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Outline:

1. Particle acceleration and relativistic collisionless shocks

2. Microphysics of gamma-ray burst afterglows



Relativistic Fermi acceleration - small scale turbulence Y
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Test particle picture:

— particles gain energy by bouncing across the shock front, —
exploitingthe convective electric fields: 6 F = AN Y Bsh»
C Ysh 1

— if y,, > 1, advection beats acceleration unless particles

scatter in small-scale turbulence Az <r, 6B >B and r, <Ay 3B/B

(ry gyroradius of accelerated particles, Ay length scale of 5B) = g < EEB ()\wp/{l)z

(ML et al. 06, Niemiec et al. 06, Pelletier et al. 09)
weak magnetization!

PIC simulations:
(e.g. Spitkovsky 08, Nishikawa et al. 09, Martins et al. 09, Sironi & Spitkovsky 09, 11, 13, Haugbolle 11)
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Phase diagram for relativistic shock acceleration
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Caveats and open questions
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Most PIC simulations have not converged to a stationary state! (Keshetet al. 09)
5 i4 late times
= I P
) "‘w....,,m - IV ti
I()-J ~So] early times

-1000 -500 0 Ax/(c/e) 500 1000
€g =0B? /(161 y,,2 n, m C?)

—> Keshet et al. 09: time = 10* o ;7 < ~ 0.1% of a dynamical timescale for a GRB!

— theoretical extrapolation isneeded!

Main open questions:

— phase space still largely unexplored... mildly relativistic shocks = terra incognita
— high energy particles stream further away and modify the precursor: how?
— other instabilitieson larger (MHD?) scales?

— acceleration at magnetized shocks, e.g. PWNe up to y, ~ 10°9?



electron skin depths

— supra-thermal particles stream ahead of the shock and excite plasma instabilities
(Weibel/filamentation, two-stream, current-driven etc.), which build 3B...

Relativistic Fermi acceleration - unmagnetized limit ST IR
PIC simulations:
(e.g. Spitkovsky 08, Nishikawa et al. 09, Martins et al. 09, Sironi & Spitkovsky 09, 11, 13, Haugbolle 11)
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— OB builds a magnetic barrier (~ 10% of equipartition) which mediates the shock transition...

— 0B on c/m, scales provides the scattering required for acceleration...

— OB provides the turbulence in which particles radiate (?) (Medvedev &Loeb 99)



Maximum energy s

Maximum energy:

— scatteringin small scale turbulence Ay <r,is not as efficientas Bohm...
— max energy for electrons by comparingt,.. ~ t...: to synchrotron loss, with

tocate ~ Fg?/(Agc) and Ay ~ 10 c/w,, implies a maximum synchrotron photon energy:
(e.g. Kirk & Reville 10, Plotnikov et al. 13, Wang et al. 13, Sironietal. 13):

1/4 1/2 \2/3 —1/12 ,—3/4
€v,max =~ 2GeV Eg) EH,—Q}‘I g Lobs,2

— long-lived GeV emission on 1000sec can result from synchrotron afterglow
(Kumar & Barniol-Duran 09, 10, Ghisellini et al. 10)

... photons above 10GeV result from IC interactions... (Wanget al. 13)
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Evolution of turbulence in GRB blast waves s
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Theory vs observations/phenomenology:

— comparison between theory, PIC sims. and GRB phenomenology overall satisfactory:
electrons are heated to v, = ¥s, m,/m, ~ 10>,
to near equipartitiong, ~ 0.1-0.5 ... with a power-law tail of indexs ~ -2.2
magnetized turbulence is excited up to g ~ 0.01 (canonicalvalue!?)

— actually, a long-standing notorious problem for g; : turbulence lies on

plasma scales c¢/® ,;, and should decay on 100's of ¢/ ,;, whereas observations
probe the width of the blast, many orders of magnitude beyond...

=> origin of the magnetisation of GRB blast waves? (e.g. Gruzinov 99, Gruzinov & Waxman 99)
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(ref. frame:
shocked plasma)
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how does the turbulence evolve
with distance to shock?

