
OvS manipulation with Go at
DigitalOcean

Matt Layher, Software Engineer
OvSCon 2017

digitalocean.com

● Software Engineer at DO for ~3.5 years

● Focused on virtual networking primitives

● Huge fan of Go programming language

● GitHub + Twitter: @mdlayher

digitalocean.com

Cloud computing designed for developers

● Cloud provider with focus on simplicity

● “Droplet” product is a virtual machine

● Compute, storage, networking, and monitoring primitives

○ Load Balancers as a Service

○ Floating IPs

○ Cloud Firewalls (learn more at Kei Nohguchi’s talk!)

digitalocean.com

DO is powered by Open vSwitch!

● 10,000+ of instances of OvS!

● One of the most crucial components in our entire stack.

digitalocean.com

Open vSwitch at DigitalOcean:
The Past

digitalocean.com

Open vSwitch and Perl

● Events (create droplet, power on, etc.) reach a hypervisor

● Perl event handlers pick up events and performs a series of

actions to prepare a droplet

● Perl builds flow strings and calls ovs-ofctl

digitalocean.com

Building flows with Perl

my $ipv4_flow_rules = [

[

Flow priority.

2020,

Hash of flow matches.

{

dl_src => $mac,

in_port => $ovs_port_id,

ip => undef,

nw_src => "${ip}/32",

},

Literal string of flow actions.

"mod_vlan_vid:${ipv4vlan},resubmit(,1)"

],

… many more flows

]

digitalocean.com

Applying flows with Perl

Build comma-separated matches from hash.

my $flow = _construct_flow_string($flow_hash);

Build the flow string with usual fields.

my $cmd = "priority=${priority},idle_timeout=${timeout},${flow},actions=${actions}";

Once a flow is added, we need a way to delete it later on!

if ($add_delete_hook && defined($delete_hook_handle)) {

Flows written into a libvirt hook to be deleted later.

if (_write_flow_to_be_deleted($bridge, $delete_hook_handle, $flow) != PASS) {

return FAIL;

}

}

Shell out to ovs-ofctl and do the work!

return _run_ovs_cmd("ovs-ofctl add-flow ${bridge} '${cmd}'");

digitalocean.com

Conclusions: Open vSwitch and Perl

● Pros:

○ Straightforward code

○ Perl is well-suited to manipulating strings

● Cons:

○ No sanity checking (other than OvS applying the flow)

○ Lacking test coverage

○ libvirt flow deletion hooks for individual flows proved problematic

○ Shell out once per flow; no atomicity

digitalocean.com

Open vSwitch at DigitalOcean:
The Present

digitalocean.com

Open vSwitch and Go

● Events reach a hypervisor

● Perl/Go (it depends) systems perform a series of actions to

prepare a droplet

● Go builds flow strings and calls ovs-ofctl

digitalocean.com

package ovs
Package ovs is a client library for Open vSwitch which enables programmatic control of

the virtual switch.

digitalocean.com

package ovs

● Go package for manipulating Open vSwitch

● No DigitalOcean-specific code!

● Open source (soon)!

○ https://github.com/digitalocean/go-openvswitch

https://github.com/digitalocean/go-openvswitch

digitalocean.com

Building flows with Go

flow := &ovs.Flow{

// Commonly used flow pieces are struct fields.

Priority: 2000,

Protocol: ovs.ProtocolIPv4,

InPort: droplet.PortID,

// Matches and Actions are Go interfaces; functions create a

// type that implements the interface.

Matches: []ovs.Match{

ovs.DataLinkSource(r.HardwareAddr.String()),

ovs.NetworkSource(r.IP.String()),

},

Actions: []ovs.Action{

ovs.Resubmit(0, tableL2Rewrite),

},

}

digitalocean.com

Building flows with Go (cont.)

