {}, e.g. ps:integer{} for a set of integers.

Collection literals have list type. Their items are constructed from the values of any expressions, particularly nested
collections, and must have the same type.

In partial evaluation, if the result of a calculation is a collection with at least one open member, instead of this
incomplete collection only the open value will be returned.

Syntax { expr, expr, ... }

Examples {'spring', 'summer', 'autumn', 'winter'}
{1, 2, 3}

9.7.7. SELF and CONTEXT

The keywords SELF and CONTEXT are context dependent name references. The type of SELF and CONTEXT is
ps:model if a model is referenced, ps:element for an element, ps:relation for a relation, ps:attribute for an attribute,
and ps:constant for an attribute value.

Model Object SELF CONTEXT

Constraint Element containing the constraint Model containing the constraint

Restriction on element Element containing the restriction Element containing the restriction

Restriction on relation Relation containing the restriction Element containing the relation

Restriction on attribute Attribute containing the restriction Element containing the attribute

Name and ID References

193

Model Object SELF CONTEXT

Restriction on attribute value Attribute value containing the re-
striction

Element containing the attribute val-
ue

Attribute value calculation Attribute value being calculated Element containing the attribute val-
ue

Syntax SELF
CONTEXT

Examples SELF AND SELF->value = 5
CONTEXT IMPLIES SELF <> 0

9.7.8. Name and ID References

Models, elements, and attributes can be referenced by their unique identifiers. Models can also be referenced
by their names, and elements by their unique names, optionally prefixed by the name of the model containing
the element. For a referenced model the result type is ps:model, for an element ps:element, and for an attribute
ps:attribute.

Elements can be referenced across linked variants, i.e. variant collections, instances, and references, by means of
a path name. Path names navigate to elements in another variant along the variant elements in a variant hierarchy.
Variant elements are elements with type ps:variant representing the root element of a linked variant.

Path Name Element Description

variant-name:name Relative path name

:name Absolute path name

parent:name Parent variant navigation

variant-collection-or-instance-name[3]:name Anonymous variant navigation for variant collections
and instances

A name is resolved as follows.

1. If name or model-name equals "context", "CONTEXT", "self", or "SELF"

• resolves to the context dependent name reference CONTEXT or SELF

2. If name is the name of a visible local variable, iterator or accumulator

• resolves to the local variable, iterator or accumulator

3. If name is the unique name of an element

• resolves to the element

4. If element-name is the unique name of an element in model model-name

• resolves to the element

5. If name is the name of a model

• resolves to the model

6. If it is an absolute path-name

• resolve name without the leading : to an element or model

7. If it is a path-name with parent variant navigation

Element Selection State Check

194

• resolve name in the context of the parent variant of the current variant to an element

8. If it is a path-name with anonymous variant navigation

• resolve name in the context of the specified variant to an element

9. Otherwise it is a relative name

• resolve as full qualified name to an element or model

Syntax @id
name
model-name.element-name
path-name

Examples @isdkd
Frontdoor
Doors.Backdoor
Residence:Frontdoor:Color->value = 'white'
DoubleLock IMPLIES parent:parent:Manson
House.Doors[1] AND House.Doors[1]:Type->number = '113a'

9.7.9. Element Selection State Check

Elements can be referenced independently of their selection, i.e. existence, in the current variant.

To check the selection state of a given element, the meta-attribute pv:Selected can be called on that element.
Depending on the configuration mode and selection state following values will be returned:

Selection state Full evaluation Partial evaluation

Selected TRUE TRUE

Excluded FALSE FALSE

Unselected FALSE open

Applying Boolean operations on element references enforce an implicit conversion to the Boolean selection state.
So an explicit call of pv:Selected on element references is not necessary in following use cases:

• A constraint or restriction with a single element reference or a single expression resulting in an element reference

• Condition of a conditional

• Operand of operator NOT

• Left and right operand of operator XOR

• Left operand of operators AND and OR

• Right operand of operators AND and OR if left operand resolves to FALSE

• Left and right operand of operator EQUALS

• Left operand of operators IMPLIES, REQUIRES, RECOMMENDS, CONFLICTS and DISCOURAGES

• Right operand of operators IMPLIES, REQUIRES, RECOMMENDS, CONFLICTS and DISCOURAGES if left operand re-
solves to FALSE

Examples Black OR White
IF Winter THEN Snow->pv:Selected ELSE Sunshine->pv:Selected ENDIF
Diesel RECOMMENDS ParticleFilter
NOT(High) IMPLIES Low

Attribute Access

195

9.7.10. Attribute Access

Attributes and meta-attributes can be accessed using the call operator ->. The left operand of the call operator is
the context of the call, the right operand the attribute or meta-attribute to call. It is an error if there is no attribute
or meta-attribute with the given name for the context of a call.

If the context has model or element type, ordinary model and element attributes can be accessed. The result type
is ps:attribute.

The value of an attribute is automatically accessed in all contexts a value is required, e.g. operand of a logical,
relational, arithmetic, or comparison operator. Meta-attribute pv:Get can be used to access an attribute value ex-
plicitly. For an attribute with collection type a specific value can be accessed by specifying the index of the value
as argument to the call (function call syntax).

In full configuration mode, an error is created, if the accessed attribute has no value. In partial configuration mode,
instead an open value is returned.

The context types meta-attributes can be called on, depend on the implementation of a meta-attribute. Meta-at-
tributes may accept an argument list (function call syntax). The result of calling a meta-attribute also depends on
its implementation.

Since meta-attributes (built-in and user-defined) and attributes use the same calling syntax, the calling precedence
of meta-attribute and attribute calls needs to be considered:

• The built-in meta-attributes (see Section 9.7.23, “Function Library”) will override all attribute calls with the
same name. However, it is generally not recommended to name attributes as same as built-in meta-attributes.

• A user-defined function in the meta-attribute syntax (see Section 9.7.17, “Function Definitions”) will override
attribute calls with the same name and the same number of arguments counted in the meta-attribute syntax.
That is, a user-defined function with one argument (in the corresponding meta-attribute syntax called with
zero arguments) will override an attribute call without arguments. Analogous, a user-defined function with two
arguments (in the meta-attribute syntax called with one argument) will override an attribute call with index
argument.

To access such hidden attributes, the meta-attribute pv:Attribute has to be used instead.

Syntax context-expr -> attr-name
context-expr -> attr-name(index-expr)
context-expr -> meta-attr-name
context-expr -> meta-attr-name(expr, expr, ...)

Examples product->version > 3
seasons->names = { 'spring', 'summer', 'autumn', 'winter' }
seasons->names(1) = 'summer' AND seasons->names(2) = 'autumn'
seasons->names->pv:Size = 4
seasons->names->pv:Get(3) = 'winter'

9.7.11. Logical Combinations

Expressions can be logically combined. For this purpose the expressions are evaluated to their boolean values. It
is an error if this conversion is not possible. The logical operator is then applied to the boolean values resulting
in TRUE or FALSE.

In partial evaluation, logical operations are applied using three-valued logic. So, Boolean open values are sup-
ported as operands. The result can then be also open.

Following logical operators are supported:

Operator Meaning

AND Binary operator that yields TRUE if both operands are
TRUE.

Relations

196

Operator Meaning

OR Binary operator that yields TRUE if at least one operand
is TRUE. If the first operand is TRUE then the second
operand will not be evaluated.

XOR Binary operator that yields TRUE if exactly one operand
is TRUE.

NOT Unary operator that yields TRUE if the operand is
FALSE.

Logical operators have a lower precedence than comparison operators but a higher precedence than relational
operators.

Syntax expr AND expr
expr OR expr
expr XOR expr
NOT(expr)

Examples be OR NOT(be)
cabriolet XOR sunroof

9.7.12. Relations

Expressions can be set in relation to each other. For this purpose the expressions are evaluated to their boolean
values. It is an error if this conversion is not possible. The relational operator is then applied to the boolean values
resulting in TRUE or FALSE.

In partial evaluation, relation operations are applied using three-valued logic. So, Boolean open values are sup-
ported as operands. The result can then be also open.

Following relational operators are supported:

Operator Meaning

REQUIRES Evaluates to TRUE, iff a) both operands evaluate to
TRUE or b) the left operand evaluates to FALSE. In the
latter case, the right operand will not be evaluated.

IMPLIES Same as REQUIRES.

CONFLICTS Evaluates to TRUE, iff a) the left operand evaluates to
TRUE and the right operand evaluates to FALSE or b)
the left operand evaluates to FALSE. In the latter case,
the right operand will not be evaluated.

RECOMMENDS Like REQUIRES but always yields TRUE.

DISCOURAGES Like CONFLICTS but always yields TRUE.

EQUALS Evaluates to TRUE, iff either both operands evaluate to
TRUE or both operands evaluate to FALSE.

Relational operators have a lower precedence than conditionals, and logical and arithmetic operators.

Syntax expr IMPLIES expr
expr REQUIRES expr
expr CONFLICTS expr
expr RECOMMENDS expr
expr DISCOURAGES expr
expr EQUALS expr

Examples car REQUIRES wheels
legs->number = 4 CONFLICTS human

Conditionals

197

9.7.13. Conditionals

Conditionals allow to evaluate alternative expressions depending on the boolean value of a condition. If boolean-
condition-expr evaluates to TRUE, expression consequence-expr is evaluated to determine the result of the condi-
tional expression. If the condition evaluates to FALSE, expression alternative-expr is evaluated instead. In partial
evaluation, if the condition is open, both consequence-expr and alternative-expr are evaluated. If both result values
are equal, that equal value with be the result of the conditional. Otherwise the result is an open value. It is an error
if boolean-condition-expr cannot be evaluated to a Boolean value.

Conditionals can occur everywhere where expressions are allowed. This means in particular that conditionals can
be nested. Conditionals have a higher precedence than relational, logical, arithmetic and compare operators.

Syntax IF condition-expr THEN consequence-expr ELSE alternative-expr ENDIF

Examples IF summer THEN
 weather->temperature >= 25
ELSE
 IF winter THEN
 weather->temperature <= 5
 ELSE
 weather->temperature > 5 AND weather->temperature < 25
 ENDIF
ENDIF

9.7.14. Value Comparison

Expressions can be compared based on their values. For this purpose the expressions are evaluated to their values
first, and then the comparison operator is applied to the values resulting in TRUE or FALSE. In partial evaluation,
if one if the operands is open, the result of the comparison will be also open.

Beginning with pure::variants 5.0.0, in general values of different base types are not comparable. A comparison
of such value combinations will create an error. Exceptions are a) the number types (ps:float and ps:integer are
comparable) and b) versions (type ps:version), which also can be compared with strings (type ps:string).

Two numbers are compared based on their numeric values, two strings lexically, two collections item by item,
two booleans by their boolean values, and model and element references by their ID.

Following comparison operators are supported:

Operator Meaning

= Yields TRUE if both operands have the same value.

<> Yields TRUE if the operands have different values.

> Yields TRUE if the left operand's value is greater than
the right operand's value.

< Yields TRUE if the left operand's value is less than the
right operand's value.

>= Yields TRUE if the left operand's value is greater than
or equals the right operand's value.

<= Yields TRUE if the left operand's value is less than or
equals the right operand's value.

The types ps:boolean, ps:element, and ps:model do not have a natural order. Thus, beginning with pure::variants
5.0.0 any order comparison of such values will create an error.

Comparison operators have a lower precedence than arithmetic operators but a higher precedence than logical
operators.

Syntax expr = expr
expr <> expr

Arithmetics

198

expr > expr
expr < expr
expr >= expr
expr <= expr

9.7.15. Arithmetics

Numbers can be negated, added, subtracted, multiplied, and divided. If at least one operand of an arithmetic
operation has floating point type, the result also will have floating point type. Division by zero and floating point
overflows create errors.

In partial evaluation, if one of the operands is open, the result will usually also be open. Exceptions are: Multipli-
cation of open by zero and division of zero by open results both in zero.

Arithmetic operators have a higher precedence than comparison operators and a lower precedence than condition-
als. Addition and subtraction have a lower precedence than multiplication and division. That means, 2*3+3*2 is
calculated as (2*3)+(3*2)=6 instead of ((2*3)+3)*2=18.

Syntax expr + expr
expr - expr
expr * expr
expr / expr
-expr

Examples 5 * 5 + 2 * 5 * 6 + 6 * 6 = 121
-(8 * 10) + (10 * 8) = 0
-0xFF / 5 = -51
-5->pv:Abs() = -5
(-5)->pv:Abs() = 5

9.7.16. Variable Declarations

The LET keyword declares at least one variable with name var-name and initializes it with the value of expression
init-expr. The variable is visible only in the expression following keyword IN, and in the init-expr of subsequent
variable declarators.

Variable declarations can occur everywhere expressions are allowed. To avoid name conflicts it is recommended
to use own namespaces for the variable names (e.g. my:var-name instead of var-name).

The result of a variable declaration is the value of the expression following keyword IN.

Syntax LET var-name = init-expr, var-name = init-expr, ... IN expr

Examples LET
 doors = car->frontDoors + car->rearDoors,
 cabrio = (doors = 2),
 limousine = (doors = 4)
IN
 cabrio OR limousine

9.7.17. Function Definitions

The DEF keyword defines a function with name fct-name and the given parameter list (see syntax below). Multiple
functions with the same name can be defined, if they have different numbers of parameters. Defining multiple
functions with the same name and same number of arguments are not allowed (one-definition rule (ODR)). Using
the same function name as for built-in functions is also not allowed. The parameters of the definition are only
accessible in the function body (fct-body-expr). The result of calling such a function is the value of the fct-body-
expr calculated for the given argument list.

Since pure::variants 5.0.0, such functions can also be called using meta-attribute syntax if they have at least one
parameter. In this case, the context on which the function is called is assigned to the first parameter of the function.
The arguments of the function call are assigned to the remaining parameters of the function.

