
CS3383 Unit 3 Lecture 1: Longest Common
Subsequence

David Bremner

February 25, 2024

Outline

Dynamic Programming
Longest Common Subsequence

Ordering Subproblems
Ordered Subproblems
In order to solve our problem in a single pass, we need

▶ An ordered set of subproblems 𝐿(𝑖)

▶ Each subproblem 𝐿(𝑖) can be solved using only
the answers for 𝐿(𝑗), for 𝑗 < 𝑖.

▶ In hotel problem, (topological) ordering by time
▶ Often, by a recurrence relation
▶ For example the Longest Common Subsequence

problem.

Ordering Subproblems
Ordered Subproblems
In order to solve our problem in a single pass, we need

▶ An ordered set of subproblems 𝐿(𝑖)
▶ Each subproblem 𝐿(𝑖) can be solved using only

the answers for 𝐿(𝑗), for 𝑗 < 𝑖.

▶ In hotel problem, (topological) ordering by time
▶ Often, by a recurrence relation
▶ For example the Longest Common Subsequence

problem.

Ordering Subproblems
Ordered Subproblems
In order to solve our problem in a single pass, we need

▶ An ordered set of subproblems 𝐿(𝑖)
▶ Each subproblem 𝐿(𝑖) can be solved using only

the answers for 𝐿(𝑗), for 𝑗 < 𝑖.

▶ In hotel problem, (topological) ordering by time

▶ Often, by a recurrence relation
▶ For example the Longest Common Subsequence

problem.

Ordering Subproblems
Ordered Subproblems
In order to solve our problem in a single pass, we need

▶ An ordered set of subproblems 𝐿(𝑖)
▶ Each subproblem 𝐿(𝑖) can be solved using only

the answers for 𝐿(𝑗), for 𝑗 < 𝑖.

▶ In hotel problem, (topological) ordering by time
▶ Often, by a recurrence relation

▶ For example the Longest Common Subsequence
problem.

Ordering Subproblems
Ordered Subproblems
In order to solve our problem in a single pass, we need

▶ An ordered set of subproblems 𝐿(𝑖)
▶ Each subproblem 𝐿(𝑖) can be solved using only

the answers for 𝐿(𝑗), for 𝑗 < 𝑖.

▶ In hotel problem, (topological) ordering by time
▶ Often, by a recurrence relation
▶ For example the Longest Common Subsequence

problem.

LCS definition

T O U R L A K E

R A T E B A C K E R

Given two strings (sequences),
find a maximum length
subsequence common to both?

Recursive formula for the length
𝑐[𝑖, 𝑗] ∶= | LCS(𝑥[0 … 𝑖 − 1], 𝑦[0 … 𝑗 − 1])|

𝑐[𝑖, 𝑗] = {𝑐[𝑖 − 1, 𝑗 − 1] + 1 if 𝑥[𝑖 − 1] = 𝑦[𝑗 − 1]
max(𝑐[𝑖, 𝑗 − 1], 𝑐[𝑖 − 1, 𝑗]) otherwise

𝑐[𝑖 − 2, 𝑗 − 2] 𝑐[𝑖 − 2, 𝑗 − 1] 𝑐[𝑖 − 2, 𝑗]

𝑐[𝑖 − 1, 𝑗 − 2] 𝑐[𝑖 − 𝑖, 𝑗 − 1] 𝑐[𝑖 − 1, 𝑗]

𝑐[𝑖, 𝑗 − 2] 𝑐[𝑖, 𝑗 − 1] 𝑐[𝑖, 𝑗]

Recursive formula for the length
𝑐[𝑖, 𝑗] ∶= | LCS(𝑥[0 … 𝑖 − 1], 𝑦[0 … 𝑗 − 1])|

𝑐[𝑖, 𝑗] = {𝑐[𝑖 − 1, 𝑗 − 1] + 1 if 𝑥[𝑖 − 1] = 𝑦[𝑗 − 1]
max(𝑐[𝑖, 𝑗 − 1], 𝑐[𝑖 − 1, 𝑗]) otherwise

𝑐[𝑖 − 2, 𝑗 − 2] 𝑐[𝑖 − 2, 𝑗 − 1] 𝑐[𝑖 − 2, 𝑗]

𝑐[𝑖 − 1, 𝑗 − 2] 𝑐[𝑖 − 𝑖, 𝑗 − 1] 𝑐[𝑖 − 1, 𝑗]

𝑐[𝑖, 𝑗 − 2] 𝑐[𝑖, 𝑗 − 1] 𝑐[𝑖, 𝑗]

Proof of recursion formula

𝑐[𝑖, 𝑗] = {𝑐[𝑖 − 1, 𝑗 − 1] + 1 if 𝑥[𝑖 − 1] = 𝑦[𝑗 − 1]
max(𝑐[𝑖, 𝑗 − 1], 𝑐[𝑖 − 1, 𝑗]) otherwise

𝑥[𝑖 − 1] = 𝑦[𝑗 − 1] = 𝛼
If a common subsequence does not use 𝛼 as its last
element, it can be made longer.

