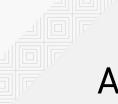


# Red Hat's perspective on OVS HW Offload Status

Current state and what is WIP

Rashid Khan Senior Manager, Networking Services Nov. 17, 2017




# Acknowledgements and Disclaimers

I am presenting the work of many many people... Special thanks to: Andrew T, Franck B, Eelco C, Marcelo L, Paolo A, Flavio L, Kevin T

Performance numbers shown in this presentation are based on test results from running a specific series of tests in our labs.

Test results vary from one setup to another and based on different use cases. Any test results mentioned are for example-only scenarios and are not conclusive nor a recommendation of one vendor's solution over another.





# AGENDA

Why offload ?

Does it look promising?

What is left to do?

Backup / more info

Please view Franck's presentation from Thursday 11:30am:

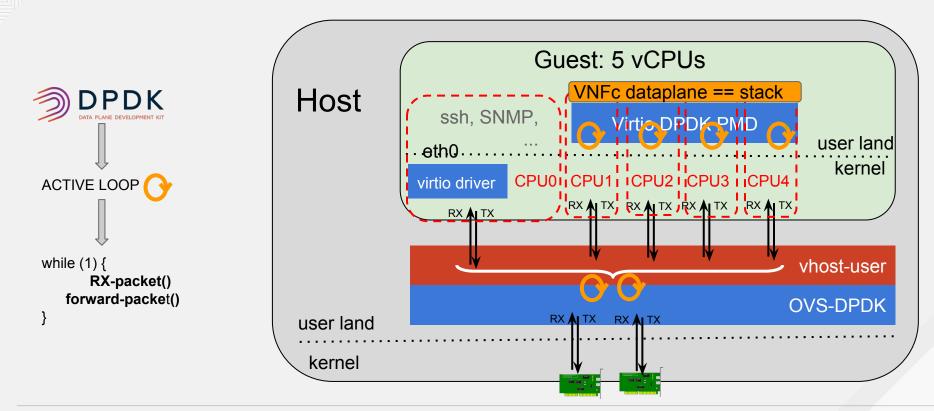
OVS-DPDK for NFV: go live feedback!

Please view Aaron Conole's presentation from Thursday 3:30pm:

<u> Conntrack + OvS</u>





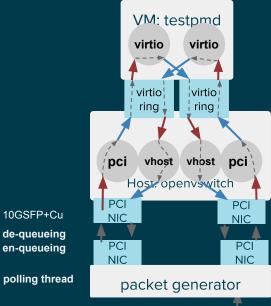

Simply way too many cores needed

4 Mpps/core with expert level tuning
Yes even with DPDK !

• Does not scale to 25G, 40G, 100G ....



#### OVS-DPDK: virtio, vhost-user, virtio PMD






#### Zero Packet loss

#### VM L2 forwarding, VLAN networks, intra-NUMA node, single queue

- 2 x virtio-net interfaces (NUMA node0)
- 2 x 10Gb interfaces (NUMA node0)
- Testpmd DPDK application in VM with 2 x virtio-net
- OVS using 4 PMD threads (2 cores) to process data-plane traffic
- Directly connected packet generator and compute node, no HW switch.
- Bidirectional traffic, 128 flows, *no broadcast or multicast packets*
- Measurement time, zero-loss: 2 hours, non-zero-loss: 5 mins
- Maximum rate while within specified loss:



|               | Loss: 20 packets-per-million |       |               |               | Loss: 5 packets-per-million |       |               |               | Loss: 1 packet-per-million |       |               |               | Loss: 0 packets-per-million |       |               |               |
|---------------|------------------------------|-------|---------------|---------------|-----------------------------|-------|---------------|---------------|----------------------------|-------|---------------|---------------|-----------------------------|-------|---------------|---------------|
| Frame<br>size | Mpps                         | Gbps  | Mpps/<br>core | Gbps/<br>core | Mpps                        | Gbps  | Mpps/<br>core | Gbps/<br>core | Mpps                       | Gbps  | Mpps/<br>core | Gbps/<br>core | Mpps                        | Gbps  | Mpps/<br>core | Gbps/<br>core |
| 64            | 9.38                         | 6.30  | 4.69          | 3.15          | 9.15                        | 6.15  | 4.57          | 3.07          | 7.39                       | 4.97  | 3.69          | 2.48          | 4.34                        | 2.92  | 2.17          | 1.46          |
| 256           | 7.66                         | 16.19 | 3.83          | 8.45          | 7.81                        | 17.24 | 3.90          | 8.66          | 7.45                       | 6.52  | 3.72          | 3.26          | 2.34                        | 5.18  | 1.17          | 2.59          |
| 1024          | 2.39                         | 19.99 | 1.19          | 9.99          | 2.39                        | 19.99 | 1.19          | 9.99          | 2.39                       | 19.99 | 1.19          | 9.99          | 2.38                        | 19.92 | 1.19          | 9.96          |
| 1500          | 1.64                         | 19.99 | 0.82          | 9.99          | 1.64                        | 19.99 | 0.82          | 9.99          | 1.64                       | 19.99 | 0.82          | 9.89          | 1.64                        | 19.94 | 0.82          | 9.97          |

