Foundations of Machine Learning Introduction to ML

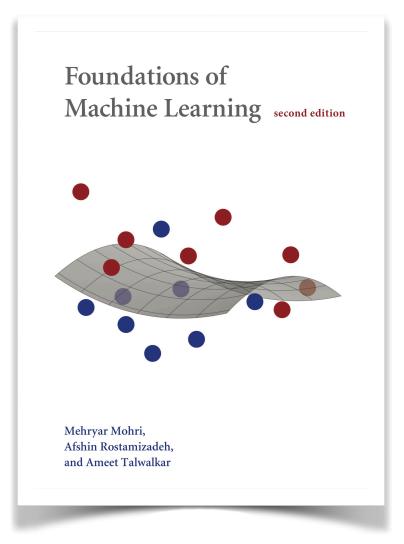
Mehryar Mohri
Courant Institute and Google Research
mohri@cims.nyu.edu

Logistics

- Prerequisites: basics in linear algebra, probability, and analysis of algorithms.
- Workload: about 3-4 homework assignments + project.
- Mailing list: join as soon as possible.

Course Material

Textbook



Slides: course web page.

https://cs.nyu.edu/~mohri/ml24/

This Lecture

- Basic definitions and concepts.
- Introduction to the problem of learning.
- Probability tools.

Machine Learning

- Definition: computational methods using experience to improve performance.
- Experience: data-driven task, thus statistics, probability, and optimization.
- Computer science: learning algorithms, analysis of complexity, theoretical guarantees.
- Example: use document word counts to predict its topic.

Examples of Learning Tasks

- Text: document classification, spam detection.
- Language: NLP tasks (e.g., morphological analysis, POS tagging, context-free parsing, dependency parsing).
- Speech: recognition, synthesis, verification.
- Image: annotation, face recognition, OCR, handwriting recognition.
- Games (e.g., chess, backgammon, go).
- Unassisted control of vehicles (robots, car).
- Medical diagnosis, fraud detection, network intrusion.

Some Broad ML Tasks

- Classification: assign a category to each item (e.g., document classification).
- Regression: predict a real value for each item (prediction of stock values, economic variables).
- Ranking: order items according to some criterion (relevant web pages returned by a search engine).
- Clustering: partition data into 'homogenous' regions (analysis of very large data sets).
- Dimensionality reduction: find lower-dimensional manifold preserving some properties of the data.

General Objectives of ML

Theoretical questions:

- what can be learned, under what conditions?
- are there learning guarantees?
- analysis of learning algorithms.

Algorithms:

- more efficient and more accurate algorithms.
- deal with large-scale problems.
- handle a variety of different learning problems.

This Course

Theoretical foundations:

- learning guarantees.
- analysis of algorithms.

Algorithms:

- main mathematically well-studied algorithms.
- discussion of their extensions.

Applications:

illustration of their use.

Topics

- Probability tools, concentration inequalities.
- PAC learning model, Rademacher complexity, VC-dimension, generalization bounds.
- Support vector machines (SVMs), margin bounds, kernel methods.
- Ensemble methods, boosting.
- Logistic regression and conditional maximum entropy models.
- On-line learning, weighted majority algorithm, Perceptron algorithm, mistake bounds.
- Regression, generalization, algorithms.
- Ranking, generalization, algorithms.
- Reinforcement learning, MDPs, bandit problems and algorithm.

Definitions and Terminology

- Example: item, instance of the data used.
- Features: attributes associated to an item, often represented as a vector (e.g., word counts).
- Labels: category (classification) or real value (regression) associated to an item.

Data:

- training data (typically labeled).
- test data (labeled but labels not seen).
- validation data (labeled, for tuning parameters).

General Learning Scenarios

Settings:

- batch: learner receives full (training) sample, which he uses to make predictions for unseen points.
- on-line: learner receives one sample at a time and makes a prediction for that sample.

Queries:

- active: the learner can request the label of a point.
- passive: the learner receives labeled points.