Function Calls

199

Function definitions are only allowed at the beginning of a pvSCL expression. pvSCL expressions which contain
only function definitions evaluate to TRUE. To avoid name conflicts, it is recommended to use own name spaces
for the function and parameter names (e.g. my:fct-name instead of fct-name, and my:param-name instead of param-
name). To avoid future name conflicts it is recommended not to use the pv name space for function names.

If not defined in a pvSCL code library, such a function is visible only in the constraint, restriction or calculation
containing the function definition.

Syntax DEF fct-name(param-name,param-name,...) = fct-body-expr ;
DEF fct-name(param-name,param-name,...) = fct-body-expr ;
...
expr

Examples DEF plus(x,y) = x + y;
plus(plus(plus(1,2),3),4) = 10 // function syntax
AND
1->plus(2)->plus(3)->plus(4) = 10 // meta-attribute syntax

9.7.18. Function Calls

A function call executes the built-in or user-defined function fct-name with the given argument list and returns the
value calculated by the function. It is an error if the function does not exist.

Since pure::variants 5.0.0, functions can also be called using meta-attribute syntax if they have at least one param-
eter. In this case, the context on which the function is called is assigned to the first parameter of the function. The
arguments of the function call are assigned to the remaining parameters of the function.

Syntax fct-name(expr1, expr2, ...) // function syntax

is equivalent to

expr1->fct-name(expr2, ...) // meta-attribute syntax

Examples average(accounts,'income') > average(accounts,'outgoings') // function syntax
accounts->average('income') > accounts->average('outgoings') // meta-attribute
 syntax

9.7.19. Iterators

Iterators are special functions able to iterate collections. For each collection item expression expr is evaluated.
The current collection item is accessible in the expression using iterator variable iter-name, which is visible there
only. The value of an iterator function call depends on the implementation of that function.

Syntax fct-name(iter-name | expr)

Examples accounts->pv:Children()->
 pv:ForAll(account | account->balanced = TRUE)

9.7.20. Accumulators

Accumulators are special functions able to iterate collections. For each collection item expression expr is evaluated
and its value is assigned to the accumulator variable acc-name. The initial value of accumulator variable acc-name
is the value of expression acc-init-expr. The current collection item is accessible in the expression using iterator
variable iter-name. Both variables, iter-name and acc-name, are visible in expression expr only.

The value of an accumulator function call is the final value of the accumulator variable.

Syntax fct-name(iter-name; acc-name = acc-init-expr | expr)

Examples accounts->pv:Children()->

Error Handling

200

 pv:Iterate(account; sum = 0 | sum + account->deposit) > 0

9.7.21. Error Handling

During evaluation of pvSCL expressions, using wrong syntax, wrong input types or invalid values will create
evaluation errors and the evaluation of that expression is canceled. In partial evaluation, the usage of open values
can hide such errors. An example is getting an item of a collection by using function pv:Item(n), when n is open.
If n evaluates to a concrete number in future configurations, the function will return either the nth item or cancels
with an index-out-of-range error. Since it cannot be known beforehand, the partial evaluation returns not only
open, but also sets a potential-error flag for the evaluation of that pvSCL expression. Even if the evaluation of the
complete expression results in a constant value, like in

collection->pv:Item(Feature->openattr) = 2 OR SelectedFeature

which will return either TRUE or create an error, the partial evaluation will always return open if that potential-er-
ror flag is set.

Errors, warnings, and information markers can also be created using functions pv:Fail, pv:Warn, and pv:Inform,
respectively. Usually they are applied in expressions like

condition OR pv:Fail('Error: Condition is not fulfilled.')

So if condition evaluates to FALSE, the right operand of OR, pv:Fail, is executed and an error marker is created. If
the condition evaluates to TRUE, the shortcut applies and pv:Fail is not executed. However, if in partial evaluation
condition evaluates to open, the right operand of OR also needs to be executed. So the execution of pv:Fail actually
needs to create an error marker, although it is not clear, if the condition is fulfilled or not. To avoid this, operand
expressions, which needs to be only executed because a shortcut could not be applied because of an open operand,
will be executed in a special mode, where pv:Fail, pv:Warn, and pv:Inform will not create any markers.

9.7.22. Limitations

Depth of syntax tree

The depth of the syntax tree of the parsed pvSCL expression is limited to 512 levels by default. If a pvSCL
expression exceeds this limit, a parsing error will be created and the expression will not be processed further.

An example for pvSCL expressions, which could raise this limit, are sequences of operations of a large number
of operands without parentheses like

Feature_1 OR Feature_2 OR ... OR Feature_520

Usually grouping the operations by parentheses will reduce the number of syntax tree levels of these kind of pvSCL
expressions. Another example are deep nested expressions like

IF Feature_1 THEN ..
ELSE IF Feature_2 THEN ..
...
ELSE IF Feature_520 THEN ..
ELSE ..
ENDIF ... ENDIF

The default limit can be overridden by setting the environment variable PV_PVSCL_MAX_AST_LEVELS to a
numeric value greater than zero, interpreted as the new number of maximum levels. The value of this variable
will be considered by the pure::variants Desktop Client, the pure::variants Web Client and all pure::variants in-
tegrations. It will also be considered by the pure::variants Model Server, if the variable is set during the launch
of the server process.

Note

Increasing the limit above the default limit can lead to stack overflows and crashes of the pure::variants
Desktop Client, the pure::variants Web Client, the pure::variants integrations, and the pure::variants Mod-

Function Library

201

el Server. So the changing of the limit should only be done if it is really needed and is subject to the
user's own risk.

Depth of recursive operation calls

The depth of recursive operation calls of an executed pvSCL expression is limited to 512 operations by default.
Usually, pvSCL expressions with recursive function calls can exceed this limit. Example:

DEF sum(x) = IF x = 0 THEN 0 ELSE sum(x-1) + x ENDIF;
sum(1000)

In that example, the execution will be canceled and the error “pvSCL call depth limit of limit operations reached.
It may be an endless recursion.” will be created.

In partial evaluation, the limit can also be reached because of an endless recursion created by an open termination
condition. Example:

DEF sum(x) = IF x = 0 THEN 0 ELSE sum(x-1) + x ENDIF;
sum(Feature->openAttr)

Because of the open condition x = 0, this results in an endless recursion of calls of the function sum with open
argument x. If the operation depth limit is reached, the recursion is canceled and the result of the function will
be an open value.

The default limit can be overridden by setting the environment variable or Java system property
PV_PVSCL_MAX_OP_CALL_DEPTH to a numeric value greater than zero, interpreted as the new number of
maximum operations. The value of this variable will be considered by the pure::variants Desktop Client, the
pure::variants Web Client and all pure::variants integrations.

Note

Increasing the limit above the default limit can lead to stack overflows and crashes of the pure::variants
Desktop Client, the pure::variants Web Client and all pure::variants integrations. This can be prevented
by also increasing the thread stack size of the Java VM (e.g. by setting the JVM argument -Xss). The
changing of the limit should only be done if it is really needed and is subject to the user's own risk.

9.7.23. Function Library

In partial evaluation all functions can process open values as context and as each of their arguments. Depending
on the functionality the return value can be also open.

pv:Abs()

Get the absolute value of the context which must be a number.

Examples 10->pv:Abs() = 10
(-10)->pv:Abs() = 10
(-2.5)->pv:Abs() = 2.5

pv:Acos()

Return the trigonometric arc cosine of the context number. The result value has type ps:float. This function must
only be called on numbers between -1 and 1.

Examples 0->pv:Acos() = 1.5707963267948966
0.2->pv:Acos() = 1.369438406004566
1->pv:Acos() = 0.0
(-1)->pv:Acos() = 3.141592653589793

pv:AllChildren()

Function Library

202

Deprecated. Get all children of the context which must be either a model, element, or attribute. Fails otherwise.
All children of a model are the elements of the model, of an element are the elements of the sub-tree with this
element as root (excluding this element), and of an attribute its attribute values.

This function is deprecated since pure::variants version 5.0.0. Please use functions pv:SubTree and pv:Children
instead.

Examples model->pv:SubTree()->pv:Size() > 0
element->pv:SubTree(false)->pv:Collect(e|e->pv:Name())
attribute->pv:Children()->pv:Collect(value|value->pv:Get())

pv:Append(expr)

Append the value of expr to the context which must be a collection. It is an error if the type of the value is not
compatible to the item type of the collection. If the context collection is a set, then the item only is appended if
not already contained in the set.

Examples {}->pv:Append(1) = {1}
{1,2,3}->pv:Append(2) = {1,2,3,2}
{1,2,3}->pv:AsSet()->pv:Append(2) = {1,2,3}->pv:AsSet()

pv:AppendAll(collection)

Append all elements of the argument collection to the context collection. It is an error if the types of both collection
don't match. If the context collection is a set, then only items from the argument collection are appended if not
already contained in the set.

Examples {}->pv:AppendAll({1,2,3}) = {1,2,3}
{1,2,3}->pv:AppendAll({1,3,5}) = {1,2,3,1,3,5}
{1,2,3}->pv:AsSet()->pv:AppendAll({1,3,5}) = {1,2,3,5}->pv:AsSet()

pv:Asin()

Return the trigonometric arc sine of the context number. The result value has type ps:float. This function must
only be called on numbers between -1 and 1.

Examples 0->pv:Asin() = 0
0.2->pv:Asin() = 0.2013579207903308
1->pv:Asin() = 1.5707963267948966
(-1)->pv:Asin() = -1.5707963267948966

pv:AsList()

Convert the context to a list. It is an error if the context does not have collection type.

Examples {1,1,2,3}->pv:AsList() = {1,1,2,3}

pv:AsSet()

Convert the context to a set. It is an error if the context does not have collection type. If the context has list type,
all duplicate items of the list are removed.

Examples {1,1,2,3}->pv:AsSet() = {1,2,3}

pv:Atan()

Return the trigonometric arc tangent of the context number. The result value has type ps:float.

Examples 0->pv:Atan() = 0
0.2->pv:Atan() = 0.19739555984988078

Function Library

203

100->pv:Atan() = 1.5607966601082315
(-100)->pv:Atan() = -1.5607966601082315

pv:Attribute(name)

Get the attribute with the given non-empty name. Calling this function with an empty name creates an error. Fails
if the context does neither have model nor element type, or no attribute with the name exists.

Examples self->pv:Attribute('speed') = 100

pv:Attributes(), pv:Attributes('type')

Get all attributes of the context, optionally with the non-empty (exact) type. Calling this function with an empty
type creates an error. Fails if the context does neither have model nor element type, or if no attribute (with given
type) exists.

Examples self->pv:Attributes('ps:integer')

pv:Characters()

Get the characters of the context string as list.

Examples 'Text'->pv:Characters() = {'T','e','x','t'}

pv:Child(index)

Get the child of the context with the given index. Fails if the context does neither have model, element, nor attribute
type, or the index is invalid. The child of a model is an element, of an element an element, and of an attribute
an attribute value.

Examples self->pv:Child(0)->pv:Selected()

pv:Children()

Get the direct children of the context which must be either a model, element, or attribute. Fails otherwise. The
children of a model is a list containing the root element of the model, of an element its child elements, and of an
attribute its attribute values.

Examples alternatives->pv:Children()->pv:Size() >
 alternatives->pv:SelectedChildren()->pv:Size()

pv:ChildrenByState(state), pv:ChildrenByState(state,selector)

Deprecated. Get all children of the context element with the given non-empty selection state and optionally the
given non-empty selector, as ps:element[]. Calling this function with an empty selection state or selector creates
an error. Fails if the context does not have element type.

This function is deprecated since pure::variants version 5.0.0. Please use function pv:Children() instead.

Examples element->pv:Children->pv:Select(e|e->pv:SelectionState()='ps:excluded')
element->pv:Children->pv:Select(e|e->pv:SelectionState()='ps:excluded' and
 e->pv:Selector()='ps:user')

pv:Class()

Get the class of the context, as ps:string, which must be a configuration space, model, element, relation, attribute,
or attribute value. Fails otherwise. The class of a configuration space is ps:configspace, of a model ps:model, of
an element the element class, of a relation the relation class, of an attribute ps:attribute, and of an attribute value
the type of the attribute value.

Function Library

204

Examples context->pv:Class() = 'ps:model'
 IMPLIES self->pv:Class() = 'ps:element'

pv:Collect(iterator)

Iterate the context collection and evaluate the iterator expression for each element of the collection. Return a new
collection with all the evaluation results. The return type is ps:list.

Examples products->pv:Children()->
 pv:Collect(p | IF p->stocked THEN 1 ELSE 0 ENDIF)->
 pv:Sum() > 50

pv:Contains(expr)

Check whether the evaluation result of expression expr is contained in the context, which must be a collection.

Examples {1,2,3}->pv:Contains(3) = true

pv:ContainsAll(collection)

Check whether each value of collection is contained in the context, which must be a collection.

Examples {1,2,3}->pv:ContainsAll({1,2}) = true

pv:Cos()

Return the trigonometric cosine of the context number. The result value has type ps:float.

Examples 0->pv:Cos() = 1
0.2->pv:Cos() = 0.9800665778412416
100->pv:Cos() = 0.8623188722876839
(-100)->pv:Cos() = 0.8623188722876839

pv:Date()

Returns the date of the given date time value. If the date time is timezoned, the date in GMT time zone is returned.
The result type is ps:date. If the given date time value is timezoned, the resulting date is also timezoned.

Examples pv:EvaluationDateTime()->pv:Date()->pv:ToString()
'2020-02-28T10:24:42'->pv:ToDateTime()->pv:Date()->pv:ToString() = '2020-02-28'
'2020-02-28T10:24:42+01:00'->pv:ToDateTime()->pv:Date()->pv:ToString() =
 '2020-02-28Z'

pv:DefaultSelected()

Check if the context element is selected by default. Fails if the context does not have element type.