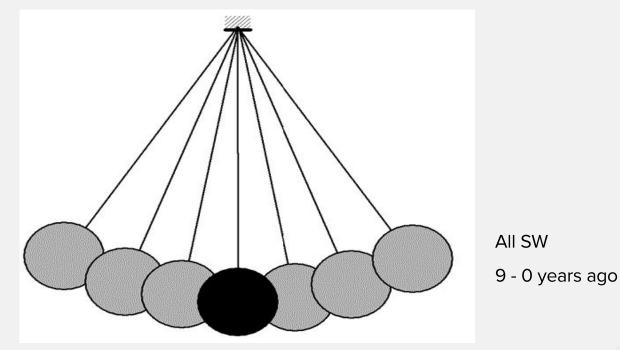


## So whats the big deal?

Just add more CPUs, add more cores

If forwarding 10G of traffic takes ~4 cores

If Storage takes ~2 cores


That is already 1⁄4 of a 24 core chip

This is "wasted" revenue for the cloud providers

They charge per cycle per second



#### Swing of the pendulum



All HW

100 - 10 years ago

Very near future (some HW, some SW)





#### Many HW vendors have OVS Offload solutions

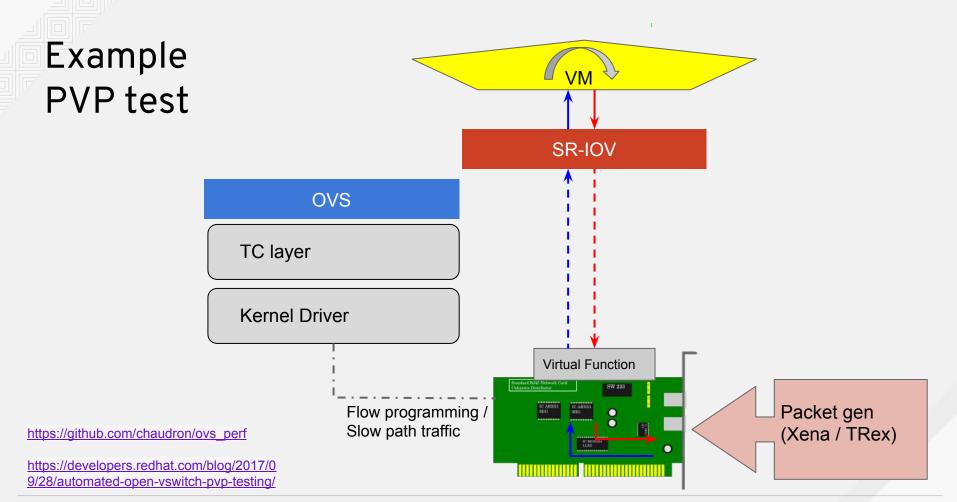
# NETRONOME MELLANOX CAVIUM

# CHELSIO BROADCOM

# Others

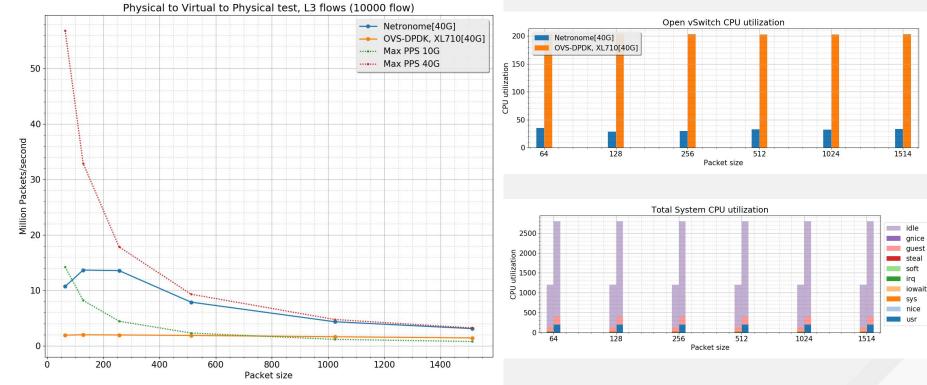


9 INSERT DESIGNATOR, IF NEEDED



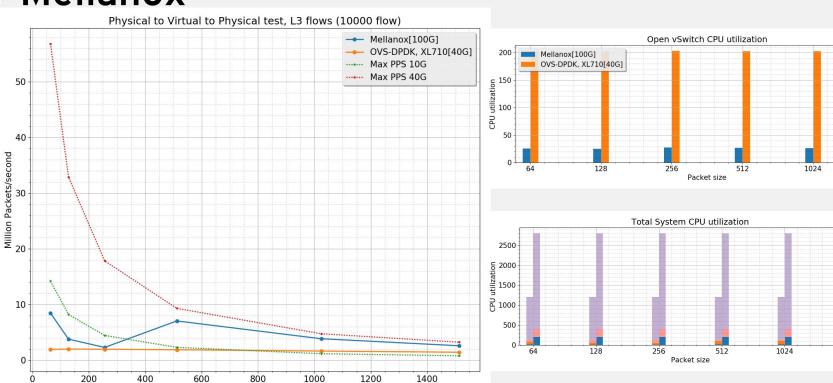

## Offloading method

| Netronome | TC (kernel)                                                             |
|-----------|-------------------------------------------------------------------------|
| Mellanox  | TC (kernel)                                                             |
| Broadcom  | TC (kernel)                                                             |
| Chelsio   | TC (kernel)                                                             |
| Cavium    | OVS runs in the NIC firmware,<br>offloading is transparent from CPU PoV |


