
Open vSwitch and OVN 2020 Fall Conference

Debugging OVSDB with
stream record/replay

Ilya Maximets

Senior Software Engineer

1

Debugging OVSDB with stream record/replay

2

OVN architecture

Northbound DB
(ovsdb-server)

Southbound DB
(ovsdb-server)

ovn-northd

ovn-controller

ovs-vswitchd ovsdb-server

ovn-controller

ovs-vswitchd ovsdb-server...

CMS ovn-nbctl

ovn-sbctl

HV1 HVn

Debugging OVSDB with stream record/replay

3

● Live debug session on an affected setup.

○ Holding a faulty environment for a long time is usually not an option, especially if it’s a
large setup with hundreds of physical nodes.

● Copy database files from the affected setup and try to replicate in a
sandbox (ovs-sandbox, ovn-fake-multinode).

○ Issue might require exact order of database operations or specific events like
disconnection of one of the clients in order to reproduce. Might be not easy to replicate
needed conditions in a sandbox environment.

How to debug issues with OVN components?

Debugging OVSDB with stream record/replay

4

● Typical solution is to run synthetic scalability tests, e.g. with ovn-scale-test
(https://github.com/ovn-org/ovn-scale-test) or something similar.

○ Takes significant amount of time on high scale levels.

○ Might require decent amount of hardware to spin up fake clusters with big number of
fake nodes.

○ Not a real-world workload.

● Real-world testing with actual workloads.
○ Not a convenient way to test optimizations during development.

○ Same issues with time and hardware.

How to test performance optimizations?

https://github.com/ovn-org/ovn-scale-test

HVnHV1

Debugging OVSDB with stream record/replay

5

OVN architecture (connections)

Northbound DB
(ovsdb-server)

Southbound DB
(ovsdb-server)

ovn-northd

ovn-controller

ovs-vswitchd ovsdb-server

ovn-controller

ovs-vswitchd ovsdb-server...

CMS ovn-nbctl

ovn-sbctl
ssl:<nb-ip>:port

ssl:<sb-ip>:port

unix:ovn-sb.sock

unix:ovn-nb.sock

ssl:<sb-ip>:port

ssl:<nb-ip>:port

ssl:<sb-ip>:port

Debugging OVSDB with stream record/replay

6

Southbound DB (connections)

Southbound DB
(ovsdb-server)

unix:ovn-sb.sock

ss
l:<

sb
-ip

>:
po

rt

ss
l:<

sb
-ip

>:
po

rt

ss
l:<

sb
-ip

>:
po

rt
ssl:<sb-ip>:port

ssl:<sb-ip>:port

ssl:<sb-ip>:port

unix:ovn-sb.sock

Debugging OVSDB with stream record/replay

7

● No need to have 100 nodes to test Southbound DB. What is needed is to
have 100 incoming connections with particular data.

○ The same mostly applicable to all other OVN components.

● But how to do that?

Do we really need to have full OVN setup in order to test it?

Debugging OVSDB with stream record/replay

8

● All connections in OVS/OVN applications works via ‘stream’ library.
○ lib/stream.c

● All variants of stream connections (ssl,unix, tcp, ...) implements same
stream-provider API, so they could be transparently replaced with special
implementation.

○ lib/stream-provider.h

stream-record/replay

Debugging OVSDB with stream record/replay

9

Recording

ovsdb-server --stream-replay-record <...>

stream-record/replay

ovsdb-server

Application
logic lib/stream.c

Disk

Data via
tcp/unix/ssl

Copy of data

data

Replay

ovsdb-server --stream-replay <...>

ovsdb-server

Application
logic lib/stream.c

Disk
Copy of data

data

Debugging OVSDB with stream record/replay

10

● Patch-set with the first implementation:
○ https://patchwork.ozlabs.org/project/openvswitch/list/?series=186549&state=*

○ Work on v2 is in progress.

● Current limitations:
○ For now it’s required to use predictable uuid generation with

‘--predictable-uuids-with-seed=<seed>’ option.

○ Currently doesn’t work with internally generated time-based events.

■ Some functionality, like inactivity probes, disabled.

■ Works for ovsdb-server only in standalone mode (no RAFT).

What is available now?

https://patchwork.ozlabs.org/project/openvswitch/list/?series=186549&state=*

Debugging OVSDB with stream record/replay

11

● Offline debugging: record on real setup - replay and debug locally
○ During replay it’s possible to attach debugger, change log levels or even modify the

binary adding some new logs or instrumentation.

● Standalone performance test.
○ If you’re working on pure performance optimizations that doesn’t affect in/out traffic from

the process.

○ Record real world workload and replay without any latencies between messages.

● Offline debug of rearly reproducible issues:
○ Record once and have it 100% reproducible.

Use cases

Debugging OVSDB with stream record/replay

12

● Recording of generated UUIDs.
○ This way we could avoid enabling generation of predictable UUIDs.

● Correct work with internal time-based events.
○ There are few ideas on how to do that (record and reply accesses to time functions or

time wrapping according to timestamps of stored data)

○ Will allow recording of RAFT clusters.

Future improvements

Thank you!

Ilya Maximets

Senior Software Engineer

13