Proof of recursion formula

𝑐[𝑖, 𝑗] = {𝑐[𝑖 − 1, 𝑗 − 1] + 1 if 𝑥[𝑖 − 1] = 𝑦[𝑗 − 1]
max(𝑐[𝑖, 𝑗 − 1], 𝑐[𝑖 − 1, 𝑗]) otherwise

𝑥[𝑖 − 1] ≠ 𝑦[𝑗 − 1]
▶ LCS does not use the “last” element of 𝑥, or
▶ LCS does not use the “last” element of 𝑦

The trouble with recursion

▶ Although recursion is a useful step to a dynamic programming
algorithm, naive recursion is often expensive because of
repeated subproblems

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Recursion tree

same
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Recursion tree

same
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Recursion tree

same
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Recursion tree

same
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Recursion tree

same
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Recursion tree

same
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Recursion tree

same
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

Memoization

Memoized version
function Memo(𝑝1, … 𝑝𝑘)

if cache[𝑝1, … 𝑝𝑘] ≠ NIL then
return cache[𝑝1, … 𝑝𝑘]

end if
⋮
cache[𝑝1, … 𝑝𝑘] = val
return val

end function

Recursive Version
function Recur(𝑝1, … 𝑝𝑘)

⋮
return val

end function

Memoization

Memoized version
function Memo(𝑝1, … 𝑝𝑘)

if cache[𝑝1, … 𝑝𝑘] ≠ NIL then
return cache[𝑝1, … 𝑝𝑘]

end if
⋮
cache[𝑝1, … 𝑝𝑘] = val
return val

end function

Recursive Version
function Recur(𝑝1, … 𝑝𝑘)

⋮
return val

end function

Memoized LCS

def lcs(c,x,y,i,j):
if (i < 1) or (j<1):

return 0
if c[i][j] == None:

if x[i-1] == y[j-1]:
c[i][j]=lcs(c,x,y,i-1,j-1)+1

else:
c[i][j] = max(lcs(c,x,y,i-1,j),

lcs(c,x,y,i,j-1))
return c[i][j]

▶ 𝑐[𝑖, 𝑗] written
at most once.

▶ returned value
written
immediately

▶ charge all work
to writes

Memoized LCS

def lcs(c,x,y,i,j):
if (i < 1) or (j<1):

return 0
if c[i][j] == None:

if x[i-1] == y[j-1]:
c[i][j]=lcs(c,x,y,i-1,j-1)+1

else:
c[i][j] = max(lcs(c,x,y,i-1,j),

lcs(c,x,y,i,j-1))
return c[i][j]

▶ 𝑐[𝑖, 𝑗] written
at most once.

▶ returned value
written
immediately

▶ charge all work
to writes

Memoized LCS

def lcs(c,x,y,i,j):
if (i < 1) or (j<1):

return 0
if c[i][j] == None:

if x[i-1] == y[j-1]:
c[i][j]=lcs(c,x,y,i-1,j-1)+1

else:
c[i][j] = max(lcs(c,x,y,i-1,j),

lcs(c,x,y,i,j-1))
return c[i][j]

▶ 𝑐[𝑖, 𝑗] written
at most once.

▶ returned value
written
immediately

▶ charge all work
to writes

Eliminating Recursion completely
def lcs(x,y):

n = len(x); m=len(y)
c = [[0 for j in range(m+1)]

for i in range(n+1)]
for i in range(1,n+1):

for j in range(1,m+1):
if x[i-1] == y[j-1]:

c[i][j] = c[i-1][j-1]+1
else:

c[i][j] = max(c[i-1][j],
c[i][j-1])

return c

Comparing Memoized to Iterative LCS

▶ Asymptotic time is the same

▶ Iterative version is typically faster/more robust in
practice

▶ memoized version is easier to derive (even
automatically) from the recursive version.

▶ Iterative version is easier to analyze
▶ Both versions add extra memory use to pure

recursion.
▶ Memoization never solves unneeded subproblems.

Comparing Memoized to Iterative LCS

▶ Asymptotic time is the same
▶ Iterative version is typically faster/more robust in

practice

▶ memoized version is easier to derive (even
automatically) from the recursive version.

▶ Iterative version is easier to analyze
▶ Both versions add extra memory use to pure

recursion.
▶ Memoization never solves unneeded subproblems.

Comparing Memoized to Iterative LCS

▶ Asymptotic time is the same
▶ Iterative version is typically faster/more robust in

practice
▶ memoized version is easier to derive (even

automatically) from the recursive version.

▶ Iterative version is easier to analyze
▶ Both versions add extra memory use to pure

recursion.
▶ Memoization never solves unneeded subproblems.

Comparing Memoized to Iterative LCS

▶ Asymptotic time is the same
▶ Iterative version is typically faster/more robust in

practice
▶ memoized version is easier to derive (even

automatically) from the recursive version.
▶ Iterative version is easier to analyze

▶ Both versions add extra memory use to pure
recursion.

▶ Memoization never solves unneeded subproblems.

Comparing Memoized to Iterative LCS

▶ Asymptotic time is the same
▶ Iterative version is typically faster/more robust in

practice
▶ memoized version is easier to derive (even

automatically) from the recursive version.
▶ Iterative version is easier to analyze
▶ Both versions add extra memory use to pure

recursion.

▶ Memoization never solves unneeded subproblems.

Comparing Memoized to Iterative LCS

▶ Asymptotic time is the same
▶ Iterative version is typically faster/more robust in

practice
▶ memoized version is easier to derive (even

automatically) from the recursive version.
▶ Iterative version is easier to analyze
▶ Both versions add extra memory use to pure

recursion.
▶ Memoization never solves unneeded subproblems.

Reading back the sequence
def backtrace(c,x,y,i,j):

if (i<1) or (j<1):
return ""

elif x[i-1] == y[j-1]:
return backtrace(c,x,y,i-1,j-1) \

+x[i-1]
elif (c[i][j-1] > c[i-1][j]):

return backtrace(c,x,y,i,j-1)
else:

return backtrace(c,x,y,i-1,j)

▶ What is the running time?

	Dynamic Programming
	Longest Common Subsequence