#### Accepted in upstream netdev








# NETRONOME





# Mellanox





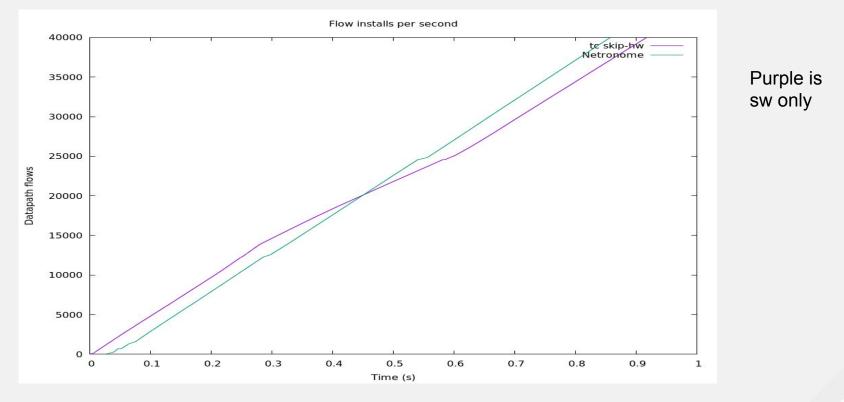
1514

1514

idle

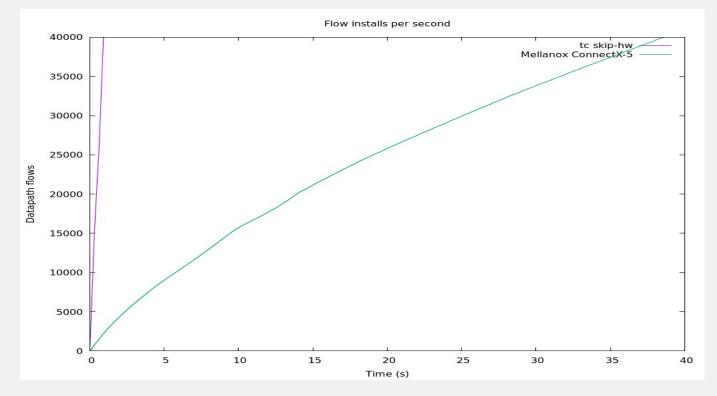
gnice

steal soft irq


iowait

sys nice

usr


Packet size

# NETRONOME





# Mellanox





# What is WIP / To-do List

Rome wasn't built in a day...

- Connection tracking offload
- Openstack integration
- Flow insertion / deletion rate improvement
- Expand to do additional actions
- Metrics / statistics / billing
- System level logging (supportability)
- Support for sending to multiple ports
- QOS
- Kubernetes integration
- Migration from one card to another







For further questions / comments:



You Tube

plus.google.com/+RedHat

in linkedin.com/company/red-hat



voutube.com/user/RedHatVideos







twitter.com/RedHatNews

# More information



#### SW used for testing

Netronome:

Linux upstream kernel, v4.13 for PVP test results. Linux V4.14rc4 for TC insertion rates. OVS master branch from October 26th (7b997d4). DPDK/testpmd on VM v16.07

Mellanox: Linux upstream kernel, net-next commit e1ea2f9856b7. OVS master branch commit b05af21631ce, DPDK 17.11-rc2 (all git tips from Oct 30th).

OVS-DPDK: RHEL7.4 latest kernel, OVS master branch from September 26th (97ee6d4), DPDK v17.05.2, DPDK/testpmd on VM v16.07

