
Container Networking Solutions 

Anjali Singhai Jain, Nupur Jain, Intel



Network Platforms Group

Notices & Disclaimers 

Performance varies by use, configuration and other factors. Learn more at 
www.Intel.com/PerformanceIndex.    

Performance results are based on testing as of dates shown in configurations and may not 
reflect all publicly available updates. See backup for configuration details. No product or 
component can be absolutely secure. 

Your costs and results may vary. 

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel 
Corporation or its subsidiaries. Other names and brands may be claimed as the property of 
others. 

http://www.intel.com/PerformanceIndex


Network Platforms Group

Agenda

Introduction

▪ Container Network Functions & Interfaces

▪ Limitations

▪ Container Interface Classifier

▪ Community Solutions

▪ Our Proposed Solution

▪ Consolidation

Functionality Offload

▪ P4 Sample -Kubeproxy

▪ P4 Connection tracking

▪ P4 L4-L7 Classifier



Network Platforms Group

Container Networking

Router/gateway
10.50.0.1

Destination    next hop
10.0.1.0/24     10.50.0.2
10.0.2.0/24    10.50.0.3
10.0.3.0/24    10.50.0.4

eth0
10.50.0.3

cbr0
10.0.2.1

Server
POD

Client
POD

Veth0
10.0.2.2

Veth1
10.0.2.3

eth0
10.50.0.2

cbr0
10.0.1.1

Server 
POD

Client
POD

Veth0
10.0.1.2

Veth1
10.0.1.3

3. Node: LB, DNAT, CT

eth0
10.50.0.4

cbr0
10.0.3.1

Server 
POD

Client
POD

Veth0
10.0.3.2

Veth1
10.0.3.3

Dest
10.3.241.152
Port : 8080

netfilter

Kube-proxy

netfilter

Kube-proxy

netfilter

Kube-proxy

C
1

C
2Pause

4. L4-L7 classifier

Dest
10.3.241.152
Port: 3390

C
1

C
2

1. Edge Router & LB

2. Cluster Router

5. Container Interface

Client



Network Platforms Group

Current State of Deployment

Need for Scale
CSP Container 
Scale Needed
~10K

Device performance
Throughput, 
Programmability, 
Resource Scaling
has increased 
significantly

Effective 
utilization
of the system 
resources (cores, 
memory, network) 
to improve 
performance and 
packing of 
containers

Ideal
Container 
Network
Solution



Network Platforms Group

5. Existing interfaces for containers

Shared  (Pod Interfaces)

• Stacked netdevs on a PCIe PF 
netdev

• Assigned to container 
namespaces

• Examples : MACVLAN, IPVLAN, 
bridge

Dedicated (Pod Interfaces)

• SR-IOV VFs

•Too heavy
•Separate PCIE config 

space
•HW based packet 

replication for broadcast, 
multicast – higher PCI 
BW utilization



Network Platforms Group

Why Hardware Accelerate ?

End to end Maximize throughput 

▪ Avoid the SW long path which limits how much a Server Pod can handle.

End to end Native Scale out

▪ By Reducing Latency and Jitter introduced by kernel to user context 
switch in present AF_XDP memory model.

▪ Dedicated resources takes away the need for OS to schedule on a shared 
resource. OS overhead for managing resources is gone.

– CPU scheduling, memory management etc.

Security & Isolation

▪ Queue level isolation.



Network Platforms Group

Assignable Container interfaces using X-IOV (S-IOV)  & 
User Interrupts

IOMMU FNIC/SNIC

Intel
IOMMU Driver

Iov-dev

vDCM Module NET CORE 
MODULE

mdev
subdev

netdev netdev netdev

AF_XDP
Passthrough

socket

AF_XDP
Passthrough

Socket

VM1VM2

DP 
driver

DP 
driver

DP 
driver

AF_XDP
Sub
Dev

Driver

PASID1 PASID2

PASID3 PASID4
AF_XDP

Sub
Dev

Driver

IOMMU
Subsystem

*RID = Requester ID
*PASID = Process Address Space Identifier
*ADI Assignable Device interfaces
SIOV Spec : Reference Number: 337679-001, Revision: 1.0

Hardware Assisted Virtualization

Highly scalable and high- performance sharing 
of I/O devices across isolated domains

Assignable device Interfaces =>User Container 
Interfaces

Platform Scalability using PASID

Support Virtual Device Composition

*RID and *PASID identifies the address space 
associated with the request 

*ADI Memory Mapped regions



Network Platforms Group

4. Container Interface Classifier: Solution

• L4-L7 Classifier and forwarder in the HW

• This extends the HW Offloaded vSwitch
Classification End Point to the Container 
Interface.

Option1: HW Offload the classifier & forwarder

▪ AF_XDP raw_socket bound to a HW vPort/QP through Side band filters.

▪ Provide inline filters to be added in HW as part of TX packet.