D |s.\ micro-instabilities associated

with the shock structure:
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damping or additional source of turbulence?
e.g. Gruzinov & Waxman 99, Medvedev & Loeb 99, 1 IO >
Chang et al. 08, Keshetet al. 09, ML 13 Ly c/3

Microphysics of turbulence evolution:

— through Landau damping, B is expected to decay as power-law in proper time t
(Changet al. 08, ML 14):

(t: comoving time since injection through the shock ~ 3x distance to the shock)

dt
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General picture
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Blast wave geometry: GRB orders of magnitude (comoving frame):

\ "o radius for afterglow: R ~ 107 cm
& v Lorentz factor: y, ~ 100
) B field: BISI\/I ~1 HG (@ SB,ISM ~ 10-9)

| L > blast width: R / (y, €) ~ 107 o,

gyration: t, ~ €5 2 (Ye/Yimin) @i

COOIing: tsynch ~ 107 ... (ye/Ymin) 1 (Dpi-1
PIC simulations: ~ 10 000 copi'l

canonical afterglow:
homogeneous B

acceleration zone ~ 100 o ;!

—> particles get "instantaneously"
accelerated to a power-law then
cool in microturbulence...

turbulence damping:
decay of gg

contact discontinuity

N

Tog(comoving time or distance)




Synchrotron spectra in decaying microturbulence

Example:

slowly decaying turbulence, o, = -0.8,
tops = 100 sec, n = 103cm’3,

E = 10°3ergs, with inverse Compton
losses, Y=3

§B*(t) ~ dB*(t = 0) [t/(100c/wp;)]

VS
homogeneous turbulence, eg= 1072
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— decaying turbulence leaves a strong signature in the spectral flux F, (t,,):
modifies slopes and characteristic frequencies...

General trend: (for -1 < a, < 0)

— fluxF, at v comes from electrons with y.: v, (v.) = v...

— v, oc 72 and tg, ¢ 7.t imply that low frequencies are produced in regions of low
magnetic field, high frequencies are produced in regions of strong magnetic field...



Confrontation to observations

log,o(F)) [Jy]

... synchrotron emission of shock accelerated electrons in decaying micro-turbulence
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nicely reproduces the afterglows and >100MeV extended emissions of GRBs... (ML et al. 13)
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Confrontation to observations
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... synchrotron emission of shock accelerated electrons in decaying micro-turbulence
nicely reproduces the afterglows and >100MeV extended emissions of GRBs... (ML et al. 13)
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Discussion
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— a simple solution, which reconciles data and theory, for the problem of the origin of
magnetizationin GRB blast waves:

— synchrotronradiation takes place in the partially decayed Weibel turbulence,
which is self-generated at the (ultra-relativistic, unmagnetized) collisionless shock

— 4 GRBs seen in radio, optical, X-ray through >100MeV point to a consistent
net decay power law of the magnetic field downstream of the shock:

€Ep X t**  with: -0.5 < o, < -0.4 (t indicates 3x distance/c to shock)

— valuesfor g5_do not agree with other estimates by Cenko et al. for 0909028, 090323,
090328, or with Ackermann et al. (Fermi Coll.) for 110731A:

difference: these works do not account for >100MeV emission...

... SO 3 constraintsfor 4 parameters...

degeneracy implies that e~ 0.01 in these works is a choice rather than a result!

— is this even more general? What about earlier determinationsof g;?
Does the canonical value €5~ 0.01 hold at all?



Summary - conclusions s
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Particle acceleration at relativistic shock waves is intimately connected to the
self-generation of turbulence...

— shock physics in mildly relativisticregime, high or low magnetization,
less ideal conditionsremain to be worked out...

—> a clearer view in the past decade thanks to PIC simulations (+theory!),
especially at low magnetization

A microphysical solution for the origin of magnetizationin GRB blast waves:

— synchrotronradiation takes place in the partially decayed Weibel turbulence,
which is self-generated at the (ultra-relativistic, unmagnetized) collisionless shock

— a broad turbulence power spectrum at the shock leads to a power-law decay:
077
5B2(t) ~ 6B2(t = 0) [t/ (10%3)]

— 4 GRBs seen in radio, optical, X-ray through >100MeV point to a net decay
power law of the magnetic field downstream of the shock: -0.5 <q,<-0.4