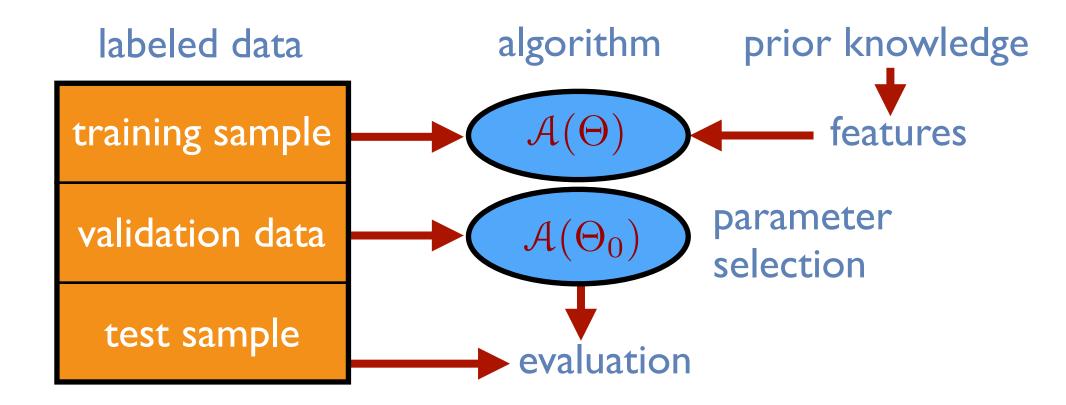
Standard Batch Scenarios

- Unsupervised learning: no labeled data.
- Supervised learning: uses labeled data for prediction on unseen points.
- Semi-supervised learning: uses labeled and unlabeled data for prediction on unseen points.
- Transduction: uses labeled and unlabeled data for prediction on seen points.

Example - SPAM Detection

- Problem: classify each e-mail message as SPAM or non-SPAM (binary classification problem).
- Potential data: large collection of SPAM and non-SPAM messages (labeled examples).

Learning Stages



This Lecture

- Basic definitions and concepts.
- Introduction to the problem of learning.
- Probability tools.

Definitions

- Spaces: input space X, output space Y.
- Loss function: $L: Y \times Y \rightarrow \mathbb{R}$.
 - $L(\widehat{y},y)$: cost of predicting \widehat{y} instead of y.
 - binary classification: 0-1 loss, $L(y, y') = 1_{y \neq y'}$.
 - regression: $Y \subseteq \mathbb{R}$, $l(y, y') = (y' y)^2$.
- Hypothesis set: $H \subseteq Y^X$, subset of functions out of which the learner selects his hypothesis.
 - depends on features.
 - represents prior knowledge about task.

Supervised Learning Set-Up

■ Training data: sample S of size m drawn i.i.d. from $X \times Y$ according to distribution D:

$$S = ((x_1, y_1), \dots, (x_m, y_m)).$$

- Problem: find hypothesis $h \in H$ with small generalization error.
 - deterministic case: output label deterministic function of input, y = f(x).
 - stochastic case: output probabilistic function of input.

Errors

Generalization error: for $h \in H$, it is defined by

$$R(h) = \mathop{\mathbf{E}}_{(x,y)\sim D}[L(h(x),y)].$$

Empirical error: for $h \in H$ and sample S, it is

$$\widehat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} L(h(x_i), y_i).$$

Bayes error:

$$R^{\star} = \inf_{\substack{h \text{ measurable}}} R(h).$$

• in deterministic case, $R^* = 0$.

Noise

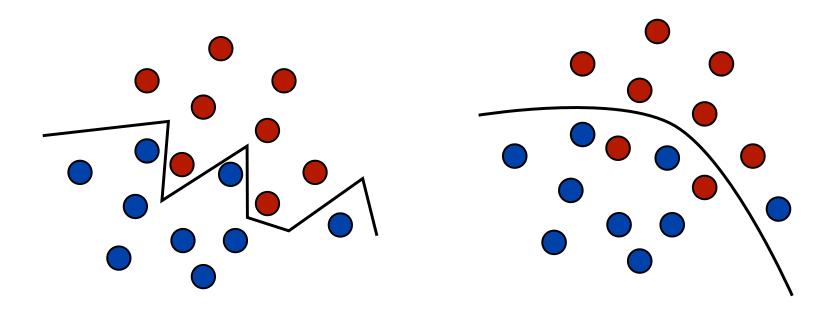
Noise:

• in binary classification, for any $x \in X$,

$$\operatorname{noise}(x) = \min\{\Pr[1|x], \Pr[0|x]\}.$$

• observe that $E[noise(x)] = R^*$.