– ATR style in ADQ

Option2: HW Offload the Classifier

▪ Provide a meta data classification hint to kernel/user with a packet.

– Flow mark or a 32bit hash value based on L4-L7 fields.



Network Platforms Group

3. Node: Load Balancer, DNAT, CT

Kube-proxy

▪ Kernel Netfilters - Not performant

▪ Iptables O(n) chains proportional to size of cluster, in-place rule modifications 
not possible. 

▪ IPVS O(1) - hash ipset but do not work well with other services requiring iptables 
for filtering

▪ Kernel with eBF/XDP  - Accelerated

Connection Tracking

▪ Robust to syn floods but limited by max size

▪ No flexibility, fixed hash algorithm and field selection for hash

Kernel Overall not very flexible, latencies due to irq processing, context 
switching, slow API configuration interfaces

Existing Solutions



Network Platforms Group

Community’s Approach - eBPF/XDP

Benefits - Performant than the kernel

Designed as an alternative to DPDK.

Flexibility, code injected into the kernel

Ability to reload programs on-the-fly

Network Functions - Network Policy, Encryption, Load Balancer, Firewall, 
Monitoring etc

Plugins - Cilium, Callico, Katran (facebook), etc

Limitations -

• Not HW offloadable to ASICs.

• Note: Netronome uses NPU general Purpose cores 

• More cores required to scale connections

• Kernel/user space context switching

• General purpose CPUs and Memory architecture is not ideal for Deep table 
Lookup

Solution –

• Purpose built ASICs, purpose -built cores and dedicated Context aware caches 
may be the way to go

TC

eBPF Prog

Maps

Networking Stack

XDP

NIC

NIC Offload Control
Map Hooks PCIe

Kernel

User

Packet + Descriptor + 
meta

Packet + sk_buf

User Prog

Hardware

Perf 
gain

High Perf Hooks



Network Platforms Group

eBPF Implementation – Cilium

No XDP, 2 CLV interfaces

Fortio + Nginx Client 1 Client 2 Total

100B 47578.6 50411.5 97990.1

1500B 46174.4 49990.4 96164.8

XDP, 1 CLV interface

Fortio + Nginx Client 1 Client 2 Total

100B 64038.7 53970 118008.7

1500B 49623.5 48369.7 97993.2

• Cilium does connect-time load balancing by hooking into the kernel XDP/TC hook on the 
receive. 

• When a program tries to connect to a Kubernetes service, Cilium intercepts the connection 
attempt, load balances with DNAT’s to directly connect to the backend pod’s IP instead.

No-XDP and XDP performed 
similar with 100,000+ 
connections. CPU consumption 
in both reaches to >8 cores with 
more sessions

We suspect, XDP path based on 
this experiment, does not take 
advantage of  hardware 
XDP_REDIRECT queue designed 
to send packets to another 
interface, hence no significant 
performance gains

Throughput in queries/s – test run with fortio and ngnix. 2 clients, 2 
NodePort IPs, 2 backend Pods per NodePort



Network Platforms Group

Our Approach – The Whole Datapath
*Programmable MAT tables. 
Contract between control 
plane and data plane for 
runtime control

*Device capability defined by 
architecture. Eg. wildcard 
match -TCAM, Exact match-
SRAM. Compiler responsible 
for mapping.

*Parallel lookups, 
conditional actions & 
atomicity

*Features are defined in the 
software. Faster 
introduction, verification, 
test and deployment.

*Programmer defined 1) 
parse graph; headers and 
orders. 2) Packet 
modifications

*Counters, meters, stateful 
registers, hash functions, 
ALU, TTLs, PRE

Decrypt (tunnel)

L3DecTTL IngressACL Vport select Counters/Meters

Classifier
ARP Responder/

Spoofcheck
Conntrack Table

LB /DNAT
EgressACL

L2/L3 Switch/Route

Deparse

Parse
Port/tunnel/Local

Recirculate

PODS

Network Plugin: CNI 
(client)

Device Plugin

Device Plugin

  ListWatch() Register()/Allocate()

net0

Device drivers/
SRIOV/SIOV

Agent (server)

Adaptation 
Layer + watchers

Runtime APIs

Platform Drivers

P4runtime .proto

        

        cni config->
p4Info(.json) /

p4blob

Entities/Config 
Cluster networking

Kubelet  (node/minion)

DaemonSet

controller

Kubernetes API

        

        

        

Entities/Config
Node/Infra Level

L2/L3 Switch/Route

ECMP/LAG

Infra Agent

Infra controller

Encap(tunnel)/
nextHop - gateway

Intel I/O Acceleration 
Technology

Programmable Pipeline

eBPF/XDP User Programs:
User BPF programs converted to P4 programs 
with mappings to p4 tables
Adaptation – BPF MAPS (runtime)- > to p4 table/registers
Metadata – Identifies eBPF reinject or re-circulation
Compiler backend – Remove loops, check offsets are within 
memory range



Network Platforms Group

Node LB Data Plane P4

Router
ECMP

G1
G2
G3
,
.