Examples radio->pv:DefaultSelected() AND speakers->number = 2

pv:Element(name-or-id)

Get the element with the given non-empty unique name or identifier. Calling the function with an empty unique
name or identifier creates an error. If called on a model, only elements in that model will be considered. It is an
error if the element does not exist or the function is called on anything else than a model.

Examples Model->pv:Element('winter')->pv:Selected() = true

pv:EvaluationDateTime()

Returns the date and time when the current evaluation has started. The result type is ps:datetime.

Function Library

205

Examples pv:EvaluationDateTime()->pv:ToString()

pv:EvaluationIsPartial()

Returns true if the current evaluation is executed in partial configuration mode. Returns false if the current eval-
uation is executed in full configuration mode. The result type is ps:boolean.

Examples IF pv:EvaluationIsPartial() THEN 'fixed' ELSE 'open' ENDIF

pv:ExclusionHint(message,element),
pv:SelectionHint(message,element,force)

If the given element is not excluded in a full configuration or selected in a partial configuration, a warning or
error message will be created. The severity of the message will be defined by the Boolean force argument: If
the force argument is missing or TRUE, an error message will be created. If the force argument is FALSE, only
a warning message is created. This function will always return TRUE. If activated, the auto resolver will try to
resolve warning and error messages created by this function by excluding the given element if possible.

Examples product->price < 100 IMPLIES
 pv:ExclusionHint('Because of the low price, feature \'luxury\' could be
 excluded.', luxury, false)

pv:Exp()

Return the Euler's number e raised to the power of the context number (exponent). The result value has type
ps:float.

Examples 1->pv:Exp() = 2.718281828459045
(-1.2)->pv:Exp() = 0.30119421191220214

pv:Fail(message), pv:Fail(message,element)

Show an error message at the context element or the given element. Always returns TRUE. Lets the model eval-
uation fail.

Examples doors->number = 2 OR
 doors->number = 4 OR
 pv:Fail('Invalid number of doors [' + doors->number + ']', doors)

pv:Flatten()

Flatten the context, which has to be a collection.

Examples LET
list1 = {1,2,3,4},
list2 = {{0},list1,{5}}
IN
list2->pv:Flatten()->pv:ToString()

pv:Floor()

Get the largest integer value not greater than the context number (round downwards towards negative infinity).
Fails if the context does not have number type. The return type is ps:integer.

Examples 3.1->pv:Floor() = 3
3.5->pv:Floor() = 3
3.9->pv:Floor() = 3
(-3.1)->pv:Floor() = -4
(-3.5)->pv:Floor() = -4

Function Library

206

(-3.9)->pv:Floor() = -4

pv:ForAll(iterator)

Iterate the context collection and evaluate the iterator expression for all items. Return FALSE if at least for one
item the expression evaluates to FALSE.

Examples bugs->pv:Children()->
 pv:ForAll(bug | bug->state = 'fixed')

pv:Format(format)

Return a formatted string representation of the context number. Fails if the context does not have number type.
The return type is ps:string.

The argument is a C-printf-like format specifier string. The supported strings are shown in Table 9.9, “Supported
format specifiers”. The output is not localized.

Table 9.9. Supported format specifiers

Context number type Format specifier Meaning

ps:integer %d Decimal integer

ps:integer %x Hexadecimal integer with lower-case letters

ps:integer %X Hexadecimal integer with upper-case letters

ps:integer %o Octal integer

ps:float %e Scientific (exponential) notation with six digits after
the decimal point. Uses a lower-case letter 'e' as the ex-
ponent symbol.

ps:float %.ne Scientific (exponential) notation with n digits after the
decimal point. Uses a lower-case letter 'e' as the expo-
nent symbol.

ps:float %E Same as %e, but with upper-case letter 'E'

ps:float %.nE Same as %.ne, but with upper-case letter 'E'

ps:float %f Decimal (non-exponential) notation with six digits af-
ter the decimal point.

ps:float %.nf Decimal (non-exponential) notation with n digits after
the decimal point.

Due to limited precision of ps:float values (they are internally represented in double-precision floating-point for-
mat), each ps:float value can be represented by at most 17 significant decimal digits. So, formatting a ps:float
value with more digits would pretend a higher precision in the output compared to the input. Additionally, the
exact formatted output in this excessive precision range depends on the runtime libraries of the used operation
system. So, the resulting string can be different across operation systems. In result, it is recommended to use the
format specifiers %.ne and %.nf only with n <= 16 and n <= 17-i respectively, where i is the number of significant
digits before the decimal point in non-exponential notation.

Examples 51966->pv:Format('%x') = 'cafe'
3.14159265->pv:Format('%f') = '3.141593'
3.14159265->pv:Format('%f') = '3.141593'
6.62607015e-34->pv:Format('%e') = '6.626070e-34'
6.62607015e-34->pv:Format('%.0e') = '7e-34'

pv:Get(), pv:Get(index)

Get the value of an attribute if the context is an attribute or attribute value, or return the input value. If an index is
given and the context is an attribute, return the attribute value at that index, or fail if the index is invalid.

Function Library

207

Examples seasons->order->pv:Get(2) = 'autumn'

pv:HasAttribute(name)

Returns TRUE if the attribute with the given non-empty name exists on the context model or element, FALSE
otherwise. Calling this function with an empty name creates an error. Fails if the context does not have model
or element type.

Examples self->pv:HasAttribute('speed') = true

pv:HasElement(name-or-id)

Returns TRUE if the element with the given non-empty name or identifier exists, FALSE otherwise. Calling this
function with an empty name or identifier creates an error. If called on a model, only elements in that model will
be considered. It is an error if the function is called on anything else than a model.

Examples Model->pv:HasElement('seasons') = true

pv:HasModel(name-or-id)

Returns TRUE if the model with the given non-empty name or identifier exists, FALSE otherwise. Calling this
function with an empty name or identifier creates an error.

Examples pv:HasModel('Weather') = true

pv:ID()

Get the unique identifier of the context, as ps:string, which must be a model, element, attribute, constant, or
relation, or fails otherwise.

Examples context->pv:ID() <> ''

pv:IndexOf(string-or-collection)

Return the index (starting at 0) of the first occurrence of the given non-empty sub-string or collection item within
the context, or -1 if the given item was not found. Calling this function on a string with an empty string argument
creates an error. It is also an error if the context does not have string or collection type. The resulting index has
type ps:integer.

Examples 'Hello World'->pv:IndexOf('World') = 6
{1,2,3}->pv:IndexOf(2) = 1
{1,2,3}->pv:IndexOf(4) = -1

pv:Inform(message), pv:Inform(message,element)

Show an informational message at the context element or the given element. Always returns TRUE.

Examples sportedition AND NOT(rearspoiler) RECOMMENDS
 pv:Inform('Rear spoiler recommended for sport edition', rearspoiler)

pv:Insert(index,item)

Insert the given item into the context collection before the item at the given index. It is an error if the type of the
item is not compatible to the item type of the context collection. Using this function with index 0 is the same as
calling pv:Prepend(item) on the collection. And using this function with the size of the context collection as index
is the same as calling pv:Append(item) on the collection. If the context collection is a set, then the item is only
inserted at the given index if not already contained in the set.

Function Library

208

Examples {}->pv:Insert(0,4) = {4}
{1,2,3}->pv:Insert(3,4) = {1,2,3,4}
{1,2,3}->pv:Insert(0,4) = {4,1,2,3}
{1,2,3}->pv:Insert(1,4) = {1,4,2,3}
{1,2,3}->pv:AsSet()->pv:Insert(0,3) = {1,2,3}->pv:AsSet()
{1,2,3}->pv:AsSet()->pv:Insert(0,4) = {4,1,2,3}->pv:AsSet()

pv:InsertAll(index,collection)

Insert the given items into the context collection before the item at the given index. It is an error if the type of the
argument collection is not compatible to the type of the context collection. Using this function with index 0 is the
same as calling pv:PrependAll(collection) on the collection. And using this function with the size of the context
collection as index is the same as calling pv:AppendAll(collection) on the collection. If the context collection is a
set, then only items from the argument collection are inserted at the given index if not already contained in the set.

Examples {}->pv:InsertAll(0,{1,2}) = {1,2}
{1,2,3}->pv:InsertAll(3,{4,5}) = {1,2,3,4,5}
{1,2,3}->pv:InsertAll(0,{-1,0}) = {-1,0,1,2,3}
{1,2,3}->pv:InsertAll(1,{1,1,2}) = {1,1,1,2,2,3}
{1,2,3}->pv:AsSet()->pv:InsertAll(3,{1,2,3,4,5}) = {1,2,3,4,5}->pv:AsSet()

pv:IsContainer()

Return TRUE if the context is a container, i.e. a collection like list or set.

Examples self->pv:IsContainer() RECOMMENDS self->pv:Size() > 1

pv:IsFixed()

Return TRUE if the context attribute has a fixed value. Fails if the context does not have attribute type.

Examples self->pv:IsFixed() = TRUE

pv:IsInheritable()

Return TRUE if the context attribute is inheritable. Fails if the context does not have attribute type.

Examples self->pv:IsInheritable() = FALSE

pv:IsKindOf(type)

Returns TRUE if the type of the context object is the same as the non-empty type given as argument, or a type
derived from it. Calling this function with an empty type creates an error.

The type of the context object needs to be defined in a type model. Otherwise it will always return FALSE.

Examples seasons->pv:IsKindOf('ps:feature') = TRUE

pv:Item(index)

Get the item with the given index (starting at 0) of the context collection or the character with the given index of
a string. Fail if the context does not have collection or string type, or the index is invalid.

Examples seasons->pv:Children()->
 pv:Item(0)->pv:Name() = 'spring'

pv:Iterate(accumulator)

Iterate the context collection and return the value accumulated by evaluating the iterator expression for each ele-
ment of the collection. The return type is that of the accumulated value.

Function Library

209

Examples pv:Inform('Current price is ' +
 products->pv:SelectedChildren()->
 pv:Iterate(product; price = 0 | price + product->price) + '$')

pv:Log()

Return the natural logarithm (base e) of the context number. The result value has type ps:float. This function must
not be called on zero and negative numbers.

Examples 1->pv:Log() = 0
0.2->pv:Log() = -1.6094379124341003

pv:Log10()

Return the common logarithm (base 10) of the context number. The result value has type ps:float. This function
must not be called on zero and negative numbers.

Examples 100->pv:Log10() = 2
0.2->pv:Log10() = -0.6989700043360187

pv:Max(), pv:Max(number)

If called on a number collection and no arguments, it returns the greatest number of the collection. If called on a
single number and one number argument (both either ps:integer or ps:float), it returns the greater of the context
number and the argument number. The return type is ps:integer or ps:float depending on the type of the context.
The result for an empty collection is 0.

Examples {1,2,3,4}->pv:Max() = 4
2->pv:Max(4) = 4

pv:Min(), pv:Min(number)

If called on a number collection and no arguments, it returns the smallest number of the collection. If called on a
single number and one number argument (both either ps:integer or ps:float), it returns the smaller of the context
number and the argument number. The return type is ps:integer or ps:float depending on the type of the context.
The result for an empty collection is 0.

Examples {1,2,3,4}->pv:Min() = 1
2->pv:Min(4) = 2

pv:Mod(divisor)

Return the remainder of the devision of the context integer number (dividend) with the argument integer number
(divisor, modulo operation). The return type is ps:integer. If the dividend is a negative number, then the remainder
also is negative. The divisor must not be zero. A negative divisor is treated as if it were positive.

Examples 5->pv:Mod(3) = 2
5->pv:Mod(-3) = 2
(-5)->pv:Mod(3) = -2
(-5)->pv:Mod(-3) = -2

pv:Model(), pv:Model(name-or-id)

Get the model, as ps:model, containing the context element, or the model with the given non-empty name or
identifier if not called on an element. It is an error if the function is called on anything else than an element or
configuration space, or if it is called with an empty model name or identifier.

Examples NOT(context->pv:Model()->pv:RootElement())
 IMPLIES pv:Fail('Root element of model ' +

Function Library

210

 context->pv:Model()->pv:Name() + ' must be selected')

pv:Models(), pv:Models(type)

Get all models of a configuration space as ps:model[] collection. Optionally accepts a non-empty model type
as argument to get only the models of a specific type. The parameter type is of ps:string type. See Table 5.1,
“Mapping between input and concrete model types” for the list of applicable type names. Calling the function with
an empty model type string creates an error. If applied on an object, call fails if the object is not of configuration
space type ('ps:configspace').

Examples pv:Models('ps:fm')->pv:Size() > 1
/* applicable everywhere, number of feature models more than 1 */

context->pv:Parent()->pv:Models()->pv:Size() > 1
/* this form only in constraints*/
/* context of constraint is a model, parent is config space */

pv:Name()

Get the name of the context, as ps:string, which must be a model, element, or attribute, or fail otherwise.

Examples self->pv:SelectionState() = 'ps:nonselectable' IMPLIES
 pv:Warn('Feature ' + self->pv:Name() + ' is now non-selectable!')

pv:Parent()

Get the parent of the context, or fail if the context is not a model, element, relation, attribute, or attribute value. The
parent of a model is the corresponding configuration space, of an element its parent element, or the corresponding
model if it is the root element, of a relation the element on which the relation is defined, of an attribute the element
on which the attribute is defined, and of an attribute value the attribute containing the value.

Examples summer->pv:Parent()->pv:Name() = 'seasons'

pv:Pow(exponent)

Return the value of the context number (base) raised to the power of the argument number (exponent). If both, the
base and the exponent, are integers, then the result value has type ps:integer. Otherwise the result value has type
ps:float. If the base is negative, then the exponent has to be an integer.

Examples 2->pv:Pow(8) = 256
3.14->pv:Pow(2) = 9.8596

pv:Prepend(expr)

Prepend the value of expr to the context which must be a collection. It is an error if the type of the value is not
compatible to the item type of the collection.

