
Revalidator Tracepoint 
Implementation in Open vSwitch

Kevin Sprague



What is eBPF?

● (Over)simply: Event-based way for users to run custom code in kernel or applications
● 4 (main) types of attach points, along two axes

● Everything bpf-related is privilege-enforced by default
● Verifier ensures that eBPF program is “safe” 1

● Multiple development frameworks 2

Kernel Userspace

Dynamic Kprobe Uprobe

Static Tracepoint USDT



The Revalidator 3,4

● The revalidator is Open vSwitch’s garbage collector.
● Two phases: dump/mark and sweep.

1. Each flow gets a udpif_key (ukey) containing its most recent statistics
2. Revalidator walks through the list, “bad” flows are deleted.

● Flows are deleted silently.
● Revalidator code is in ofproto/ofproto-dpif-upcall.c



Dump/Mark Phase

Flow: x, last used: t1, etc.

Flow: y, last used: t2, etc.

Flow: z, last used: never, etc.

Ukey cache

Key made, Flow added



Sweep Phase

Key: x, Last used: t1, etc.

Key: y, Last use: t2, etc.

Key: z, last use: t3, etc.

Ukey Cache

Is this flow still good? Still in use?

Is this flow still good? Still in use?

Is this flow still good? Still in use?



Why add these probes?

● Tools existed to know about flow creation.
● No tools for flow deletion.
● No way to know when/why a flow was deleted.



How did I implement this?

1. Installed patch that used syslogs to monitor revalidator
2. Used this to create initial USDT probes and scripts
3. Worked with Aaron to refine information captured
4. eBPF and structs are a bit tricky

- Can’t just do #include “ofproto-dpif-upcall.h”
5. Created scripts to watch revalidator deletions

OVS_USDT_PROBE(revalidate, flow_result, reason, udpif, ukey);



● How many flows are created/deleted when we run each series of commands?
● What happens if we call dump-flows twice?
● Is this information correct? 

An Example



Results

Quick Demo



Going Further

● There’s a kernel tracepoint called ovs_dp_upcall
● Can we write a script to watch flows from here all the way to deletion?
● Potential issues: 

○ Kernel tracepoint has different fields, before UFID assignment
○ Can we map these fields to the userspace probes?

Let’s try it![5]



Flows from birth to death

Demo



Future Work

● At least two new patchsets since August using eBPF probes
● Would love to explore using eBPF for more than monitoring



Questions?

Thank you for having me!



eBPF logo from ebpf.io
BCC logo from https://github.com/iovisor/bcc 
[1]: 
https://media.defcon.org/DEF%20CON%2029/DEF%20CON%2029%20presentations/PatH%2
0-%20Warping%20Reality%20-%20creating%20and%20countering%20the%20next%20generati
on%20of%20Linux%20rootkits%20using%20eBPF.pdf 
[2]: https://ebpf.io/infrastructure
[3]: https://www.openvswitch.org/support/ovscon2014/18/1230-revaliwhat.pdf
[4]: 
https://developers.redhat.com/articles/2022/10/19/open-vswitch-revalidator-process-explai
ned 
[5]: https://github.com/kevinsprague/ovscon-scripts/blob/main/trace_flows.bt 

https://github.com/iovisor/bcc
https://media.defcon.org/DEF%20CON%2029/DEF%20CON%2029%20presentations/PatH%20-%20Warping%20Reality%20-%20creating%20and%20countering%20the%20next%20generation%20of%20Linux%20rootkits%20using%20eBPF.pdf
https://media.defcon.org/DEF%20CON%2029/DEF%20CON%2029%20presentations/PatH%20-%20Warping%20Reality%20-%20creating%20and%20countering%20the%20next%20generation%20of%20Linux%20rootkits%20using%20eBPF.pdf
https://media.defcon.org/DEF%20CON%2029/DEF%20CON%2029%20presentations/PatH%20-%20Warping%20Reality%20-%20creating%20and%20countering%20the%20next%20generation%20of%20Linux%20rootkits%20using%20eBPF.pdf
https://ebpf.io/infrastructure
https://www.openvswitch.org/support/ovscon2014/18/1230-revaliwhat.pdf
https://developers.redhat.com/articles/2022/10/19/open-vswitch-revalidator-process-explained
https://developers.redhat.com/articles/2022/10/19/open-vswitch-revalidator-process-explained
https://github.com/kevinsprague/ovscon-scripts/blob/main/trace_flows.bt

