Revalidator Tracepoint
Implementation in Open vSwitch

Kevin Sprague



What is eBPF?

e (Over)simply: Event-based way for users to run custom code in kernel or applications
e 4 (main) types of attach points, along two axes

Kernel Userspace
Dynamic Kprobe Uprobe
Static Tracepoint | USDT

e Everything bpf-related is privilege-enforced by default
Verifier ensures that eBPF program is “safe”
e Multiple development frameworks 2



The Revalidator 3

e The revalidator is Open vSwitch’'s garbage collector.

e Two phases: dump/mark and sweep.
1. Each flow gets a udpif_key (ukey) containing its most recent statistics
2. Revalidator walks through the list, “bad” flows are deleted.

e Flows are deleted silently.

e Revalidator codeisin ofproto/ofproto-dpif-upcall.c



Dump/Mark Phase

/ Ukey cache

oY

Flow: x, last used: t,, etc.

Flow: y, last used: t,, etc.

&

made, Flow added

/

Flow: z, last used: never, etc.




Sweep Phase

/ Ukey Cache

~

Key: x, Last used: t,, etc.

Key: y, Last use: t,, etc.

Key: z, last use: t., etc.

&

Is this flow still good? Still in use?

Is this flow still good? Still in use?

Is this flow still good? Still in use?




Why add these probes?

e Tools existed to know about flow creation.
e No tools for flow deletion.
e No way to know when/why a flow was deleted.



How did | implement this?

Installed patch that used syslogs to monitor revalidator
Used this to create initial USDT probes and scripts
Worked with Aaron to refine information captured
eBPF and structs are a bit tricky
- Cantjustdo #include “ofproto-dpif-upcall.h”
5. Created scripts to watch revalidator deletions

S Y =

OVS USDT PROBE (revalidate, flow result, reason, udpif, ukey);



An Example

e How many flows are created/deleted when we run each series of commands?
: ) o
e What happens if we call dump-flows twice* ip link set veth_purple br down

e Isthis information correct? | ip link set veth_purple_br up
ovs-appctl dpctl/dump-flows -m

ip link set brl down
ip link set brl up
ovs-appctl dpctl/dump-flows -m

netns: yellow

ip link set ovs-system down

ip address: ip link set ovs-system up
192.168.10.35 ovs-appctl dpctl/dump-flows -m




Quick Demo



Going Further

e There's a kernel tracepoint called ovs dp upcall
e Can we write a script to watch flows from here all the way to deletion?
e Potential issues:

o Kernel tracepoint has different fields, before UFID assignment

o Can we map these fields to the userspace probes?

Let’s try it!l®



Flows from birth to death

Demo



Future Work

e At least two new patchsets since August using eBPF probes
e Would love to explore using eBPF for more than monitoring



Questions?

Thank you for having me!



eBPF logo from ebpf.io
BCC logo from https://qgithub.com/iovisor/bcc

[1]:
https://media.defcon.org/DEF%20CON%2029/DEF%20CON%2029%20presentations/PatH%2
0-%20Warping%20Reality%20-%20creating%20and%20countering%20the%20next%20generati
on%200f%20Linux%20rootkits%20using%20eBPF.pdf

[2]: https://ebpf.io/infrastructure

[3]: https://www.openvswitch.org/support/ovscon2014/18/1230-revaliwhat.pdf

[4]:
https://developers.redhat.com/articles/2022/10/19/open-vswitch-revalidator-process-explai
ned

[5]: https:/github.com/kevinsprague/ovscon-scripts/blob/main/trace_flows.bt



https://github.com/iovisor/bcc
https://media.defcon.org/DEF%20CON%2029/DEF%20CON%2029%20presentations/PatH%20-%20Warping%20Reality%20-%20creating%20and%20countering%20the%20next%20generation%20of%20Linux%20rootkits%20using%20eBPF.pdf
https://media.defcon.org/DEF%20CON%2029/DEF%20CON%2029%20presentations/PatH%20-%20Warping%20Reality%20-%20creating%20and%20countering%20the%20next%20generation%20of%20Linux%20rootkits%20using%20eBPF.pdf
https://media.defcon.org/DEF%20CON%2029/DEF%20CON%2029%20presentations/PatH%20-%20Warping%20Reality%20-%20creating%20and%20countering%20the%20next%20generation%20of%20Linux%20rootkits%20using%20eBPF.pdf
https://ebpf.io/infrastructure
https://www.openvswitch.org/support/ovscon2014/18/1230-revaliwhat.pdf
https://developers.redhat.com/articles/2022/10/19/open-vswitch-revalidator-process-explained
https://developers.redhat.com/articles/2022/10/19/open-vswitch-revalidator-process-explained
https://github.com/kevinsprague/ovscon-scripts/blob/main/trace_flows.bt