Examples {}->pv:Prepend(1) = {1}
{1,2,3}->pv:Prepend(2) = {2,1,2,3}
{1,2,3}->pv:AsSet()->pv:Prepend(2) = {1,2,3}->pv:AsSet()

pv:PrependAll(collection)

Prepend the values of collection to the context, which must be a collection. It is an error if the types of collections
are not compatible.

Examples {}->pv:PrependAll({1,2,3}) = {1,2,3}
{1,2,3}->pv:PrependAll({1,3,5}) = {1,3,5,1,2,3}
{1,2,3}->pv:AsSet()->pv:PrependAll({1,3,5}) = {5,1,2,3}->pv:AsSet()

Function Library

211

pv:PVVersion()

Get the current version of pure::variants as ps:version. The result contains the complete version string, e.g.
'4.0.7.685'. To check against specific versions, comparison operators can be used.

Examples pv:PVVersion() >= '4.0.7.*' /* at least version 4.0.7 */
pv:PVVersion() = '4.0.*' /* any service release of the 4.0 branch */
pv:PVVersion() < '4.*' /* any release before version 4.x */

pv:Relations(), pv:Relations(type)

Get the relations of class ps:dependencies defined on the context element, as ps:relation[]. Optionally accepts a
non-empty relation type as argument to get only relations of the given type. Calling this function with an empty
relation type creates an error. Fails if the context does not have element type.

Examples specialedition->pv:Relations('my:extras')->
 pv:ForAll(r | re->pv:Targets()->pv:Size() <> 0)

pv:Remove(item), pv:Remove(begin,end)

If called with an item as the single argument, then a new collection is returned containing all the items from the
context collection except of the given item. If called with an index range instead, then the resulting collection
contains all the items from the context collection except the items with index begin up to index end-1.

Examples {'a','b','c','b','a'}->pv:Remove('b') = {'a','c','a'}
{'a','b','c','b','a'}->pv:Remove(0,2) = {'c','b','a'}
{'a','b','c','b','a'}->pv:Remove(3,5) = {'a','b','c'}

pv:RemoveAll(collection)

If the context, which must be a collection, contains an element from the given collection, this element is removed
from the context.

Examples {1,2,3,2,1}->pv:RemoveAll({1,3}) = {2,2}

pv:RetainAll(collection)

If an element of the given collection is not contained in the context, which has to be a collection, it will be removed
from the context.

Examples {1,2,3,2,1}->pv:RetainAll({2,3}) = {2,3,2}

pv:Reverse()

Reverses the context, which has to be a collection.

Examples {1,2,3,4,5}->pv:Reverse() = {5,4,3,2,1}

pv:RootElement()

Get the root element of the context model, as ps:element. Fails if the context does not have model type.

Examples context->pv:RootElement()->pv:Selected() = TRUE

pv:Round()

Get the integer value nearest to the context number. Positive context numbers are rounded up towards positive
infinity if the fractional part is equal to or greater than 0.5, and rounded downwards towards negative infinity

Function Library

212

otherwise. Negative context numbers are rounded downwards towards negative infinity if the fractional part is
equal to or greater than 0.5, and rounded up towards positive infinity otherwise. Fails if the context does not have
number type. The return type is ps:integer.

Examples 3.1->pv:Round() = 3
3.5->pv:Round() = 4
3.9->pv:Round() = 4
(-3.1)->pv:Round() = -3
(-3.5)->pv:Round() = -4
(-3.9)->pv:Round() = -4

pv:Select(iterator)

Iterate the context collection and add all the collection items to the result list for which the iterator expression
evaluates to TRUE. The return type is the type of the context collection.

Examples customers->
 pv:Select(customer | customer->balanced = FALSE)->
 pv:ForAll(customer |
 pv:Inform('Send customer ' + customer->id + ' a reminder'))

pv:Selected()

Return TRUE if the context element or attribute exists in the variant, FALSE otherwise. Fails if the context does
not have element or attribute type.

Examples self EQUALS self->pv:Selected()

pv:SelectedChildren(), pv:SelectedChildren(type)

Deprecated. Get all children in the sub-tree of the context element that exist in the variant, as ps:element[].
Optionally accepts a non-empty element type as argument to get only child elements with the given type. Calling
this function with an empty element type creates an error. Fails if the context does not have element type.

This function is deprecated since pure::variants version 5.0.0. Please use function pv:SubTree instead.

Examples element->pv:SubTree(false)->pv:Select(e|e->pv:Selected)
element->pv:SubTree(false)->pv:Select(e|e->pv:Selected and
 e->pv:Type='my:feature')

pv:SelectionHint(message,element),
pv:SelectionHint(message,element,force)

If the given element is not selected in a full configuration or excluded in a partial configuration, a warning or
error message will be created. The severity of the message will be defined by the Boolean force argument: If
the force argument is missing or TRUE, an error message will be created. If the force argument is FALSE, only
a warning message is created. This function will always return TRUE. If activated, the auto resolver will try to
resolve warning and error messages created by this function by selecting the given element if possible.

Examples product->price > 1000 IMPLIES
 pv:SelectionHint('Because of the high price, feature \'luxury\' could be
 selected.', luxury, false)

pv:SelectionState()

Get the selection state of the context element, as ps:string. Fails if the context does not have element type. The
selection state is one of ps:selected, ps:excluded, ps:unselected, or ps:nonselectable.

Examples airbags->pv:SelectionState() = 'ps:excluded'

Function Library

213

 REQUIRES speed->max < 30

pv:Selector()

Get the selector of the context element, as ps:string. Fails if the context does not have element type. The selector
is ps:user for user selections, ps:auto for all other selections, or none for elements that neither are explicitly or
automatically selected nor excluded.

Examples self IMPLIES self->pv:Selector() = 'ps:user'
 OR pv:Inform('Feature ' + self->pv:Name() +
 ' was added automatically')

pv:Sin()

Return the trigonometric sine of the context number. The result value has type ps:float.

Examples 0->pv:Sin() = 0
0.2->pv:Sin() = 0.19866933079506122
100->pv:Sin() = -0.5063656411097588
(-100)->pv:Sin() = 0.5063656411097588

pv:Size()

Get the number of attribute values for attribute types, collection items for collection types, or characters for string
types as ps:integer. For any other context type, 1 is returned.

Examples seasons->pv:Children()->pv:Size() = 4 AND
 seasons->pv:SelectedChildren()->pv:Size() = 1

pv:Sort()

Sort the items of the context collection in ascending order. Numbers are sorted by value and precede strings.
Strings are sorted alphabetically where upper-case characters precede lower-case characters. Collections are sorted
by their elements.

Examples {1,3,2}->pv:Sort() = {1,2,3}
{'c','C','b'}->pv:Sort() = {'C','b','c'}
{1.6,-1.0,0.3}->pv:Sort() = {-1.0,0.3,1.6}
{ {3,1}, {1,3}, {2,1}, {1,2} }->pv:Sort() = { {1,2}, {1,3}, {2,1}, {3,1} }
{ {{3,1},{1,3}}, {{2,1},{1,2}} }->pv:Sort() = { {{2,1},{1,2}}, {{3,1},{1,3}} }

pv:Sqrt()

Return the square root of the context number. The result value has type ps:float. This function must not be called
on negative numbers.

Examples 9->pv:Sqrt() = 3
1.2->pv:Sqrt() = 1.0954451150103321

pv:SubList(begin), pv:SubList(begin,end)

Return a new collection that is a sub-collection of the context collection. The sub-collection begins at the specified
begin index and extends to the end-1 index or end of the context collection. It is an error if the context does not
have collection type.

Examples {1,2,3,4,5}->pv:SubList(0) = {1,2,3,4,5}
{1,2,3,4,5}->pv:SubList(2) = {3,4,5}
{1,2,3,4,5}->pv:SubList(5) = {}
{1,2,3,4,5}->pv:SubList(1,4) = {2,3,4}
{1,2,3,4,5}->pv:SubList(0,0) = {}
{1,2,3,4,5}->pv:SubList(0,1) = {1}

Function Library

214

pv:SubString(begin), pv:SubString(begin,end)

Return a new string, as ps:string, that is a sub-string of the context string. The sub-string begins at the specified
begin index and extends to the end-1 index or end of the context string. It is an error if the context does not have
string type.

Examples 'Hello World'->pv:SubString(6) = 'World'
'smiles'->pv:SubString(1,5) = 'mile'

pv:SubTree()

Get all elements of a model, or just a sub-tree. If the context is a model, then all elements of that model are returned.
If the context is an element and the function is called without an argument or with true as argument, then the sub-
tree with this element as root is returned. If called on an element with argument false, then the context element
will not be part of the result.

Examples model->pv:SubTree->pv:ForAll(e|not(e->pv:Selected))
element->pv:SubTree(false)->pv:Select(e|e->pv:Selected)->pv:Size > 0

pv:Sum()

Return the sum of all numbers in the context collection, or fail if the context is not a number collection. The return
type is ps:integer or ps:float depending on the type of the collection. The sum of an empty collection is 0.

Examples {1,2,3,4}->pv:Sum() = 10

pv:Tan()

Return the trigonometric tangent of the context number. The result value has type ps:float.

Examples 0->pv:Tan() = 0
0.2->pv:Tan() = 0.2027100355086725
100->pv:Tan() = -0.5872139151569291
(-100)->pv:Tan() = 0.5872139151569291

pv:Target(index)

Get the relation target with the given index of the context relation, as ps:element. Fails if the context does not
have relation type.

Examples self->pv:Target(0) XOR self->pv:Target(1)

pv:Targets()

Get the relation targets of the context relation, as ps:element[]. Fails if the context does not have relation type.

Examples self->pv:Type() = 'ps:discourages' AND
 self->pv:Targets()->pv:ForAll(element |
 pv:Warn('You better deselect element ' + element->pv:Name())))

pv:Time()

Returns the time of the given date time value. The result type is ps:time. If the given date time value is timezoned,
the resulting time is also timezoned.

Examples pv:EvaluationDateTime()->pv:Time()->ToString()
'2020-02-28T10:24:42'->pv:ToDateTime()->pv:Time()->pv:ToString() = '10:24:42.000'
'2020-02-28T10:24:42+01:00'->pv:ToDateTime()->pv:Time()->pv:ToString() =
 '09:24:42.000Z'

Function Library

215

pv:ToDate()

Converts the context string containing a date in XML Schema date format with or without time zone into a date
value of type ps:date. The supported format is: '-'?[0-9]{4,}'-'[0-1][0-9]'-'[0-3][0-9]('Z'|('+'|'-')
[0-2][0-9]':'[0-9][0-9])? It has to be an existing date in the Gregorian calendar and the time zone, if given,
has to be in range +14:00 to -14:00. During conversion the eventually existing time zone is normalized to so-
called recoverable time zone, which has the range +12:00 to -11:59. It fails, if the date format is invalid, or the
given date does not exist.

Examples '2020-02-28->pv:ToDate()->pv:ToString() = '2020-02-28'
'2020-02-28Z'->pv:ToDate()->pv:ToString() = '2020-02-28Z'
'2020-02-28+01:00'->pv:ToDate()->pv:ToString() = '2020-02-27Z'
'-0050-07-13'->pv:ToDate()->pv:ToString() = '-0050-07-13'

pv:ToDateTime()

Converts the context string containing a date and time in XML Schema dateTime format
with or without time zone into a date time value of type ps:datetime. The supported format
is: '-'?[0-9]{4,}'-'[0-1][0-9]'-'[0-3][0-9]'T'[0-2][0-9]':'[0-5][0-9]':'[0-5][0-9]('.'[0-9]+)?

('Z'|('+'|'-')[0-2][0-9]':'[0-9][0-9])? It has to be an existing date in the Gregorian calendar and the time
zone, if given, has to be in range +14:00 to -14:00. During conversion the time is rounded to millisecond precision
and, if a time zone is given, the time is normalized to GMT. It fails, if the date time format is invalid, or the given
date or time does not exist.

Examples '2020-02-28T12:34:56'->pv:ToDateTime()->pv:ToString() = '2020-02-28T12:34:56.000'
'2020-02-28T12:34:56.25Z'->pv:ToDateTime()->pv:ToString() =
 '2020-02-28T12:34:56.250Z'
'2020-02-28T00:02:42.123+01:00'->pv:ToDateTime()->pv:ToString() =
 '2020-02-27T23:02:42.123Z'

pv:ToFloat()

Convert the context number to a floating point number. Fails if the context does not have number type. The return
type is ps:float.

Examples 1->pv:ToFloat() = 1.0

pv:ToLowerCase()

Convert all characters of the context string to lower case. Fails if the context does not have string type. The return
type is ps:string.

Examples 'Hello'->pv:ToLowerCase() = 'hello'

pv:ToString(), pv:ToString(delimiter), pv:ToString(delimiter,last delim-
iter)

Return a string representation of the context object. The return type is ps:string.

If a delimiter is given, then the context object needs to be a collection. Instead of just converting the collection to
a string, the collection items are listed each separated from the other using the given delimiter. If additionally a
last delimiter is given, then this delimiter is inserted between the last item in the collection and its predecessor.

Examples 6->pv:ToString() = '6'
{1,2,3}->pv:ToString = '{1,2,3}'
{1,2,3}->pv:ToString('+') = '1+2+3'
{1,2,3}->pv:ToString(', ',', and ') = '1, 2, and 3'
{{100,-100},{30,75},{10}}->pv:ToString(', ',', and ') = '{100,-100}, {30,75}, and
 {10}'

Function Library

216

pv:ToTime()

Converts the context string containing a time in XML Schema time format with or without time zone into a time
value of type ps:time. The supported format is: [0-2][0-9]':'[0-5][0-9]':'[0-5][0-9]('.'[0-9]+)?('Z'|
('+'|'-')[0-2][0-9]':'[0-9][0-9])? The time zone, if given, has to be in range +14:00 to -14:00. During
conversion the time is rounded to millisecond precision and, if a time zone is given, the time is normalized to
GMT. It fails, if the time format is invalid, or the given time does not exist.

