
CS3383 Unit 1, Lecture 1: Divide and conquer
intro

David Bremner

/Subtype /Text/F 1/T (Wait)/Contents (2)

Divide and conquer
Big Picture
Merge Sort
Recursion tree
Integer Multiplication

unit prereqs

▶ mergesort
▶ geometric series (CLRS A.5)

/Subtype /Text/F 1/T (Video)/Contents (video/10.2-prereq.mkv)

Structure of divide and conquer

function Solve(P)
if |𝑃 | is small then

SolveDirectly(𝑃)
else

𝑃1 … 𝑃𝑘 = Partition(𝑃)
for 𝑖 = 1 … 𝑘 do

𝑆𝑖 = Solve(𝑃𝑖)
end for
Combine(𝑆1 … 𝑆𝑘)

end if
end function

▶ Where is the actual
work?

▶ How many
subproblems?

▶ How big are the
subproblems?

/Subtype /Text/F 1/T
(Video)/Contents
(video/10.3-structure.mkv)

Merge sort

MergeSort (A [1 … 𝑛]) :
i f (n == 1) :

return A
l e f t = MergeSort (𝐴[1 … ⌈𝑛/2⌉])
r i g h t = MergeSort (𝐴[⌈𝑛/2⌉ + 1 … 𝑛])
return Merge (l e f t , r i g h t)

▶ non-recursive cost is in merging (and splitting) arrays
▶ can be done in Θ(𝑛) time

/Subtype /Text/F 1/T (Video)/Contents
(video/10.4-merge-sort.mkv)

Recurrence for merge sort
1 d e f MergeSort (A [1 … 𝑛]) :
2 i f (n == 1) :
3 return A
4 l e f t = MergeSort (𝐴[1 … ⌈𝑛/2⌉])
5 r i g h t = MergeSort (𝐴[⌈𝑛/2⌉ + 1 … 𝑛])
6 return Merge (l e f t , r i g h t)

𝑇 (𝑛) = 𝑇 (𝑛/2)(line 4)
+ 𝑇 (𝑛/2)(line 5)
+ Θ(𝑛)(line 6)

/Subtype /Text/F 1/T (Video)/Contents
(video/10.5-merge-sort-2.mkv)

September 7, 2005 Introduction to Algorithms L1.51
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…
h = lg n

cn

cn

cn

#leaves = n Θ(n)

…

Total = Θ(n lg n)

/Subtype /Text/F 1/T (Video)/Contents
(video/10.6-recursion-tree.mkv)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.57

Appendix: geometric series

1

11
1

2
x

xxxx
n

n
−

−=++++
+

L for x ≠ 1

1

11 2
x

xx
−

=+++ L for |x| < 1

Return to last
slide viewed.

/Subtype /Text/F 1/T (Video)/Contents
(video/10.7-geometric-series.mkv)

Integer Multiplication

The Problem
Input positive integers 𝑥 and 𝑦, each 𝑛 bits long

Output positive integer 𝑧 where 𝑧 = 𝑥 ⋅ 𝑦

▶ A straightforward approach using base-2 arithmetic, akin to
how we multiply by hand, takes Θ(𝑛2) time.

▶ Can we do better with divide and conquer?
/Subtype /Text/F 1/T (Video)/Contents
(video/10.8-integer-mult.mkv)

Splitting the input

Split the bitstrings in half, generating 𝑥𝐿, 𝑥𝑅, 𝑦𝐿, 𝑦𝑅
such that

𝑥 = 2𝑛
2 ⋅ 𝑥𝐿 + 𝑥𝑅

𝑦 = 2𝑛
2 ⋅ 𝑦𝐿 + 𝑦𝑅 .

▶ Like base 2⌊𝑛
2 ⌋

▶ Assume that 𝑛 is a power of 2, so 𝑛
2 will always

be integer.

/Subtype
/Text/F 1/T
(Video)/Con-
tents
(video/10.9-
base-n-
2.mkv)

A first approach
Express our multiplication of the 𝑛-bit integers as four
multiplications of 𝑛

2 -bit integers:

𝑥 ⋅ 𝑦 = (2𝑛
2 ⋅ 𝑥𝐿 + 𝑥𝑅) ⋅ (2𝑛

2 ⋅ 𝑦𝐿 + 𝑦𝑅)
= 2𝑛 ⋅ 𝑥𝐿𝑦𝐿 + 2𝑛

2 ⋅ (𝑥𝐿𝑦𝑅 + 𝑥𝑅𝑦𝐿) + 𝑥𝑅𝑦𝑅

This gives a recurrence of

𝑇 (𝑛) = 4𝑇 (𝑛
2

) + 𝑐𝑛

/Subtype /Text/F 1/T (Video)/Contents
(video/10.A-first-approach.mkv)

