
Enabling asynchronous Para-virtual IO in OVS
Sunil Pai G

Intel

December 2020



VirtIO

• Para-virtual I/O is a virtualization technique to
enhance VM I/O performance.

• VirtIO is a standard of para-virtual I/O, which
consists of VirtIO front-end in VM and backend in
hypervisor.

• Back-end communicates with front-end by copying
packet buffers between hypervisor’s and VM’s
memory 

• Copying large bulk of data between backend and frontend 
becomes a hotspot

src: https://www.dpdk.org/wp-content/uploads/sites/35/2018/12/JiayuHu_Accelerating_paravirtio_with_CBDMA.pdf

https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://www.dpdk.org/wp-content/uploads/sites/35/2018/12/JiayuHu_Accelerating_paravirtio_with_CBDMA.pdf


CPU HW

wait for completion 

CPU HW

Continue working

Asynchronous mode: Synchronous mode: 

Offloading modes:

Offload transfer Offload transfer



DPDK API’s

• rte_vhost_submit_enqueue_burst /* enqueue packets */

• rte_vhost_poll_enqueue_completed /* query send status */

/* operation callbacks */

• struct rte_vhost_async_channel_ops {

transfer_data(…);

check_completed_copies(…);

};

/* tie the callback and threshold to vid, qid pair */

• rte_vhost_async_channel_register

• rte_vhost_async_channel_unregister

• set RTE_VHOST_USER_ASYNC_COPY flag : 

rte_vhost_driver_register

• rte_rawdev_info_get
• rte_rawdev_configure
• rte_rawdev_start

• rte_rawdev_stop

• rte_ioat_enqueue_copy
• rte_ioat_perform_ops

• rte_ioat_completed_ops

HW: Intel® QuickData Technology (QDT) 
(IOAT PMD)

vHost async API’s
(vHost Library)

Note: 
• Only Enqueue operations supported currently
• All vHost async and IOAT API’s are experimental

vHost async

with Intel QDT



Packet transfer pipeline:

Read 

Descriptors

Enqueue

Packets

Free 

Packets

Read 

Descriptors

Select QDT and 

enqueue Packets 

to QDT

Doorbell QDT to 

transfer packets

Free Packets

CPU pipeline vHost async pipeline

Batching

Async Threshold
Hypervisor

Virtual Machine

Layer 2 
forwarding

VSWITCH

Port 1

Port 3

Port 2

Port 4

Traffic Generator

HW

PVP

Packet size = 256= 512 Packet size =1024

Note: Decision to choose the pipeline is made by the vhost library and not at application level.



How to enable vHost async ?
Enable async mode:

Set vhost async attributes:

vswitchd.log:

txq#, DBDF, Async threshold

Note: QDT channel must be bound to a user space driver like VFIO/IGB UIO.



Challenges:

1. rte_ioat_completed_ops returns number of “segments” sent while vHost 
library expects number of packets sent as a return.

2. QDT copy is asynchronous with CPU operations. QDT may still be copying 
packets when enqueue API returns. So, when to free and where? Also 
depends on HW.

3. QDT channel static mapped to Tx queues

4. Limited QDT channels



Possible solutions:

1. Have packet-segment tracking to match with rte_ioat_completed_ops return

2. a. Wait until all packets of current batch are free and then process next batch : 

❑ wait in __netdev_dpdk_vhost_send

❑ CPU not doing any work other than waiting

❑ beats the purpose of async!

2. b. No wait, free inside the same function:

❑ Packets not free’d in current iteration/batch will be free’d next time.

❑ Have to call rte_vhost_poll_enqueue_completed to flush the virtqueue

❑ If dynamic txq , what if the same queue is not used to all from next iteration?



Possible solutions:

2. c. Free outside the send function much later:

Considerations:

❑ Needs to have access to the netdev and tx qid.

❑ Must be called regularly in the PMD.

Good contender:

❑ dp_netdev_pmd_flush_output_packets

❑ Called inside the PMD regularly

❑ Has access to netdev and tx_qid via pmd->send_port_cache

❑ Free once after dp_netdev_pmd_flush_output_on_port

❑ call free continuously for the netdev and qid when no packets to send between bursts.

But …

❑ Will require spinlock for txq

❑ High CPU usage of free function ~60%

❑ Breaks abstraction.



Reduce the CPU usage:
❑ Call free only for vhost ports by introducing callbacks at netdev level

(struct netdev_class)

❑ Avoid calling free if no packets to free. 

❑ Have tracking at netdev level perhaps a bitmask for each queue 

or may be even at pmd level ? 

❑ CPU usage of free function ~ 7%

❑ What if dynamic txq again ? 

Possible solutions:



Future Work 

❑ Further investigation on where and when to free the packets 

❑ Support vHost async dequeue operation.

❑ Support sharing QDT among vhost queues and ports.

❑ Introduce debuggability.

❑ Update documentation

Patch at : 
https://patchwork.ozlabs.org/project/openvswitch/patch/20201023094845.35652-2-sunil.pai.g@intel.com/

Comments are welcome!

https://patchwork.ozlabs.org/project/openvswitch/patch/20201023094845.35652-2-sunil.pai.g@intel.com/


References

• https://doc.dpdk.org/guides-20.11/rawdevs/ioat.html
• https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
• https://www.dpdk.org/wp-content/uploads/sites/35/2019/10/Asynchronous.pdf
• https://www.dpdk.org/wp-content/uploads/sites/35/2018/12/JiayuHu_Accelerating_paravirtio_with_CBDMA.pdf

https://doc.dpdk.org/guides-20.11/rawdevs/ioat.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.dpdk.org/wp-content/uploads/sites/35/2019/10/Asynchronous.pdf
https://www.dpdk.org/wp-content/uploads/sites/35/2018/12/JiayuHu_Accelerating_paravirtio_with_CBDMA.pdf


Thank You!

?Questions?
e-mail: sunil.pai.g@intel.com

mailto:sunil.pai.g@intel.com