● Our example flow marshaled to textual format:

priority=2000,ip,in_port=1,dl_src=de:ad:be:ef:de:ad, \

nw_src=192.168.1.1,table=0,idle_timeout=0,actions=resubmit(,10)

● Mostly string manipulation behind the scenes; just like Perl

● Go is statically typed, reducing chance of programmer errors

● Can validate each match and action for correctness without hitting OvS

digitalocean.com

The ovs.Match Go interface

type Match interface {

// MarshalText() (text []byte, err error)

encoding.TextMarshaler

}

● Because of the way Go interfaces work, any type with a MarshalText method can be

used as an ovs.Match

● The error return value can be used to catch any bad input

● ovs.Action’s definition is identical

digitalocean.com

The ovs.Client Go type
// Configure ovs.Client with our required OpenFlow flow format and protocol.

client := ovs.New(ovs.FlowFormat("OXM-OpenFlow14"), ovs.Protocols("OpenFlow14"))

// $ ovs-vsctl --may-exist add-br br0

err := client.VSwitch.AddBridge("br0")

// $ ovs-ofctl add-flow --flow-format=OXM-OpenFlow14 --protocols=OpenFlow14 br0 ${flow}

err = client.OpenFlow.AddFlow("br0", exampleFlow())

● ovs.Client is a wrapper around ovs-vsctl and ovs-ofctl commands

● ovs.New constructor uses “functional options” pattern for sane defaults

● We can still only apply one flow at a time… right?

digitalocean.com

ovs.Client flow bundle transactions

// Assume we want to apply a new flow set and remove old one.

add, remove := newFlows(), oldFlows()

// We can apply all of these flows atomically using a flow bundle!

err := client.OpenFlow.AddFlowBundle(bridge, func(tx *ovs.FlowTransaction) error {

// $ echo -e “delete priority=10,cookie=1,actions=drop\n” >> mem

tx.Delete(remove...)

// $ echo -e “add priority=10,cookie=1,actions=output:1\n” >> mem

tx.Add(add...)

// $ cat mem | ovs-ofctl --bundle add-flow --flow-format=OXM-OpenFlow14 --protocols=OpenFlow14 br0 -

return tx.Commit()

})

● Flow bundle stored in memory, passed directly from buffer to ovs-ofctl

● Modifications are processed by OvS in a single, atomic transaction

digitalocean.com

package hvflow
Package hvflow provides Open vSwitch flow manipulation at the hypervisor level.

digitalocean.com

package hvflow

● DigitalOcean-specific wrapper for package ovs

● Provides higher-level constructs, such as:

○ enable public IPv4 and IPv6 connectivity

○ reset and apply security policies

○ disable all connectivity

digitalocean.com

The hvflow.Client Go type

// Configure hvflow.Client to modify bridge “br0”.

client, err := hvflow.NewClient("br0", ovs.New(

ovs.FlowFormat("OXM-OpenFlow14"), ovs.Protocols("OpenFlow14"),

))

● hvflow.Client is a high-level wrapper around ovs.Client

● hvflow.NewClient constructor uses “functional options” pattern for sane defaults

digitalocean.com

Network parameters - “netparams”

● Encode all necessary information about
how to enable networking for a given
VNIC

● Carries IPv4 and IPv6 addresses, firewall
configurations, floating IPs…

● netparams used to configure OvS with
hvflow.Client.Transaction method

{

 "droplet_id": 1,

 "vnics": [

 {

 "mac": "de:ad:be:ef:de:ad",

 "enabled": 1,

 "name": "tapext1",

 "interface_type": "public",

 "addresses": {

 "ipv4": [

 {

 "ip_address": "10.0.0.10",

 "masklen": 20,

 "gateway": "10.0.0.1"

 }

]

 }

 }

]

}

digitalocean.com

hvflow.Client transactions

// Assume a netparams structure similar to the one just shown.

params, ifi := networkParams(), "public"

err := client.Transaction(ctx, func(ctx context.Context, tx *hvflow.Transaction) error {

// Convert netparams into hvflow simplified representation.

req, ok, err := hvflow.NewIPv4Request(params, ifi)

if err != nil {

return err

}

if ok {

// If IPv4 configuration present, apply it!

if err := tx.EnableIPv4(ctx, req); err != nil {

return wrapError(err, "failed to enable IPv4 networking")

}

}

return tx.Commit()

})

digitalocean.com

hvflow.Client transactions (cont.)

