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What is eBPF?

e (Over)simply: Event-based way for users to run custom code in kernel or applications
e 4 (main) types of attach points, along two axes

Kernel Userspace
Dynamic Kprobe Uprobe
Static Tracepoint | USDT

e Everything bpf-related is privilege-enforced by default
Verifier ensures that eBPF program is “safe”
e Multiple development frameworks 2



The Revalidator 3

e The revalidator is Open vSwitch’'s garbage collector.

e Two phases: dump/mark and sweep.
1. Each flow gets a udpif_key (ukey) containing its most recent statistics
2. Revalidator walks through the list, “bad” flows are deleted.

e Flows are deleted silently.

e Revalidator codeisin ofproto/ofproto-dpif-upcall.c



Dump/Mark Phase
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Sweep Phase
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Key: x, Last used: t,, etc.
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Is this flow still good? Still in use?

Is this flow still good? Still in use?

Is this flow still good? Still in use?




Why add these probes?

e Tools existed to know about flow creation.
e No tools for flow deletion.
e No way to know when/why a flow was deleted.



How did | implement this?

Installed patch that used syslogs to monitor revalidator
Used this to create initial USDT probes and scripts
Worked with Aaron to refine information captured
eBPF and structs are a bit tricky
- Cantjustdo #include “ofproto-dpif-upcall.h”
5. Created scripts to watch revalidator deletions

S Y =

OVS USDT PROBE (revalidate, flow result, reason, udpif, ukey);



An Example

e How many flows are created/deleted when we run each series of commands?
: ) o
e What happens if we call dump-flows twice* ip link set veth_purple br down

e Isthis information correct? | ip link set veth_purple_br up
ovs-appctl dpctl/dump-flows -m

ip link set brl down
ip link set brl up
ovs-appctl dpctl/dump-flows -m

netns: yellow

ip link set ovs-system down

ip address: ip link set ovs-system up
192.168.10.35 ovs-appctl dpctl/dump-flows -m




Quick Demo



Going Further

e There's a kernel tracepoint called ovs dp upcall
e Can we write a script to watch flows from here all the way to deletion?
e Potential issues:

o Kernel tracepoint has different fields, before UFID assignment

o Can we map these fields to the userspace probes?

Let’s try it!l®



Flows from birth to death

Demo



Future Work

e At least two new patchsets since August using eBPF probes
e Would love to explore using eBPF for more than monitoring



Questions?

Thank you for having me!



eBPF logo from ebpf.io
BCC logo from https://qgithub.com/iovisor/bcc
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