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Ordering Subproblems
Ordered Subproblems

In order to solve our problem in a single pass, we need
P An ordered set of subproblems L(7)

P Each subproblem L(i) can be solved using only
the answers for L(j), for j < i.

P In hotel problem, (topological) ordering by time
P Often, by a recurrence relation

P For example the Longest Common Subsequence
problem.



LCS definition

T O U L A KE Given two strings (sequences),
\\ find a maximum length
AT EB A C K E R subsequence common to both?
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cli,j] = |LCS(2[0...i — 1], y[0... j — 1])|
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Recursive formula for the length

cli,j] = |LCS(2[0...i — 1], y[0... j — 1])|

cli, ] = ci—1,j—1]+1 if zfi — 1] = y[j — 1]
P\ max(eli, j— 1], efi — 1,4])  otherwise

cli—2,7—2] ¢c[i—2,j—1] ¢fi—2,4]

~, |
cli—1,7—2] —cli—i,j7—1] — c[i —1,j]
~ !

cli, j—2] cli,j—1] —— c[i, j]




Proof of recursion formula

cli, ] = ci—1,j—1]+1 if zfi —1] = y[j — 1]
P\ max(eli,j— 1),¢li — 1,4])  otherwise

zi—1]=ylj-1]=a

If a common subsequence does not use « as its last
element, it can be made longer.



Proof of recursion formula

cli, ] = ci—1,j—1]+1 if zfi —1] = y[j — 1]
P\ max(eli,j— 1),¢li — 1,4])  otherwise

r[i — 1] # y[j — 1]

P LCS does not use the “last” element of z, or
P LCS does not use the “last” element of y



The trouble with recursion

P Although recursion is a useful step to a dynamic programming
algorithm, naive recursion is often expensive because of
repeated subproblems



"",\q Recursive algorithm for LCS

\
-
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LCS(x, v, 1, /)
if x[i] = y[j]
then c[7, j| < LCS(x, y, i1, j—1) + 1
else c[i, j| < max{LCS(x, y, i1, ),
LCS(x, y, 7, j-1)}
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=1 Recursive algorithm for LCS

“‘ ‘
LCS(x, v, 1, /)
if x[i] = y[ /]
then c[7, j] < LCS(x, y, i1, j—1) + 1

else c[i, j] < max{LCS(x, y, i1, ),
LCS(x, y, i, j-1)}

Worst-case: x[i] # | j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.
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ALGORITHMS

=71 Recursion tree
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m=3,n=4:
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m=3,n=4:

Height = m + n = work potentially exponential.
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ALGORITHMS

'M;\ Recursion tree

Y

m=3,n=4:

same
subproblem

Height = m + n = work potentially exponential,
but we’re solving subproblems already solved!
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g+ Dynamic-programming
w2 hallmark #2

Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.
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v---q Dynamic-programming
«" hallmark #2

Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths 72 and # is only mn.
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return val
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Memoization

Memoized version

function MEMO(py, ... p;,)
if cache[py,...p;] # NIL then
return cache[py, ... p;]
end if

cachelpy, ... p;] = val
return val
end function

Recursive Version

function RECUR(py, ... D)

return val
end function



Memoized LCS

def lcs(c,x,y,1i,j):
if (i < 1) or (j<1):

return O P cli, j] written

at most once.

if c[il[j] == None:
if x[i-1] == y[j-11:
c[il[jl=1cs(c,x,y,i-1,j-1)+1
else:

c[i][j] = max(lcs(c,x,y,i-1,j),
lcs(c,x,y,1i,j-1))
return c[i][j]
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Memoized LCS

def lcs(c,x,y,i,j):
if (i < 1) or (j<1):

return O P cli, j] written

at most once.

if c[il[j] == None:
if x[i-1] == y[j-1]: P returned value
c[il[jl=1lcs(c,x,y,i-1,j-1)+1 written
else: immediately
clil[j] = max(lcs(c,x,y,i-1,]3), P charge all work
lcs(c,x,y,1i,j-1)) to writes

return c[i] [j]



Eliminating Recursion completely

def lcs(x,y):
n len(x); m=len(y)
c =[O0 for j in range(m+1) ]
for i in range(n+1) ]
for i in range(l,n+1):
for j in range(l,m+1):

if x[i-1] == y[j-11:
clil[j] = cli-1]1[j-1]1+1
else:
clil[j] = max(cl[i-1]1[j],

clil[j-11)

return c
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Comparing Memoized to lterative LCS

Asymptotic time is the same

lterative version is typically faster/more robust in
practice

memoized version is easier to derive (even
automatically) from the recursive version.

lterative version is easier to analyze

Both versions add extra memory use to pure
recursion.

vV VvV VvV VYV

Memoization never solves unneeded subproblems.



Reading back the sequence

def backtrace(c,x,y,1i,j):
if (i<1) or (j<1):

return ""
elif x[i-1] == y[j-1]:
return backtrace(c,x,y,i-1,j-1) \
+x[i-1]

elif (c[i]l[j-11 > cl[i-1]1[j]1):
return backtrace(c,x,y,i,j-1)

else:
return backtrace(c,x,y,i-1,])

P What is the running time?
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