
OVS-KSelftest: A new way to test the
kernel module

Aaron Conole <aconole@redhat.com>
November 8, 2022

Introduction

OVS has two different datapaths
netdev
netlink

Netlink datapath
decoupled from ’main’ ovs development

Netlink: less attention from the community
Different tree, maintainers, etc.

What is netlink datapath

The ’kernel datapath’
Controlled via netlink messages from userspace (get it?)

In-tree for kernel
developed on the netdev list
Accepted in 2011 (mature)

Recently removed from ovs tree
Most development for kernel side needs to start in kernel ML
anyway

How do we interact with it?

Primarily via the vswitchd
There exists one utility - ovs-dpctl (disadvantages though)
ovs-appctl dpctl/... is just a front-end via ovs-vswitchd

All kernel side testing is contained in ovs tree testsuite
make check-kernel

Issues with existing approach

Upstream changes are difficult to vet
Kernel maintainers can’t be expected to be running all of the
userspace utilities
Even individual developers can sometimes make changes
without really knowing if they’ve broken things

Having a test infrastructure that relies on ovs userspace
insalls is somewhat error prone

Difficult to get folks to install and run the tests
Upstream maintainers test from lots of subsystems

The approach

Create a new utility that can be included in kernel tree
Should not be coupled to the OVS userspace (minimize
dependency)
Should be able to run in an automated fashion to test changes

Utility should be easy to extended and use
Chose python over C because it is easier for extending
Performance isn’t as critical as correctness

Initial version of dpctl utility accepted

Current limitations
Only creates / displays the DP right now
Output format is close to the ovs-dpctl format

Already included a test
Used to trap a specific error condition related to a WARN()
call
Can also do some feature bit settings

Initial test harness

dpctl utility isn’t the only thing
Shell script that creates namespaces, interfaces, and datapaths
Has hooks to save traffic and log commands, etc.
Detects missing python libraries, and modules

Future work
Adding the ability to push / dump flows during testing
More introspection would be great

Running the suite

Easy to do
$ sudo make TARGETS=net/openvswitch kselftest

With a current kernel tree

Adding some test

simple test case
function test_addingflow() {

sbx_add "test_addingflow" || return 1
info "setting up some DPs"
ovs_add_dp "test_addingflow" af0 || return 1
ovs_add_netns_and_veths "test_addingflow" af0 \

left left0 l0 || return 1

ovs_add_flow "test_addingflow" af0 \
"in_port(1),eth(),eth_type(0x800)" \
"drop" || return 1

return 0
}

Adding some test (cont”d)

adding to the harness
@@ -11,7 +11,8 @@ VERBOSE=0
TRACING=0

tests="
- netlink_checks ovsnl: validate netlink attrs and settings"
+ netlink_checks ovsnl: validate netlink attrs and settings
+ addingflow ovsnl: add a flow"

info() {
[$VERBOSE = 0] || echo $*

Future work - current patches to be
submitted

dpctl utility
Configure interfaces to the datapath
Add some static flows

Test harness script
Do some testing for various actions, including nested actions
Testing upcalls as well

Future work - ovs tree

Deprecation?
deprecate the in-tree ovs-dpctl utility
We would much prefer ovs-appctl dpctl/... since it won’t
reconfigure the datapath

Upstream
‘pyroute2‘ could be extended with the internal classes from our
utility
Would make other projects able to integrate to the kernel side
easier

Additional
At least share some of this with Adrian Moreno’s tracing and
monitoring work