Examples '12:34:56'->pv:ToTime()->pv:ToString() = '12:34:56.000'
'12:34:56.25Z'->pv:ToTime()->pv:ToString() = '12:34:56.250Z'
'00:02:42.123+01:00'->pv:ToTime()->pv:ToString() = '23:02:42.123Z'

pv:ToUpperCase()

Convert all characters of the context string to upper case. Fails if the context does not have string type. The return
type is ps:string.

Examples 'Hello'->pv:ToUpperCase() = 'HELLO'

pv:Truncate()

Convert the context number into an integer by truncating the fractional digits. Fails if the context does not have
number type. The return type is ps:integer.

Examples 3->pv:Truncate() = 3
1.9->pv:Truncate() = 1
(-2.6)->pv:Truncate() = -2

pv:Type()

Get the type of the context as ps:string.

Examples 'hello'->pv:Type() = 'ps:string'
42->pv:Type() = 'ps:integer'
FeatureA->pv:Type() = 'ps:feature'

pv:VariationType()

Get the variation type of the context element or attribute, as ps:string. Fails if the context does not have element or
attribute type. The variation type of attributes always is ps:mandatory, and of elements ps:mandatory, ps:optional,
ps:or, or ps:alternative.

Examples summer->pv:VariationType() = 'ps:alternative'

pv:VName(), pv:VName(language)

Get the visible name of the context, as ps:string, which must be an element, or fail otherwise. Optionally the non-
empty language identifier can be specified. Calling the function with an empty language identifier creates an error.

If no language is given, the visible name with no specified language will be returned. If no such visible name
exists, any other visible name will be returned. If no visible name is defined for the element, an empty string will
be returned. If a language is specified, the visible name in the given language will be returned if available. If no
such visible name exists the function falls back to the version without given language.

Examples self->pv:SelectionState() = 'ps:nonselectable' IMPLIES
 pv:Warn('Feature ' + self->pv:VName() + ' is now non-selectable!')

pv:Warn(message), pv:Warn(message,element)

User-Defined pvSCL Functions

217

Show a warning message at the context element or the given element. Always returns TRUE.

Examples car->wheels > 4 IMPLIES
 pv:Warn('Too many wheels (' + car->wheels + ') configured', car)

9.7.24. User-Defined pvSCL Functions

For complex restrictions and calculations it may be useful to provide additional functions, e.g. to simplify the
expressions or to share code. For the expression language pvSCL a code library can be defined in each model. This
is done by entering the code into the pvSCL Code Library properties page of a model (see Figure 9.1, “pvSCL
Code Library Model Property Page”).

Figure 9.1. pvSCL Code Library Model Property Page

Each feature or family model in a Configuration Space can define code libraries. Code defined in one model is also
available in all other models of the same configuration space. Defining the same function in more than one model,
will redefine the function. Since there is no explicit model loading order the used version of the function may differ.

9.8. XSLT Extension Functions

Several extension functions are available when using the XSLT processor integrated in the pure::variants XML
Transformation System for model transformations and model exports. These extension functions are defined in
own namespaces. Before they can be used in an XSLT script, the corresponding namespaces have to be included
using the "xmlns" stylesheet attribute:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:pv="http://www.Parametric Technology.com/purevariants"
 extension-element-prefixes="pv">

 ...any script content...

</xsl:stylesheet>

After including the namespace, the extension functions can be used in XPath expressions using the defined names-
pace prefix, e.g. F .

XSLT Extension Functions

218

The following extension functions are defined in the namespace "http://www.Parametric Technology.com/pure-
variants" and provide access to the pure::variants model information.

Table 9.10. Extension functions providing model information

Function Description

nodeset models() Get all input models known to the transformer, i.e. the opened variant
description model, and all Feature and Family Models of the Config-
uration Space without any modifications. See Section 5.9.2, “ Variant
Result Models ” for more information about the transformation input.

Note: In the pure::variants Server Edition this function returns an emp-
ty set. Access to the input models of the transformation is not support-
ed in the pure::variants Server Edition.

nodeset model-by-id(string) Get all variant Result Models known to the transformer having the
given id. The Result Models are derived from the models of the Con-
figuration Space describing a single concrete solution drawn from the
solution family. See Section 5.9.2, “ Variant Result Models ” for more
information about the transformation input.

nodeset model-by-name(string) Get all Variant Result Models known to the transformer having the
given name. The Variant Result Models are derived from the models
of the Configuration Space describing a single concrete solution drawn
from the solution family. See Section 5.9.2, “ Variant Result Models
” for more information about the transformation input.

nodeset model-by-type(string) Get all Variant Result Models known to the transformer having the
given type. The Variant Result Models are derived from the models of
the Configuration Space describing a single concrete solution drawn
from the solution family. Valid types are ps:vdm , ps:cfm , and ps:ccm
. See Section 5.9.2, “ Variant Result Models ” for more information
about the transformation input.

boolean hasFeature(string) Return true if the feature, given by its unique name or id, is in the
variant.

boolean hasComponent(string) Return true if the component, given by its unique name or id, is in the
variant.

boolean hasPart(string) Return true if the part, given by its unique name or id, is in the variant.

boolean hasSource(string) Return true if the source, given by its unique name or id, is in the
variant.

boolean hasElement(string id) Return true if the element, given by its unique id, is in the variant.

boolean hasElement(string

name,string class,string type?)

Return true if the element, given by its unique name, class, and (op-
tionally) type, is in the variant.

nodeset getElement(string id) Return the element given by its unique id.

nodeset getElement(string

name,string class,string type?)

Return the element given by its unique name, class, and (optionally)
type.

nodeset

getChildrenTargets(string id)

Return the full qualified ids of the children elements of the element
with the given id.

nodeset getChildrenTargets(nodeset

element)

Return the full qualified ids of the children elements of the given el-
ement.

nodeset getChildrenTargets(string

ename,string eclass,string etype?)

Return the full qualified ids of the children elements of the element
given by its unique name, class, and (optionally) type.

boolean hasAttribute(string id) Return true if the attribute, given by its unique id, is in the variant.

boolean hasAttribute(nodeset

element,string name)

Return true if the attribute, given by its name and the element it be-
longs to, is in the variant.

XSLT Extension Functions

219

Function Description

boolean hasAttribute(string

eid,string name)

Return true if the attribute, given by its name and the id of the element
it belongs, to is in the variant.

boolean hasAttribute(string

ename,string eclass,string

etype?,string name)

Return true if the attribute, given by its name and the unique name,
class, and (optionally) type of the element it belongs to, is in the vari-
ant.

nodeset getAttribute(string id) Return the attribute given by its unique id.

nodeset getAttribute(nodeset

element,string name)

Return the attribute given by its name and the element it belongs to.

nodeset getAttribute(string

eid,string name)

Return the attribute given by its name and the id of the element it
belongs to.

nodeset getAttribute(string

ename,string eclass,string

etype?,string name)

Return the attribute given by its name and the unique name, class, and
(optionally) type of the element it belongs to.

boolean hasAttributeValue(nodeset

attribute)
Return true if the given attribute has a value.

boolean

hasAttributeValue(string id)

Return true if the attribute given by its unique id has a value.

boolean hasAttributeValue(nodeset

element,string name)

Return true if the attribute, given by its name and the element it be-
longs to, has a value.

boolean hasAttributeValue(string

eid,string name)

Return true if the attribute, given by its name and the id of the element
it belongs to, has a value.

boolean hasAttributeValue(string

ename,string eclass,string

etype?,string name)

Return true if the attribute, given by its name and the unique name,
class, and (optionally) type of the element it belongs to, has a value.

nodeset getAttributeValue(nodeset

attribute)
Return the values of the given attribute.

nodeset

getAttributeValue(string id)

Return the values of the attribute given by its unique id.

nodeset getAttributeValue(nodeset

element,string name)

Return the values of the attribute given by its name and the element
it belongs to.

nodeset getAttributeValue(string

eid,string name)

Return the values of the attribute given by its name and the id of the
element it belongs to.

nodeset getAttributeValue(string

ename,string eclass,string

etype?,string name)

Return the values of the attribute given by its name and the unique
name, class, and (optionally) type of the element it belongs to.

The following extension functions are defined in the namespace "http://www.Parametric Technology.com/xmlts"
and provide basic information about the current transformation.

Table 9.11. Extension functions providing transformation information

Function Description

string os() Get the target system type. This is either the string "win32", "macosx",
or "linux" (default).

string version() Get the transformation system version.

string input-path() Get the transformation input path.

string output-path() Get the transformation output path.

string generate-id() Generate an unique identifier.

nodeset current() Get the node currently being transformed.

XSLT Extension Functions

220

Function Description

nodeset entry-points() Get the transformation entry point list, i.e. a list of full qualified ele-
ment IDs. Transformation modules can use this list to identify sub-
trees of the input models that are to be transformed.

boolean below-en\

try-point(string id)
Return true if the given full qualified element ID denotes an element
below a transformation entry point. Transformation modules can use
this function to identify sub-trees of the input models that are to be
transformed.

nodeset exit-points() Get the transformation exit point list, i.e. a list of full qualified element
IDs. Transformation modules can use this list to identify sub-trees of
the input models that are to be ignored.

boolean above-ex\

it-point(string id)
Return true if the given full qualified element ID denotes an element
above a transformation exit point. Transformation modules can use
this function to identify sub-trees of the input models that are to be
ignored.

nodeset re\

sults-for(nodeset nodes?)
Get the transformation module results for the given nodes. If no argu-
ment is given, then the results for the context node are returned.

nodeset log(string

message,number level?)

Add a logging message that is shown in the Console View. The first
parameter is the message and the second the logging level (0-9). It is
recommend to use a logging level between 4 (default) and 8 (detailed
tracing). Returns the empty nodeset.

nodeset info(string message,string

id?,nodeset related?)

Add an info message that is shown in the Problems View resp. as
marker on a model element. The first parameter is the message. All
other parameters are optional. The second is the ID of the context el-
ement of the info (used to place the marker), and the third is a set of
IDs of related model elements. Returns the empty nodeset.

nodeset warning(string

message,string

id?,nodeset related?)

Add a warning message that is shown in the Problems View resp. as
marker on a model element. The first parameter is the message. All
other parameters are optional. The second is the ID of the context el-
ement of the info (used to place the marker), and the third is a set of
IDs of related model elements. Returns the empty nodeset.

nodeset error(string

message,string

id?,nodeset related?)

Add an error message that is shown in the Problems View resp. as
marker on a model element. The first parameter is the message. All
other parameters are optional. The second is the ID of the context el-
ement of the info (used to place the marker), and the third is a set of
IDs of related model elements. Returns the empty nodeset.

Note

Error messages may abort the XSLT script execution and the
whole transformation.

Table 9.12. Extension elements for logging and user messages

Element Description

<log level="0-9">message</log> Add a logging message that is shown in the Console View. The option-
al attribute "level" specifies the logging level (0-9). It is recommend
to use a logging level between 4 (default) and 8 (detailed tracing).

<info context="element id"

related="nodeset">message</info>

Add an info message that is shown in the Problems View resp. as
marker on a model element. The optional attribute "context" specifies
the ID of the context element of the info (used to place the marker).
The optional attribute "related" specifies a set of IDs of related model
elements.

XSLT Extension Functions

221

Element Description

<warning context="element id"

related="nodeset">message</

warning>

Add a warning message that is shown in the Problems View resp. as
marker on a model element. The optional attribute "context" specifies
the ID of the context element of the info (used to place the marker).
The optional attribute "related" specifies a set of IDs of related model
elements.

<error context="element id"

related="nodeset">message</error>

Add an error message that is shown in the Problems View resp. as
marker on a model element. The optional attribute "context" specifies
the ID of the context element of the info (used to place the marker).
The optional attribute "related" specifies a set of IDs of related model
elements.

Note

Error messages may abort the XSLT script execution and the
whole transformation.

The following extension functions are defined in the namespace "http://www.Parametric Technology.com/path"
and provide additional file operations.

Table 9.13. Extension functions providing file operations

Function Description

string normalize(string path) Normalized the given path for the current target plat-
form.

string dirname(string path) Get the directory part of the given path.

string filename(string path) Get the file part of the given path.

string basename(string path) Strip the file extension from the given path.

string extension(string path) Get the file extension from the given path.

string absolute(string path) Make the given path absolute (i.e. full path).

string add-part(string path,string part) Add the given part to the path using the platform specific
path delimiter.

number size(string file) Get the size (in bytes) of the given file.

number mtime(string path) Get the modification time of the given file or directory.

string cwd() Get the current working directory.

string tempdir() Get the directory for temporary files.

string delimiter() Get the path delimiter of the target platform.

boolean exists(string path) Return true if the given file or directory exists.

boolean is-dir(string path) Return true if the given path points to a directory.

boolean is-file(string path) Return true if the given path points to a file.

boolean is-absolute(string path) Return true if the given path is absolute (i.e. full path).

string to-uri(string path) Get the file URI build from the given path (i.e.
file://...).

string read-file(string uri) Read a file from a given URI and return its content as
string.

The following extension functions are defined in the namespace "http://www.Parametric Technology.com/string"
and provide additional string operations.

Predefined Variables

222

Table 9.14. Extension functions providing string operations

Function Description

nodeset parse(string xml) Parse the given string as XML and return the resulting
node set.

boolean matches(string str,string pattern) Match the regular expression pattern against the given
string. Return true if the pattern matches.

nodeset match(string str,string pattern) Match the regular expression pattern against the given
string and return the set of sub-matches.

string submatch(string

str,string pattern,number n)
Match the regular expression pattern against the given
string and return the n-th sub-match.

string replace(string str,string

pattern,string replacement,number n?)
Replace the matches in the given string with the re-
placement string using the regular expression match pat-
tern. The optional fourth parameter specifies the maxi-
mal number of replacements. 0 means all, 1 means to re-
place only the first, 2 means to replace the first 2 match-
es etc. Returns the resulting string.

string expand(string str) Expand variables in the given string and return the ex-
panded string. Variables are recognized by the follow-
ing pattern: $(VARIABLENAME) . See Section 9.9, “ Pre-
defined Variables ” for the list of supported variables.