● Each operation accumulates additional
flows to be applied within the context of
the transaction.

● Flow set sizes can vary from a couple
dozen to several hundred flows.

● Flows are always applied using a flow
bundle; non-transactional
hvflow.Client API was deleted!

// IPv4 configuration.

err := tx.EnableIPv4(ctx, req4)

// IPv6 configuration.

err = tx.EnableIPv6(ctx, req6)

// Floating IPv4 configuration.

err = tx.EnableFloatingIPv4(ctx, req4F)

// Disable networking on an interface.

err = tx.Disable(ctx, 10, "public")

// Apply flow set to OvS.

err = tx.Commit()

digitalocean.com

The hvflow.Cookie Go interface
type Cookie interface {

Marshal() (uint64, error)

Unmarshal(i uint64) error

}

● Cookie structs packed and unpacked from uint64 form

● Cookies are versioned using a 4-bit identifier

● Used to store identification metadata about a flow

● Easy deletions of flows; much simpler deletion hooks with libvirt

digitalocean.com

hvflowctl and hvflowd
gRPC client and server that manipulate Open vSwitch

digitalocean.com

hvflowctl and hvflowd

● gRPC client and server written in Go

● hvflowctl passes netparams and other data to hvflowd

● hvflowd manipulates OvS flows via hvflow package

digitalocean.com

hvflowd’s gRPC interface

● gRPC uses protocol buffers

(“protobuf”) for RPC

communication

● RPCs accept one message type

and return another

● netparamspb package for

encoding netparams in

protobuf

// The set of RPCs that make up the “HVFlow” service.

service HVFlow {

// Add flows using the parameters specified in request.

rpc AddFlows(AddFlowsRequest) returns (AddFlowsResponse);

}

// RPC parameters encoded within a request message.

message AddFlowsRequest {

// netparams have a protobuf representation too.

netparamspb.NetworkParams network_params = 1;

string interface_type = 2;

}

// No need to return any data on success.

message AddFlowsResponse {}

digitalocean.com

hvflowd AddFlows RPC

// AddFlows requests that hvflowd add flows to enable connectivity for one or more droplets.

func (s *server) AddFlows(ctx context.Context, req *hpb.AddFlowsRequest) (*hpb.AddFlowsResponse, error) {

// Fetch netparams from gRPC request message.

params := req.GetNetworkParams()

// Perform the necessary transaction logic to establish connectivity.

err := s.hvflowc.Transaction(ctx, func(ctx context.Context, tx *hvflow.Transaction) error {

// hvflow.Client transaction logic …

return tx.Commit()

})

// Inform the caller if the request was successful.

return &hvflowpb.AddFlowsResponse{}, err

}

● RPCs enable orchestration among multiple hypervisors and hvflowd instances

digitalocean.com

Testing hvflowctl and hvflowd

● Unit tests verify a flow looks a certain way

○ go test ./...

● Integration tests verify the behavior of flows applied to OvS

○ mininet, OvS, hvflowctl, hvflowd

digitalocean.com

Testing with mininet

● Network topology created with multi-namespace OvS in mininet

● hvflowd spun up in each “hypervisor namespace”

 # Spin up hvflowd in the background and set per-hypervisor environment

 # variables needed to enable multiple instances to run together.

 for key in self.hvflowdEnv:

 self.cmd('export %s=%s' % (key, self.hvflowdEnv[key]))

 self.cmd('%s &' % (self.hvflowdPath))

● hvflowctl issues RPCs using JSON netparams fixtures

Issue RPCs to hvflowd using flags and netparams JSON.

self.switch.cmd("echo '%s' | %s %s --rpc %s %s" % (stdinBuf, self.hvflowctlPath, command, rpcAddr, opts))

digitalocean.com

Testing with mininet (cont.)

