
OvS Offload Layer Design Challenges
Hemal V. Shah, Distinguished Engineer and Architect, Broadcom Inc.

Sriharsha Basavapatna, Principal Software Engineer, Broadcom Inc.

December 8-9, 2020

• OvS Offload Layer
• OvS Offload Capabilities
• OvS Offload Registration
• OvS-DPDK Offload Thread Model Issues
• Tunnel Decap Design Challenges
• OvS-DPDK Partial Action Offload Design Challenges
• Differences between User Mode and Kernel Mode Offload Data Paths
• Summary

Agenda

Control PathControl Path

OvS Offload Layer

• Implements control path for flow offloads
• Device agnostic
• Hidden from ofproto layer

• Split in generic and provider sub-layers
• Enables multiple NIC flow offload APIs
• Flow APIs registered by specific provider
• Two subsets of flow APIs:

 Put, Delete, and Stat APIs for a specific flow
 Create, Destroy, etc. APIs for flow dumps

Data PathData Path
Challenges with this layer – Focus of this talk

• Match Fields and Actions supported by a device can’t be expressed
• DPDK provides rte_flow_validate()

 But needs an additional trip to the device for every flow offload
 OvS currently does not use rte_flow_validate()

• Kernel TC Flower does not have equivalent of rte_flow_validate()

• OvS Offload layer can be optimized to support device flow offload capabilities
 Could be a simple bitmask of match and actions supported
 Exported by each offload capable device
 Offload layer can use this bitmap before offloading to a device

OvS Offload Capabilities

OvS Offload Capabilities Discovery and Usage can Improve Efficiency

• Each provider (e.g. netdev-offload-dpdk) registers a DP specific flow_api object
• Registration is done at the time of offload provider initialization
• flow_api object is added to a global list of registered flow APIs
• At the time of netdev creation, the corresponding flow APIs are initialized

• Issues
– Assumes every eth device supports flow-api

– No device (PMD) specific check

– If ‘hw-offload’ enabled in OVS, offload attempted on any eth_dev attached to OVS

OvS Offload Registration

Room for Optimizing OvS Offload Registration

• PMD threads process packets, handle DP misses, OF classification

• Offload request is deferred to an offload thread

• Scheduling latency is involved in running the offload thread

• N PMD-threads : 1-offload-thread (serialization across multiple devices)

• Lack of offload error propagation back to PMD threads due to this model

• Lack of infra to share data and synchronize DP and offload threads

OvS-DPDK Offload Layer Thread Model Issues

Concurrency and Synchronization can Improve Offload Layer Thread Model

Tunnel Decapsulation HW-Offload Sequence

VFPF

VM

Offload-DPDK

User-Datapath

rte_flow rte_eth0
rte_eth1
(vf-rep)

OVS

PMD

NIC

OF-Proto

Solid arrows: Pkt sequence

Dotted arrows: Flow sequence

vxlan_vport

1

2

34

5

6

78

9

1014

13 16

15

18

12

11

17

• Diagram shows ingress packet/flow sequence

• Solid arrows: packet traversal; dotted arrows: flow processing

• (1) First tunneled packet from the wire received by the PMD (via upink/PF)

• (2) Packet is received by OVS datapath (when OVS polls PF)

• (3) No datapath rule (flow miss); upcall made to classify the packet

• (4) Ofproto classifies the packet; creates a datapth rule with actions

• (5) Datapath rule/action executed

– tnl_pop() and recirculate the packet to tunnel port

• (6) Packet is received by OVS datapath (in the ctx of VXLAN vPort)

• (7) No datapath rule (flow miss); upcall made to classify the packet

• (8) Ofproto classifies the packet; creates a datapth rule with actions

Packet and Flow Processing Sequence Enumerated

• (9) Datapath rule/action executed (forward); packet sent down to the VF-Rep

• (10) VF-Rep transmits packet down to the PF

• (11) PF loops the packet to the VM via the VF

• (12) Datapath adds the flow; initiates an offload request (F2)

• (13) Offload layer issues a rte_flow_create() to the PMD

• (14) PMD programs HW tables

• Control returns back to datapath in the ctx of the PF

• (15) Datapath adds the flow; initiates an offload request (F1)

• (16) Offload layer issues a rte_flow_create() to the PMD

• (17) PMD programs HW tables

• (18) Next packet from the wire decapsulated and sent directly to VM via VF

Packet and Flow Processing Sequence Enumerated

• Tunnel Decap involves two flows and recirculation in OvS
 Flow-F1 (Match: t_dmac, t_dip, t_proto, t_port; Action: Tunnel pop and Output to tunnel port)
 Flow-F2 (Match: t_dip, t_sip, t_id, inner eth, Action: Output to VF-Rep)

• Packet can’t be processed entirely in HW, until both flows are offloaded
• Decap Flow Offload Sequences can be different (F2F1, F1F2, F2 only)

 PMDs can not assume a specific sequence
 PMDs need to internally handle all possible sequences

• Tunnel metadata handling is complex
 OVS SW datapath action is “tnl_pop” for F1, SW DP passes tunnel header as metadata
 HW can’t really pop tunnel header when F1 is offloaded (otherwise it loses tunnel metadata)
 HW miss on F2: Packet couldn’t be decapsulated since there is no F2 in HW (packet hit F1)

• Statistics: Double counting of F1 for F2 miss in HW complicates the design
• Mapping tunnel vPort to Phy port: otherwise F2 is offloaded on all phy ports

Tunnel Decap Offload Issues

OvS Two Bridge Model for Tunnel Processing Makes Tunnel Decap Offload Complicated

• Challenges in extending partial offload infrastructure for action offload

• Partial offload currently supports only classification offload: Flow match

• Partial Action Offload RFC
 Idea is to extend partial offload to support real actions
 Actions like tunnel-encap/decap, vlan push/pop offloaded to HW
 HW classifies + executes specified actions

• Challenges
 Today, partial offload is only supported on the ingress device
 Scenarios that involve a SW ingress, but a HW egress offload are not considered
 Deferred offloading in the context of a separate offload thread creates transient out-of- sync
 PMD threads may continue processing actions after the flow was already offloaded
 Lack of APIs to determine whether a flow is eligible for partial actions offload
 An additional problem with ingress-partial-action is lack of data path assistance

OvS-DPDK Action Offload Challenges

OvS Datapath and Offload Layer Designs are not Amenable to Partial Actions Offload

User/Kernel DP Offload Differences

Inconsistencies between User and Kernel Offloads

Kernel-DP/Offload User-DP/Offload

Handler threads process flow-miss/upcall PMD threads process flow-miss/upcall

Flow added to either DP or offloaded Flow always added to DP and offloaded

Offload attempted first; if fails added to DP Added to DP first and offload scheduled

Offload synchronous; handler thread waits Offload async; dispatched to offload thread

Offl errors returned to initiating thread Offl errors not returned to initiating thread

Dynamic rebalancing supported Dynamic rebalancing unsupported

Single (logical) flow table; no duplicate flows Flow table per-port, per-PMD; offload
handles duplicate flow-add

• OvS Offload Layer Design is Complicated

• Offload Capability and Discovery is primitive

• Serialized Threading Model poses challenges for partial actions offload

• Two bridge model poses significant challenges for tunnel decap offload

• Differences between user and kernel mode offloads need to be reconciled

• Overall, redesign of OvS offload layer should be considered

Summary