Further information about XSLT extension functions is available in the external document XML Transformation
System .

9.9. Predefined Variables

There are several places in pure::variants where variables are supported. That are for instance the transformation
input and output paths as well as in the parameters of transformation modules. The following pattern is used for
accessing variables: $(VARIABLENAME) .

Table 9.15. Supported Variables

Variable Description

CONFIGSPACE Path to the Configuration Space folder.

CONFIGSPACE_NAME Name of the Configuration Space.

ENV:variable The content of the environment variable with the given name.

INPUT Transformation input directory.

MODULEBASE Path to the transformation module base folder.

OUTPUT Transformation output directory.

PROJECT Path to the folder of the current project.

PROJECT:name Path to the folder of the project with the given name.

QUALIFIER The actual time stamp in the form yyyyMMddHHmmss, e.g. 20190101143045.

TRANSFORMLOG Path to the transformation log file.

TRANSFORMATION The name of the transformation configuration which triggered the current transfor-
mation.

VARIANT Name of the current variant, i.e. the name of the VDM currently being evaluated
resp. transformed.

VARIANTSPATH Name of the currently being evaluated resp. transformed VDM prefixed by the names
of the parent VDMs. The names are separated by a slash. If a VDM is not linked,
then the value of VARIANTSPATH is identical to the value of VARIANT .

Regular Expressions

223

Variable Description

WORKSPACE Path to the workspace folder.

9.10. Regular Expressions

Regular expressions are used to match patterns against strings.

9.10.1. Characters

Within a pattern, all characters except ., |, (,), [, {, +, \, ^, $, *, and ? match themselves. If you want to match one
of these special characters literally, precede it with a backslash.

Patterns for matching single characters:

x Matches the character x.

\ Matches nothing, but quotes the following character.

\\ Matches the backslash character.

\0n Matches the character with octal value 0n (0 <= n <= 7).

\0nn Matches the character with octal value 0nn (0 <= n <= 7).

\0mnn Matches the character with octal value 0mnn (0 <= m <= 3, 0 <= n <= 7).

\xhh Matches the character with hexadecimal value 0xhh.

\uhhhh Matches the character with hexadecimal value 0xhhhh.

\t Matches the tab character ('\u0009').

\n Matches the newline (line feed) character ('\u000A').

\r Matches the carriage-return character ('\u000D').

\f Matches the form-feed character ('\u000C').

\a Matches the alert (bell) character ('\u0007').

\e Matches the escape character ('\u001B').

\cx Matches the control character corresponding to x.

To match a character from a set of characters the following character classes are supported. A character class is
a set of characters between brackets. The significance of the special regular expression characters ., |, (,), [, {, +,
^, $, *, and ? is turned off inside the brackets. However, normal string substitution still occurs, so (for example)
\b represents a backspace character and \n a newline. To include the literal characters] and - within a character
class, they must appear at the start.

[abc] Matches the characters a, b, or c.

[^abc] Matches any character except a, b, or c (negation).

[a-zA-Z] Matches the characters a through z or A through Z, inclusive (range).

[a-d[m-p]] Matches the characters a through d, or m through p: [a-dm-p] (union).

[a-z&&[def]] Matches the characters d, e, or f (intersection).

[a-z&&[^bc]] Matches the characters a through z, except for b and c: [ad-z] (subtraction).

Character Sequences

224

[a-z&&[^m-p]] Matches the characters a through z, and not m through p: [a-lq-z] (subtraction).

Predefined character classes:

. Matches any character.

\d Matches a digit: [0-9].

\D Matches a non-digit: [^0-9].

\s Matches a whitespace character: [\t\n\x0B\f\r].

\S Matches a non-whitespace character: [^\s].

\w Matches a word character: [a-zA-Z_0-9].

\W Matches a non-word character: [^\w].

POSIX character classes (US-ASCII):

\p{Lower} Matches a lower-case alphabetic character: [a-z].

\p{Upper} Matches an upper-case alphabetic character: [A-Z].

\p{ASCII} Matches all ASCII characters: [\x00-\x7F].

\p{Alpha} Matches an alphabetic character: [\p{Lower}\p{Upper}].

\p{Digit} Matches a decimal digit: [0-9].

\p{Alnum} Matches an alphanumeric character: [\p{Alpha}\p{Digit}].

\p{Punct} Matches a punctuation character: one of !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

\p{Graph} Matches a visible character: [\p{Alnum}\p{Punct}].

\p{Print} Matches a printable character: [\p{Graph}].

\p{Print} Matches a space or a tab: [\t].

\p{Cntrl} Matches a control character: [\x00-\x1F\x7F].

\p{XDigit} Matches a hexadecimal digit: [0-9a-fA-F].

\p{Space} Matches a whitespace character: [\t\n\x0B\f\r].

Classes for Unicode blocks and categories:

\p{InGreek} Matches a character in the Greek block (simple block).

\p{Lu} Matches an uppercase letter (simple category).

\p{Sc} Matches a currency symbol.

\P{InGreek} Matches any character except one in the Greek block (negation).

[\p{L}&&[^\p{Lu}]] Matches any letter except an uppercase letter (subtraction).

9.10.2. Character Sequences

Character sequences are matched by string the characters together.

Repetition

225

XY Matches X followed by Y.

The following constructs are used to easily match character sequences containing special characters.

\Q Quotes all characters until \E.

\E Ends quoting started by \Q.

9.10.3. Repetition

Repetition modifiers allow to match multiple occurrences of a pattern.

X? Matches X once or not at all.

X* Matches X zero or more times.

X+ Matches X one or more times.

X{n} Matches X exactly n times.

X{n,} Matches X at least n times.

X{n,m} Matches X at least n but not more than m times.

These patterns are greedy, i.e. they will match as much of a string as they can. This behavior can be altered to let
them match the minimum by adding a question mark suffix to the repetition modifier.

9.10.4. Alternation

An unescaped vertical bar "|" matches either the regular expression that precedes it or the regular expression that
follows it.

X|Y Matches either X or Y.

9.10.5. Grouping

Parentheses are used to group terms within a regular expression. Everything within the group is treated as a single
regular expression.

(X) Matches X.

9.10.6. Boundaries

The following boundaries can be specified.

^ Matches the beginning of a line.

$ Matches the end of a line.

\b Matches a word boundary.

\B Matches a non-word boundary.

\A Matches the beginning of the string.

\G Matches the end of the previous match.

\Z Matches the end of the string but for the final terminator (e.g newline), if any.

\z Matches the end of the string.

Back References

226

9.10.7. Back References

Back references allow to use part of the current match later in that match, i.e. to look for various forms of repetition.

\n Whatever the n-th group matched.

9.11. Keyboard Shortcuts

Some of the following keyboard shortcuts may not be supported on all operating systems.

Table 9.16. Common Keyboard Shortcuts

Key Action

CTRL+Z Undo

CTRL+Y Redo

CTRL+C Copy into clipboard

CTRL+X Cut into clipboard

CTRL+V Paste from clipboard

Table 9.17. Model Editor Keyboard Shortcuts

Key Action

ENTER Show properties dialog

DEL / ENTF Delete selected elements

Up/Down cursor keys Navigate tree

Left/Right cursor keys Collapse or expand subtree

CTRL+O Open Quick-Outline

CTRL+INSERT Create New Feature / Element (Fea-
ture Model Editor, Family Model Editor)

Space Select / Unselect Features (Variant Model Editor / Matrix)

SHIFT+Space Exclude / Unselect Features (Variant Model Editor / Matrix)

CTRL+1 Evaluate Variant Description Model / Matrix

CTRL+2 Validate Model (Feature Model Editor, Fam-
ily Model Editor, Variant Model Editor)

CTRL+T Run last used Transformation (Variant Model Editor / Matrix)

Table 9.18. Graph Editor Keyboard Shortcuts

Key Action

CTRL+P Print graph

CTRL+= Zoom in

CTRL+- Zoom out

CTRL+ALT+A Show relation arrows in graph

CTRL+ALT+X Expand complete subtrees of selected elements

ALT+X Expand one level of selected elements

ALT+C Collapse selected elements

ALT+H Layout graph horizontal

ALT+V Layout graph vertical

Naming Restrictions

227

Key Action

ALT+DEL Hide selected elements

9.12. Naming Restrictions

There are different naming restrictions for different types of objects, which will be declared in this section.

9.12.1. Project Name

The project name follows the OS-specific rules for directory naming.

Apart from that limitation, there are no characters especially forbidden.

9.12.2. Folder Name

The folder name follows the OS-specific rules for directory naming.

Apart from that limitation, there are no characters especially forbidden.

9.12.3. Config Space Name

The config space name follows the OS-specific rules for directory naming.

Apart from that the name has to begin with a letter or underline ('_').

• the following character is especially forbidden: (':')

• any character which is not a letter or digit except for underline ('_').

9.12.4. Model Name

The model name follows the OS-specific rules for directory naming.

Apart from that the name has to begin with a letter or underline ('_').

• the following character is especially forbidden: (':')

• any character which is not a letter or digit except for underline ('_').

9.12.5. Revision Name

The revision name consists of

• non-ASCII characters or

• ASCII characters like digits, letters and the following: ? / - . _ ~ ! $ & ' () * + =

• Following ASCII characters are especially forbidden: # , : ; @ | and space (' ')

228

229

Chapter 10. Appendices
10.1. Software Configuration

pure::variants may be configured from the configuration page (located in Window->Preferences->Variant Man-
agement). The available configuration options allow the license status to be checked, the plug-in logging options
to be specified and the configuration of some aspects of the internal operations of the plug-in to be specified.
Parametric Technology support staff may ask you to configure the software with specific logging options in order
to help identify any problems you may experience.

Figure 10.1. The configuration dialog of pure::variants

10.2. User Interface Advanced Concepts

10.2.1. Console View

This view is used to alter the information that is logged during program operation. The amount of information to
be logged is controlled via a preferences menu and this can be changed at any time by selecting the log level icon
in the view's toolbar. The changed logging level is active only for the current session.

Note

If the preferences menu is used instead to change the logging level then this applies to this session and
every subsequent session.

10.3. Glossary

Configuration Space The Configuration Space describes the set of Input Models for creating
product variants. It also defines the transformation of variants.

Glossary

230

Context Menu A menu, which is customized according to the user interface item the us-
er is currently pointing at (with the mouse). On Windows, Linux and Ma-
cOS X (with two or more mouse buttons), the right mouse button is usually
configured to open the context menu. Under MacOS X (with single button
mouse) the command key and then the mouse button have to be pressed
(while still holding the command key) to open the context menu.

CSV Comma Separated Value list. A simple text format often used to exchange
spreadsheet data. Each line represents a table row, columns are separated
with a comma character or other special characters (e.g. if the comma in
the user's locale is used in floating point numbers like in Germany).

DOT The name of a tool and its input format for automatic graph layouting.
The tool is part of the GraphViz package available as open source from
www.graphviz.org .

EBNF Extended Backus-Naur Form. A common way to describe programming
language grammars. The Backus-Naur Form (BNF) is a convenient means
for writing down the grammar of a context-free language. The Extended
Backus-Naur Form (EBNF) adds the regular expression syntax of regular
languages to the BNF notation, in order to allow very compact specifica-
tions. The ISO 14977 standard defines a common uniform precise EBNF
syntaxt.

Family Model This model type is used to describe how the products in a product line will
be assembled or generated from pre-specified components. Each compo-
nent in a Family Model represents one or more functional elements of the
products in the product line, for example software (in the form of classes,
objects, functions or variables) or documentation. Family models are de-
scribed in more detail in Section 5.4, “ Family Models ” .

Family Model Editor The editor for Family Models. See Section 7.3.3, “ Family Model Editor ”
for a detailed description.

Matrix Editor The editor for Configuration Spaces. See Section 7.3.7, “ Matrix Editor ”
for a detailed description.

Feature Model This model type is used to describe the products of a product line in terms
of the features that are common to those products and the features that vary
between those products. Each feature in a Feature Model represents a prop-
erty of a product that will be visible to the user of that product. These mod-
els also specify relationships between features, for example, choices be-
tween alternative features. Feature Models are described in more detail in
Section 5.3, “ Feature Models ” .

Feature Model Editor The editor for Feature Models. See Section 7.3.2, “ Feature Model Editor
” for a detailed description.

HTML Hyper Text Markup Language.

Input Model Input Models are the Feature and Family Models of a Configuration Space.
They are added to a Configuration Space using the Configuration Space
properties dialog. See Figure 6.15, “Configuration Space properties: Model
Selection” for more information.

Link Element Elements in models that represent links to VDMs or Configuration Spaces
to create a variant hierarchy. See Section 6.2.1, “ Hierarchical Variant Com-
position ” for a detailed description.

Model Rank The model rank is a positive integer that is used to control the order in which
the models of a Configuration Space are evaluated. Models are evaluated

www.graphviz.org

Glossary

231

from higher to lower ranks, i.e. models with rank 1 (highest) are evaluated
before models with rank 2 or lower. The rank of a model is specific to a
Configuration Space and can be set in the Configuration Space properties.
The default rank is 1.

OCL Object Constraint Language. A standardized declarative language for spec-
ifying constraints on UML models. See http://www.omg.org .

pvSCL pure::variants Simple Constraint Language. A simple language to express
constraints, restrictions and calculations.

UML Unified Modeling Language. A standardized language for expressing soft-
ware architectures and similar information. See http://www.omg.org .