● Docker image built and pulled by Concourse CI

● Virtual droplet and hypervisor topology spun up by mininet

● Tests run on every pull request to hvflow package

Beginning testing with /configs/production.json

==> Outside to public droplet d1 should pass

out1 (8.8.8.8) ----> d1 (192.0.2.10) *** Results: 0% dropped (1/1 received)

==> Outside to floating on d1 should pass

out1 (8.8.8.8) ----> d1 (192.0.2.100) *** Results: 0% dropped (1/1 received)

==> Outside to private d1 should fail

out1 (8.8.8.8) ----> X(d1) (10.60.5.5) *** Results: 100% dropped (0/1 received)

digitalocean.com

Conclusions: Open vSwitch and Go

● Pros:

○ Go is well-suited to building large, highly concurrent, network systems

○ Go compiles to a single, statically-linked binary for trivial deployment

○ Flows are easier to read for those who aren’t familiar with OvS

○ Data is statically typed and checked before hitting OvS

○ Flows can be bundled and committed atomically

● Cons:

○ Flows structures are verbose if you are familiar with OvS

○ We are still shelling out to OvS tools

digitalocean.com

Open vSwitch at DigitalOcean:
The Future

digitalocean.com

Orchestrated Open vSwitch and Go

● RPC performed to a “regional network service” (RNS)

● RNS determines actions, sends RPCs to hvflowd

● hvflowd builds flows and speaks OpenFlow directly

digitalocean.com

Use cases for an OvS orchestration system

● High level networking actions that apply to many hypervisors and their droplets

○ Apply firewall “open TCP/22” to all droplets for customer X

○ Disable connectivity to all droplets for customer Y

hvflowd
hvflowd
hvflowd
hvflowd
hvflowd

RNS
DO

systems

digitalocean.com

Why speak OpenFlow directly?

● Difficulty parsing unstable OvS tool text output

○ ovs-ofctl dump-ports br0 tap0

● Tedious generation and parsing of flow strings

digitalocean.com

Why not use an OpenFlow controller?

● Industry is moving to a distributed control plane approach

○ Need to carefully avoid architectures where it would

be difficult to scale a central controller

● We considered OVN, but were concerned about its maturity

○ The “RNS” architecture is similar to OVN

● A distributed OpenFlow controller is not off the table!

○ Maybe hvflowd becomes OvS’s “controller”?

digitalocean.com

ovs.Client with OpenFlow
// Configure ovs.Client with our required OpenFlow flow format and protocol.

client := ovs.New(

ovs.FlowFormat("OXM-OpenFlow14"),

ovs.Protocols("OpenFlow14"),

// Toggle on direct OpenFlow support.

ovs.UseOpenFlow("localhost:6633"),

)

// Flow marshaled to binary instead of text format, and sent via OpenFlow.

err = client.OpenFlow.AddFlow("br0", exampleFlow())

● ovs.New constructor gains a new option to toggle on OpenFlow

● ovs.Client opens a socket and sends raw OpenFlow commands

digitalocean.com

ovs.Match gains a new method

type Match interface {

// MarshalText() (text []byte, err error)

encoding.TextMarshaler

// New: MarshalBinary() (bin []byte, err error)

encoding.BinaryMarshaler

}

● Implement a MarshalBinary method for all Match types

● ovs.Action would be updated in the same way

digitalocean.com

Conclusions: orchestrated Open vSwitch and Go

● Pros:

○ Easy to orchestrate changes amongst multiple servers

○ No more parsing OvS tool string output

○ No more generating and parsing the flow text format!

● Cons:

○ Too early to tell!

digitalocean.com

Open vSwitch at DigitalOcean:
Conclusions

digitalocean.com

DO is powered by Open vSwitch!

● We’ve deployed more than 10,000 instances of OvS and

have run it in production for three years.

● We’ve moved from Perl to Go, and our OvS tooling has too.

● We’re excited for the future of OvS and OVN!

Thank you!

Matt Layher
mdlayher@do.co

GitHub + Twitter: @mdlayher

https://github.com/digitalocean/go-openvswitch

https://github.com/digitalocean/go-openvswitch