Gn

Node G1

Node G3

CT + 
LoadBalancer + 

DNAT

m1

m2



Network Platforms Group

CT P4 Data Plane



Network Platforms Group

L4-L7 P4 Classifier

Node G1

L4-L7 Classifier
To Container 

Socket

Pod1

Socket1

Socket2

Socket3

Pod2



Network Platforms Group

Opens

• Not every eBPF program can be HW offloaded as is. We are looking at all 
use cases.

• We would like to get community support in converting some well 
defined XDP implementations to p4 programs.

• P4 extensions or externs is an option for complete packet 
transformations like Crypto, checksum, packet replication etc.



Network Platforms Group

Standard 
Container 

Control Plane 
SW SW to support

FNIC/SNIC HW to 
provide

Container 
Networking offload 

Through 
Programmable DP

SW support for
Platform

Light-Weight 
Virtualization

Enhanced SW 
Container & Pod

Interfaces

Conclusion:
Components for Native Scale out of Container Networking

Components
Standard (No Change)

Need SW Enhancements to 
benefit from HW



Network Platforms Group

Contacts

P4 Code will be on github soon…

Please email for more info…

Contacts: Anjali Singhai Jain anjali.singhai@intel.com

Nupur Jain nupur.jain@intel.com

Intel Container Networking Team: 

Anjali Singhai Jain, 
Nupur Jain, 
Amritha Nambiar, 
Pawel Szymanski,
Shaopeng He, 
Phani Burra,

Dan Daly,
Yadong Li, 
Sridhar Samudrala, 
Kiran Patil,
Liang Cunming ,
Edwin Verplanke

mailto:anjali.singhai@intel.com
mailto:nupur.jain@intel.com


Network Platforms Group

eBPF Implementation Characterization – Cilium

Stack trace (NO XDP)

• XDP vs No XDP, CPU utilization is quite similar
• Benefits of XDP is being able to bypass the kernel stack in case of 

redirect.
• Redirect to external port requires dedicate HW Redirect TX queue.
• XDP Benefits can be derived from dedicated HW resources.

[Unknown] 28.626s 52,704,500,000

  [Outside any known module]28.626s 52,704,500,000

    cls_bpf_classify 17.400s 29,923,000,000

    ↖ bpf_prog_run_xdp ← ice_run_xdp ← ice_clean_rx_irq ← ice_napi_poll ← napi_poll ← net_rx_action ← __do_softirq8.194s 21,148,500,000

    ↖ __tcf_classify ← tcf_classify_ingress ← sch_handle_ingress ← __netif_receive_skb_core1.463s 609,500,000

    ↖ __tcf_classify ← tcf_classify ← sch_handle_egress ← __dev_queue_xmit ← dev_queue_xmit1.273s 621,000,000

    ↖ ice_napi_poll ← napi_poll ← net_rx_action ← __do_softirq ← asm_call_on_stack ← __run_on_irqstack ← run_on_irqstack_cond ← do_softirq_own_stack0.236s 322,000,000

    [Unknown] 0.035s 23,000,000

    func@0x79fe60 0.015s 11,500,000

    ↖ func@0x7a19d5 ← func@0x79f510 ← func@0x79fbe0 ← func@0x79fbc0 ← start_thread ← clone0.005s 0

    func@0x3527ee1 0.005s 34,500,000

    ↖ func@0x7a0570 ← func@0x7a0ce0 ← func@0x79f510 ← func@0x79fbe0 ← func@0x79fbc0 ← start_thread ← clone0s 11,500,000

ice.ko 25.519s 26,553,500,000

ip_tables.ko 17.896s 32,798,000,000

libc-2.13.so 11.096s 22,482,500,000

containerd-shim 7.943s 12,788,000,000

cls_bpf.ko 7.367s 8,533,000,000

Stack trace (XDP)

vmlinux 615.317s

nginx 55.704s

[Unknown] 24.101s

  [Outside any known module] 24.101s

    cls_bpf_classify 21.866s

    ↖ __tcf_classify ← tcf_classify_ingress ← sch_handle_ingress ← __netif_receive_skb_core1.173s

    ↖ __tcf_classify ← tcf_classify ← sch_handle_egress ← __dev_queue_xmit ← dev_queue_xmit1.042s

    [Unknown] 0.020s

    ↖ func@0x7a5bd4 ← func@0x79f510 ← func@0x79fbe0 ← func@0x79fbc0 ← start_thread ← clone0s

    func@0x7a0570 0s

    func@0x3527ee1 0s

ice.ko 23.259s

ip_tables.ko 20.728s

libc-2.13.so 11.371s

amplxe-perf 8.445s

cls_bpf.ko 8.339s

containerd-shim 8.209s



Network Platforms Group

eBPF Implementation Characterization – Cilium - cont

Cilium chains in iptables Cilium’s own conntrack table



Network Platforms Group

Q&A