URL Uniform Resource Locator. A standardized format for expressing the type
and location of a resource (i.e. a file or service access point). Most com-
monly used for referring to HTML pages on an HTTP web server (e.g.
http://my.server.org/index.html)

Variant Description Model This model type is used to describe the set of features of a single product
in the product line. Taking the Input Models of a Configuration Space and
making choices where there is variability in the Input Models creates these
models. VDMs are described in more detail in Section 5.5, “ Variant De-
scription Models ” .

Variant Result Model This model is the result of evaluating the input models of a Configuration
Space according to a given element selection (VDM). It represents a spe-
cific variant of the input models and is used as the input for the transforma-
tion. See Section 5.9.2, “ Variant Result Models ” for a detailed description.

VDM Abbreviation of Variant Description Model.

VDM Editor The editor for the pure::variants Variant Description Model. See Sec-
tion 7.3.4, “ Variant Description Model Editor ” for detailed information
about it.

VRM Editor The editor for Variant Result Models. See Section 7.3.5, “ Variant Result
Model Editor ” for a detailed description.

XML eXtensible Markup Language. A simple standardized language for repre-
senting structured information. See http://www.w3.org .

XML Namespace To provide support for independent development of XML markup elements
(DTD/XML Schema) without name clashes, XML has a concept to provide
several independent namespaces in a single XML document. See http://
www.w3.org .

XMLTS XML Transformation System. The name for the pure::variants transforma-
tion system for generating variants from XML based models.

XPath XPath is part of the XML standard family and is used to describe locations
in XML documents but also contains additional functions e.g. for string
manipulation. XPath is heavily used in XSLT.

XSLT XML Stylesheet Language Transformations. A standardized language for
describing XML document transformation rules. See http://www.w3.org .

http://www.omg.org
http://www.omg.org
http://www.w3.org
http://www.w3.org
http://www.w3.org
http://www.w3.org

232

233

Index

A
Analysis

Model, 80
Attribute

Calculation, 23
Element, 21
Feature, 24
Hide, 133
List Attribute, 22, 22
Set Attribute, 22, 22
Value, 22
Value Types, 22, 177

ps:boolean, 177
ps:class, 177
ps:datetime, 177
ps:directory, 177
ps:element, 177
ps:feature, 177
ps:filetype, 177
ps:float, 177
ps:html, 177
ps:insertionmode, 177
ps:integer, 177
ps:path, 177
ps:string, 177
ps:url, 177
ps:version, 177

Attribute Overriding
Variant Description Model, 152

Attributes
Editor, 140
View, 156

Auto Resolver
Variant Description Model, 40

C
Calculations

Editor, 142
Compare

Model, 74
Models, 154

Configuration Space
Transformation, 50

Constraints
Editor, 142
Editor Pages, 133
Model, 20

D
Default Selected

Element Properties, 40, 139
Dialog

Element Selection, 143

E
Editor

Analysis, 80
Attributes, 140
Calculations, 142
Common Pages, 132
Configuration Space, 50
Constraints, 142
Family Model, 147
Feature Model, 144
Filter, 88
Metrics, 89
Quick Overview, 79
Relations, 139
Restrictions, 142
Variant Description Model, 148
Variant Result Model, 153

Editor Pages
Constraints, 133
Graph, 134
Table, 133
Tree, 132

Element
Attribute, 21

Calculation, 23
Constraints, 20
Default Selection State, 40
Restrictions, 21
Selection Dialog, 143
Variation Types, 179

Element Properties
Attributes Page, 140
Constraints Page, 141
Dialog, 137
General Page, 137
Relations Page, 139
Restrictions Page, 141

Element Selection
Variant Description Model, 148

Element Selection Cluster, 84
Element Variation Types

Alternative, 180
Mandatory, 179
Optional, 179
Or, 180

Evaluation, 37
pvSCL Code Library, 217
Variant Description Model, 29

Export
Model, 93

Expression Editor, 142

F
Family Model, 24

Editor, 147
Element Variation Types, 179
Part Element Types, 189

234

ps:class, 190
ps:classalias, 190
ps:feature, 190
ps:flag, 190
ps:variable, 190

Restrictions, 26
Source Element Types, 180

ps:classaliasfile, 188
ps:condtext, 183
ps:condxml, 182
ps:dir, 181
ps:file, 181
ps:flagfile, 187
ps:fragment, 182
ps:makefile, 187
ps:pvscltext, 185
ps:pvsclxml, 184
ps:symlink, 189

Feature
Attributes, 24
Constraints, 20
Relations, 21
Restrictions, 21

Feature Model, 23
Editor, 144
Element Variation Types, 179

Features
Matrix Editor, 154

File Update, 34
Filter

Model, 88

G
Graph Visualization

Editor Pages, 134
Guided Variant Configuration

Variant Description Model, 149

H
Hierarchical Variant Composition, 28, 43

I
Impact View

Views, 164
Import

Model, 99

K
Keyboard Shortcuts, 226

L
Language Support, 92
List Attribute, 22, 22

M
Metrics

Model, 89

Model
Analysis, 80
Common Properties, 170
Compare, 74, 154
Constraints, 20
Export, 93
Family, 24
Feature, 23
Filter, 88
General Properties, 171
Import, 99
Metrics, 89
Properties, 170
pvSCL Code Library, 217
Search, 77
Validation, 69
Variant Description, 28
Variant Result, 32

Multiple
Transformation, 68

N
Naming Conventions, 227

O
Outline

View, 159
Outline View

Variant Description Model, 152

P
Partial Evaluation

Variant Description Model, 31
Problems

View, 159
Projects

View, 169
Properties

View, 159
pvSCL

Code Library, 217
pvSCL Functions

Attribute Functions
pv:AllChildren, 201
pv:Child(index), 203
pv:Children, 203
pv:Class, 203
pv:Get, pv:Get(index), 206
pv:ID, 207
pv:IsFixed, 208
pv:IsInheritable, 208
pv:IsKindOf(type), 208
pv:Name, 210
pv:Parent, 210
pv:Selected, 212
pv:Size, 213
pv:Type, 216

235

pv:VariationType, 216
Attribute Value Functions

pv:Class, 203
pv:ID, 207
pv:IsKindOf(type), 208
pv:Parent, 210
pv:Type, 216

Collection Functions
pv:Append(expr), 202
pv:AppendAll(collection), 202
pv:AsList, 202
pv:AsSet, 202
pv:Collect(iterator), 204
pv:Contains, 204
pv:ContainsAll, 204
pv:Flatten, 205
pv:ForAll(iterator), 206
pv:IndexOf(item), 207
pv:Insert(index,item), 207
pv:InsertAll(index,collection), 208
pv:IsContainer, 208
pv:Item(index), 208
pv:Iterate(accumulator), 208
pv:Max, 209
pv:Min, 209
pv:Prepend(expr), 210
pv:PrependAll(collection), 210
pv:Remove(item), pv:Remove(begin,end), 211
pv:RemoveAll(collection), 211
pv:RetainAll(collection), 211
pv:Reverse(), 211
pv:Select(iterator), 212
pv:Size, 213
pv:Sort, 213
pv:SubList(begin), pv:SubList(begin,end), 213

Configuration Space Functions
pv:Class, 203
pv:HasModel(name-or-id), 207
pv:Model(name-or-id), 209
pv:Models, pv:Models(type), 210
pv:Type, 216

Contextless Functions
pv:Element(name-or-id), 204
pv:HasElement(name-or-id), 207
pv:HasModel(name-or-id), 207
pv:Model(name-or-id), 209
pv:Models, pv:Models(type), 210

Element Functions
pv:AllChildren, 201
pv:Attribute(name), 203
pv:Attributes(), pv:Attributes('type'), 203
pv:Child(index), 203
pv:Children, 203
pv:ChildrenByState(state),
pv:ChildrenByState(state,selector), 203
pv:Class, 203
pv:DefaultSelected, 204
pv:HasAttribute(name), 207

pv:ID, 207
pv:IsKindOf(type), 208
pv:Model, 209
pv:Name, 210
pv:Parent, 210
pv:Relations, pv:Relations(type), 211
pv:Selected, 212
pv:SelectedChildren, pv:SelectedChildren(type) ,
212
pv:SelectionState, 212
pv:Selector, 213
pv:SubTree, pv:SubTree(boolean), 214
pv:Type, 216
pv:VariationType, 216
pv:VName, 216

Environment Functions
pv:EvaluationIsPartial, 205
pv:PVVersion(), 211

General Functions
pv:Get, 206
pv:IsContainer, 208
pv:IsKindOf(type), 208
pv:ToString, 215
pv:Type, 216

Math Functions
pv:Abs, 201
pv:Acos, 201
pv:Asin, 202
pv:Atan, 202
pv:Cos, 204
pv:Exp, 205
pv:Floor, 205
pv:Log, 209
pv:Log10, 209
pv:Max, pv:Max(number), 209
pv:Min, pv:Min(number), 209
pv:Mod(divisor), 209
pv:Pow(exponent), 210
pv:Round, 211
pv:Sin, 213
pv:Sqrt, 213
pv:Sum, 214
pv:Tan, 214
pv:ToFloat, 215
pv:Truncate, 216

Model Functions
pv:AllChildren, 201
pv:Attribute(name), 203
pv:Attributes(), pv:Attributes('type'), 203
pv:Child(index), 203
pv:Children, 203
pv:Class, 203
pv:Element(name-or-id), 204
pv:HasAttribute(name), 207
pv:HasElement(name-or-id), 207
pv:ID, 207
pv:Name, 210
pv:Parent, 210

236

pv:RootElement, 211
pv:SubTree, 214
pv:Type, 216

Relation Functions
pv:Class, 203
pv:ID, 207
pv:IsKindOf(type), 208
pv:Parent, 210
pv:Target(index), 214
pv:Targets, 214
pv:Type, 216

String Functions
pv:Characters(), 203
pv:Format(format), 206
pv:IndexOf(string), 207
pv:Item(index), 208
pv:Size, 213
pv:SubString(begin), pv:SubString(begin,end),
214
pv:ToLowerCase, 215
pv:ToString, pv:ToString(delimiter),
pv:ToString(delimiter,last delimiter), 215
pv:ToUpperCase, 216

Time Functions
pv:Date, 204
pv:EvaluationDateTime, 204
pv:Time, 214
pv:ToDate, 215
pv:ToDateTime, 215
pv:ToTime, 216

User Interaction Functions
pv:ExclusionHint(message,element),
pv:ExclusionHint(message,element,force), 205
pv:Fail(message), pv:Fail(message,element), 205
pv:Inform(message),
pv:Inform(message,element), 207
pv:SelectionHint(message,element),
pv:SelectionHint(message,element,force), 212
pv:Warn(message), pv:Warn(message,element),
216

pvSCL IDE
Views, 167

R
Refactoring, 73
Regular Expressions, 223
Relation Types

ps:conditionalRequires, 178
ps:conflicts, 178
ps:conflictsAny, 178
ps:defaultProvider, 179
ps:discourages, 178
ps:discouragesAny, 178
ps:equalsAll, 178
ps:equalsAny, 178
ps:exclusiveProvider, 179
ps:expansionProvider, 179
ps:influences, 178

ps:provides, 178
ps:recommendedFor, 178
ps:recommendedForAll, 178
ps:recommends, 178
ps:recommendsAll, 178
ps:requestsProvider, 179
ps:requiredFor, 178
ps:requiredForAll, 178
ps:requires, 178
ps:requiresAll, 178
ps:sharedProvider, 179
ps:supports, 179

Relations
Editor, 139
Feature, 21
View, 161

Restrictions
Editor, 142
Element, 21
Family Model, 26

Result
Delta Mode, 163
View, 162

S
Same Variants, 83
Search, 77

Model, 77
Quick Overview, 79
View, 158

Selection State Cluster, 86
Set Attribute, 22, 22
Similar Variants, 80

T
Tasks

View, 159
Transformation, 50

JavaScript, 64
Regular Expression, 62
Standard Transformation, 60
Variant Description Model, 32
Variant Result Model, 32
XSLT Extension Functions, 217

Type Model, 90

U
Update, 33

V
Validation

Models, 69
Variables, 222

$(CONFIGSPACE), 222
$(CONFIGSPACE_NAME), 222
$(ENV:variable), 222
$(INPUT), 222

237

$(MODULEBASE), 222
$(OUTPUT), 222
$(PROJECT), 222
$(PROJECT:name), 222
$(QUALIFIER), 222
$(TRANSFORMATION), 222
$(TRANSFORMLOG), 222
$(VARIANT), 222
$(VARIANTSPATH), 222
$(WORKSPACE), 223

Variant
Matrix Editor, 154

Variant Description Model, 28
Auto Resolver, 40
Editor, 148
Evaluation, 29
Extended Auto Resolver, 41
Inheritance, 28, 172
Load Selection, 47
Outline, 152
Partial Evaluation, 31
Rename Reused Variant Description Model, 47
Reorder Reused Variant Description Models, 48
Selection Types, 180

Auto, 180
Auto Excluded, 180
Excluded, 180
Non-Selectable, 180
User, 180

Transformation, 32
Variant Projects

View, 169
Variant Result Model

Editor, 153
Transformation, 32

Views
Attributes, 156
Impact View, 164
Matrix Edior, 154
Outline, 159
Problems, 159
Properties, 159
pvSCL IDE, 167
Relations, 161
Result, 162
Search, 158
Tasks, 159
Variant Projects, 169
Visualization, 157