Bad news
This recurrence solves to Θ(𝑛2)

A first approach
Express our multiplication of the 𝑛-bit integers as four
multiplications of 𝑛

2 -bit integers:

𝑥 ⋅ 𝑦 = (2𝑛
2 ⋅ 𝑥𝐿 + 𝑥𝑅) ⋅ (2𝑛

2 ⋅ 𝑦𝐿 + 𝑦𝑅)
= 2𝑛 ⋅ 𝑥𝐿𝑦𝐿 + 2𝑛

2 ⋅ (𝑥𝐿𝑦𝑅 + 𝑥𝑅𝑦𝐿) + 𝑥𝑅𝑦𝑅

This gives a recurrence of

𝑇 (𝑛) = 4𝑇 (𝑛
2

) + 𝑐𝑛

/Subtype /Text/F 1/T (Video)/Contents
(video/10.B-bad-news.mkv)

Bad news
This recurrence solves to Θ(𝑛2)

Finding a better recurrence / algorithm.

We want to compute

2𝑛 ⋅ 𝑥𝐿𝑦𝐿 + 2𝑛
2 ⋅ (𝑥𝐿𝑦𝑅 + 𝑥𝑅𝑦𝐿) + 𝑥𝑅𝑦𝑅

▶ Can we compute (𝑥𝐿𝑦𝑅 + 𝑥𝑅𝑦𝐿), the coefficient of 2𝑛
2 , more

efficiently?
▶ How about re-using 𝑥𝐿𝑦𝐿 and 𝑥𝑅𝑦𝑅?

/Subtype /Text/F 1/T (Video)/Contents (video/10.C-better.mkv)

Gauss’s trick

From the binomial expansion

(𝑥𝐿 + 𝑥𝑅)(𝑦𝐿 + 𝑦𝑅) = 𝑥𝐿𝑦𝐿 + 𝑥𝐿𝑦𝑅 + 𝑥𝑅𝑦𝐿 + 𝑦𝑅𝑥𝑅

we get that

𝑥𝐿𝑦𝑅 + 𝑥𝑅𝑦𝐿 = (𝑥𝐿 + 𝑥𝑅)(𝑦𝐿 + 𝑦𝑅) − 𝑥𝐿𝑦𝐿 − 𝑥𝑅𝑦𝑅

/Subtype /Text/F 1/T (Video)/Contents (video/10.D-gauss.mkv)

Recursive Algorithm
To compute

2𝑛 ⋅ 𝑥𝐿𝑦𝐿 + 2𝑛
2 ⋅ (𝑥𝐿𝑦𝑅 + 𝑥𝑅𝑦𝐿) + 𝑥𝑅𝑦𝑅

1. find 𝑥𝐿, 𝑥𝑅, 𝑦𝐿, 𝑦𝑅 and 𝑥𝐿 + 𝑥𝑅, 𝑦𝐿 + 𝑦𝑅 [𝑂(𝑛)]
2. find 𝑥𝐿𝑦𝐿, 𝑥𝑅𝑦𝑅, and (𝑥𝐿 + 𝑥𝑅)(𝑦𝐿 + 𝑦𝑅) recursively
3. and assemble the results in linear time

Roughly speaking, the recurrence is

𝑇 (𝑛) ≈ 3𝑇 (𝑛
2

) + 𝑐𝑛

▶ one subproblem is actually one bit bigger. Does it
matter?

/Sub-
type
/Tex-
t/F
1/T
(Wait)/Con-
tents
(2)

Recursive Algorithm
To compute

2𝑛 ⋅ 𝑥𝐿𝑦𝐿 + 2𝑛
2 ⋅ (𝑥𝐿𝑦𝑅 + 𝑥𝑅𝑦𝐿) + 𝑥𝑅𝑦𝑅

1. find 𝑥𝐿, 𝑥𝑅, 𝑦𝐿, 𝑦𝑅 and 𝑥𝐿 + 𝑥𝑅, 𝑦𝐿 + 𝑦𝑅 [𝑂(𝑛)]
2. find 𝑥𝐿𝑦𝐿, 𝑥𝑅𝑦𝑅, and (𝑥𝐿 + 𝑥𝑅)(𝑦𝐿 + 𝑦𝑅) recursively
3. and assemble the results in linear time

Roughly speaking, the recurrence is

𝑇 (𝑛) ≈ 3𝑇 (𝑛
2

) + 𝑐𝑛

▶ one subproblem is actually one bit bigger. Does it
matter?

	Divide and conquer
	Big Picture
	Merge Sort
	Recursion tree
	Integer Multiplication