Visualization
View, 157

X
XSLT Elements

error, 221
info, 220
log, 220
warning, 221

XSLT Extension Functions, 217
XSLT Functions

above-exit-point, 220
absolute, 221
add-part, 221
basename, 221
below-entry-point, 220
current, 219
cwd, 221
delimiter, 221
dirname, 221
entry-points, 220
error, 220
exists, 221
exit-points, 220
expand, 222
extension, 221
filename, 221
generate-id, 219
getAttribute, 219
getAttributeValue, 219
getChildrenTargets, 218
getElement, 218
hasAttribute, 218
hasAttributeValue, 219
hasComponent, 218
hasElement, 218
hasFeature, 218
hasPart, 218
hasSource, 218
info, 220
input-path, 219
is-absolute, 221
is-dir, 221
is-file, 221
log, 220
match, 222
matches, 222
model-by-id, 218
model-by-name, 218
model-by-type, 218
models, 218
mtime, 221
normalize, 221
os, 219
output-path, 219
parse, 222
read-file, 221
replace, 222
results-for, 220
size, 221
submatch, 222
tempdir, 221
to-uri, 221
version, 219
warning, 220

238

	pure::variants User's Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. What is pure::variants?
	1.2. Link to PDF and Other Related Documents

	Chapter 2. Software and License Installation
	2.1. Software Requirements
	2.2. Software Installation
	2.3. Obtaining and Installing a License

	Chapter 3. Introduction to Product Line Engineering with Feature Models
	3.1. Introduction
	3.2. Software Product Lines
	3.3. Modelling the Problem Space with Feature Models
	3.4. Modelling the Solution Space
	3.5. Designing a variable architecture
	3.6. Deriving product variants

	Chapter 4. Getting Started with pure::variants
	4.1. Variant Management Perspective
	4.2. Tooltips
	4.3. Using Feature Models
	4.4. Using Configuration Spaces
	4.5. Transforming Configuration Results
	4.6. Viewing and Exporting Configuration Results
	4.7. Exploring Documentation and Examples

	Chapter 5. Concepts
	5.1. Introduction
	5.2. Common Concepts in pure::variants Models
	5.2.1. Model Constraints
	5.2.2. Element Restrictions
	5.2.3. Element Relations
	5.2.4. Element Attributes
	Attribute Value Types
	Attribute Values
	Attribute Value Calculations with pvSCL

	5.3. Feature Models
	5.3.1. Feature Attributes

	5.4. Family Models
	5.4.1. Structure of the Family Model
	Components:
	Parts:
	Source Elements:

	5.4.2. Restrictions in Family Models
	Examples of Restriction Rules
	Including an element only if a specific feature is present
	Or-ing two restriction rules

	5.4.3. Relations in Family Models
	Example using ps:exclusiveProvider/ps:requestsProvider relations
	Example for ps:defaultProvider/ps:expansionProvider relation

	5.5. Variant Description Models
	5.6. Hierarchical Variant Composition
	5.7. Inheritance of Variant Descriptions
	5.7.1. Inheritance Rules

	5.8. Variant Description Evaluation
	5.8.1. Evaluation Algorithm
	5.8.2. Partial Evaluation

	5.9. Variant Transformation
	5.9.1. The Transformation Process
	5.9.2. Variant Result Models

	5.10. Variant Update
	5.10.1. File based Update

	Chapter 6. Tasks
	6.1. Evaluating Variant Descriptions
	6.1.1. Configuring the Evaluation
	Workspace-specific settings
	Configuration-Space-specific settings

	6.1.2. Setting the VDM Configuration Mode
	6.1.3. Default Element Selection State
	6.1.4. Automatic Resolving of Selection Problems
	6.1.5. Automatic Selection
	6.1.6. Configuring the Auto Resolver

	6.2. Reuse of Variant Descriptions
	6.2.1. Hierarchical Variant Composition
	Unique Names and IDs in linked Variants
	Example Variant Hierarchy

	6.2.2. Inheritance of Variant Descriptions
	6.2.3. Load a Variant Description
	6.2.4. Rename Reused Variant Description Model
	6.2.5. Reorder Reused Variant Description Models

	6.3. Transforming Variants
	6.3.1. Setting up a Transformation
	Model List Page
	Properties Page
	Input-Output Page
	Transformation Configuration Page

	6.3.2. Standard Transformation
	Setting up the Standard Transformation
	Providing Values for Part Elements
	Modify Files using Regular Expressions
	Regular Expression Syntax

	6.3.3. User-defined transformation scripts with JavaScript
	Example:
	Evaluate PVSCL rules in a JavaScript Transformation

	6.3.4. Transformation of Hierarchical Variants
	6.3.5. Reusing existing Transformation
	6.3.6. Ant Build Transformation Module

	6.4. Validating Models
	6.4.1. XML Schema Model Validation
	6.4.2. Model Check Framework
	Configuring the Framework
	Automatic Model Validation

	Performing Model Checks

	6.5. Refactoring Models
	6.6. Comparing Models
	6.6.1. General Eclipse Compare
	6.6.2. Model Compare Editor
	6.6.3. Conflicts
	6.6.4. Compare Example

	6.7. Searching in Models
	6.7.1. Variant Search
	Search String
	Search Type
	Limit To
	Element Scope
	Attribute Scope
	Scope
	Search Results

	6.7.2. Quick Overview

	6.8. Analyse Models
	6.8.1. Finding variant description models with similar selections
	Finding variant description models similar to one base vdm
	Calculating similarity between multiple variant description models

	6.8.2. Finding variant description models with the same selection
	6.8.3. Find elements with the same selection states in all variant description models
	6.8.4. Find constant and variable elements in all variant description models

	6.9. Filtering Models
	6.10. Computing Model Metrics
	6.11. Extending the Type Model
	6.12. Using Multiple Languages in Models
	6.13. Importing and Exporting Models
	6.13.1. Exporting Models
	HTML Export
	HTML Transformation Module

	Directed Graph Export

	6.13.2. Importing Models
	User-defined import manipulator with JavaScript

	6.14. External Build Support (Ant Tasks)
	6.14.1. pv.import
	6.14.2. pv.evaluate
	6.14.3. pv.transform
	6.14.4. pv.validate
	6.14.5. pv.inherit
	6.14.6. pv.connect
	6.14.7. pv.sync
	6.14.8. pv.syntaxsemanitccheck
	6.14.9. pv.mergeselection
	6.14.10. pv.javascript
	6.14.11. pv.offline
	6.14.12. pv.online
	6.14.13. pv.userrolesync
	6.14.14. pv.property
	6.14.15. pv.about

	6.15. Linking between pure::variants and external resources
	6.16. Manipulating Text Files
	6.16.1. Setting Up the Transformation
	6.16.2. Editing Conditions and Calculations in Text Files

	6.17. Using Known Servers Preferences
	6.17.1. Central deployment mechanism of servers

	6.18. Convert a pure::variants 4 project into a pure::variants 5 project
	6.19. Customizing the Variant Configuration Process
	6.19.1. Creating a Variant Configuration Wizard Model
	Adding the Variant Configuration Wizard Model to a Configuration Space
	6.19.2. Configure a Variant Configuration Wizard Model

	Chapter 7. Graphical User Interface
	7.1. Getting Started with Eclipse
	7.2. Variant Management Perspective
	7.3. Editors
	7.3.1. Common Editor Pages
	Tree Editing Page
	Table Editing Page
	Constraints Editing Page
	Graph Visualization Page
	Graph Elements
	Graph Layout
	Graph Editing
	Graph Printing

	Element Properties Dialog
	General Page
	Relations Page
	Attributes Page
	Restrictions Page
	Constraints Page
	Advanced Expression Editor

	Element Selection Dialog

	7.3.2. Feature Model Editor
	Creating and Changing Features
	Changing feature properties

	7.3.3. Family Model Editor
	7.3.4. Variant Description Model Editor
	Element Selection
	Guided Variant Configuration
	Attribute Overriding
	Element Selection Outline View

	7.3.5. Variant Result Model Editor
	7.3.6. Model Compare Editor
	7.3.7. Matrix Editor

	7.4. Views
	7.4.1. Attributes View
	7.4.2. Visualization View
	7.4.3. Search View
	7.4.4. Outline View
	7.4.5. Problem View/Task View
	7.4.6. Properties View
	7.4.7. Relations View
	7.4.8. Result View
	Result Delta Mode

	7.4.9. Impact View
	7.4.10. pvSCL IDE
	7.4.11. Variant Projects View

	7.5. Model Properties
	7.5.1. Common Properties Page
	7.5.2. General Properties Page
	7.5.3. Inheritance Page

	Chapter 8. Additional pure::variants Extensions
	8.1. Installation of Additional pure::variants Extensions

	Chapter 9. Reference
	9.1. Element Attribute Types
	9.2. Element Relation Types
	9.3. Element Variation Types
	9.4. Element Selection Types
	9.5. Predefined Source Element Types
	9.5.1. ps:dir
	9.5.2. ps:file
	9.5.3. ps:fragment
	9.5.4. ps:condxml
	9.5.5. ps:condtext
	9.5.6. ps:pvsclxml
	9.5.7. ps:pvscltext
	9.5.8. ps:flagfile
	9.5.9. ps:makefile
	9.5.10. ps:classaliasfile
	9.5.11. ps:symlink

	9.6. Predefined Part Element Types
	9.6.1. ps:classalias
	9.6.2. ps:class
	9.6.3. ps:flag
	9.6.4. ps:variable
	9.6.5. ps:feature

	9.7. Expression Language pvSCL
	9.7.1. How to read this reference
	9.7.2. Comments
	9.7.3. Boolean Values
	9.7.4. Numbers
	9.7.5. Strings
	9.7.6. Collections
	9.7.7. SELF and CONTEXT
	9.7.8. Name and ID References
	9.7.9. Element Selection State Check
	9.7.10. Attribute Access
	9.7.11. Logical Combinations
	9.7.12. Relations
	9.7.13. Conditionals
	9.7.14. Value Comparison
	9.7.15. Arithmetics
	9.7.16. Variable Declarations
	9.7.17. Function Definitions
	9.7.18. Function Calls
	9.7.19. Iterators
	9.7.20. Accumulators
	9.7.21. Error Handling
	9.7.22. Limitations
	Depth of syntax tree
	Depth of recursive operation calls

	9.7.23. Function Library
	pv:Abs()
	pv:Acos()
	pv:AllChildren()
	pv:Append(expr)
	pv:AppendAll(collection)
	pv:Asin()
	pv:AsList()
	pv:AsSet()
	pv:Atan()
	pv:Attribute(name)
	pv:Attributes(), pv:Attributes('type')
	pv:Characters()
	pv:Child(index)
	pv:Children()
	pv:ChildrenByState(state), pv:ChildrenByState(state,selector)
	pv:Class()
	pv:Collect(iterator)
	pv:Contains(expr)
	pv:ContainsAll(collection)
	pv:Cos()
	pv:Date()
	pv:DefaultSelected()
	pv:Element(name-or-id)
	pv:EvaluationDateTime()
	pv:EvaluationIsPartial()
	pv:ExclusionHint(message,element), pv:SelectionHint(message,element,force)
	pv:Exp()
	pv:Fail(message), pv:Fail(message,element)
	pv:Flatten()
	pv:Floor()
	pv:ForAll(iterator)
	pv:Format(format)
	pv:Get(), pv:Get(index)
	pv:HasAttribute(name)
	pv:HasElement(name-or-id)
	pv:HasModel(name-or-id)
	pv:ID()
	pv:IndexOf(string-or-collection)
	pv:Inform(message), pv:Inform(message,element)
	pv:Insert(index,item)
	pv:InsertAll(index,collection)
	pv:IsContainer()
	pv:IsFixed()
	pv:IsInheritable()
	pv:IsKindOf(type)
	pv:Item(index)
	pv:Iterate(accumulator)
	pv:Log()
	pv:Log10()
	pv:Max(), pv:Max(number)
	pv:Min(), pv:Min(number)
	pv:Mod(divisor)
	pv:Model(), pv:Model(name-or-id)
	pv:Models(), pv:Models(type)
	pv:Name()
	pv:Parent()
	pv:Pow(exponent)
	pv:Prepend(expr)
	pv:PrependAll(collection)
	pv:PVVersion()
	pv:Relations(), pv:Relations(type)
	pv:Remove(item), pv:Remove(begin,end)
	pv:RemoveAll(collection)
	pv:RetainAll(collection)
	pv:Reverse()
	pv:RootElement()
	pv:Round()
	pv:Select(iterator)
	pv:Selected()
	pv:SelectedChildren(), pv:SelectedChildren(type)
	pv:SelectionHint(message,element), pv:SelectionHint(message,element,force)
	pv:SelectionState()
	pv:Selector()
	pv:Sin()
	pv:Size()
	pv:Sort()
	pv:Sqrt()
	pv:SubList(begin), pv:SubList(begin,end)
	pv:SubString(begin), pv:SubString(begin,end)
	pv:SubTree()
	pv:Sum()
	pv:Tan()
	pv:Target(index)
	pv:Targets()
	pv:Time()
	pv:ToDate()
	pv:ToDateTime()
	pv:ToFloat()
	pv:ToLowerCase()
	pv:ToString(), pv:ToString(delimiter), pv:ToString(delimiter,last delimiter)
	pv:ToTime()
	pv:ToUpperCase()
	pv:Truncate()
	pv:Type()
	pv:VariationType()
	pv:VName(), pv:VName(language)
	pv:Warn(message), pv:Warn(message,element)

	9.7.24. User-Defined pvSCL Functions

	9.8. XSLT Extension Functions
	9.9. Predefined Variables
	9.10. Regular Expressions
	9.10.1. Characters
	9.10.2. Character Sequences
	9.10.3. Repetition
	9.10.4. Alternation
	9.10.5. Grouping
	9.10.6. Boundaries
	9.10.7. Back References

	9.11. Keyboard Shortcuts
	9.12. Naming Restrictions
	9.12.1. Project Name
	9.12.2. Folder Name
	9.12.3. Config Space Name
	9.12.4. Model Name
	9.12.5. Revision Name

	Chapter 10. Appendices
	10.1. Software Configuration
	10.2. User Interface Advanced Concepts
	10.2.1. Console View

	10.3. Glossary

	Index