Learning ≠ Fitting



Notion of simplicity/complexity.

How do we define complexity?

Generalization

Observations:

- the best hypothesis on the sample may not be the best overall.
- generalization is not memorization.
- complex rules (very complex separation surfaces) can be poor predictors.
- trade-off: complexity of hypothesis set vs sample size (underfitting/overfitting).

Model Selection

General equality: for any $h \in H$,

best in class

$$R(h) - R^* = \underbrace{[R(h) - R(h^*)]}_{\text{estimation}} + \underbrace{[R(h^*) - R^*]}_{\text{approximation}}.$$

- \blacksquare Approximation: not a random variable, only depends on H.
- Estimation: only term we can hope to bound.
- \blacksquare How should we choose H?

Empirical Risk Minimization

- \blacksquare Select hypothesis set H.
- Find hypothesis $h \in H$ minimizing empirical error:

$$h = \operatorname*{argmin}_{h \in H} \widehat{R}(h).$$

- but H may be too complex.
- the sample size may not be large enough.

Generalization Bounds

- Definition: upper bound on $\Pr\left[\sup_{h\in H}|R(h)-\widehat{R}(h)|>\epsilon\right]$.
- Bound on estimation error for hypothesis h_0 given by ERM:

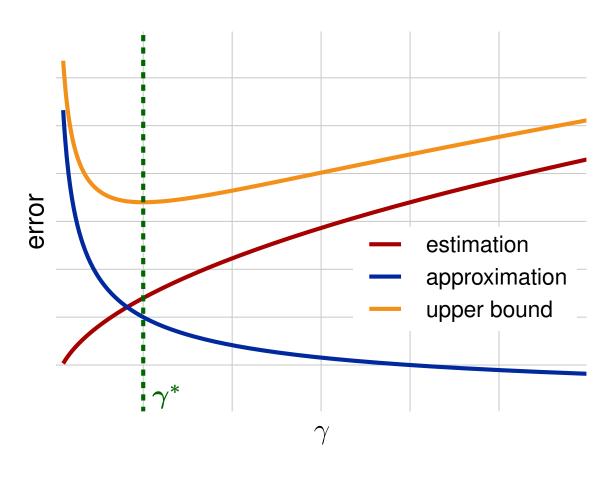
$$R(h_0) - R(h^*) = R(h_0) - \widehat{R}(h_0) + \widehat{R}(h_0) - R(h^*)$$

$$\leq R(h_0) - \widehat{R}(h_0) + \widehat{R}(h^*) - R(h^*)$$

$$\leq 2 \sup_{h \in H} |R(h) - \widehat{R}(h)|.$$

 \longrightarrow How should we choose H? (model selection problem)

Model Selection



$$\mathcal{H} = \bigcup_{\gamma \in \Gamma} \mathcal{H}_{\gamma}.$$

Structural Risk Minimization

(Vapnik, 1995)

Principle: consider an infinite sequence of hypothesis sets ordered for inclusion,

$$H_1 \subset H_2 \subset \cdots \subset H_n \subset \cdots$$

$$h = \underset{h \in H_n, n \in \mathbb{N}}{\operatorname{argmin}} \widehat{R}(h) + \operatorname{penalty}(H_n, m).$$

- strong theoretical guarantees.
- typically computationally hard.

General Algorithm Families

Empirical risk minimization (ERM):

$$h = \operatorname*{argmin}_{h \in H} \widehat{R}(h).$$

 \blacksquare Structural risk minimization (SRM): $H_n \subseteq H_{n+1}$,

$$h = \underset{h \in H_n, n \in \mathbb{N}}{\operatorname{argmin}} \widehat{R}(h) + \operatorname{penalty}(H_n, m).$$

Regularization-based algorithms: $\lambda \ge 0$,

$$h = \operatorname*{argmin}_{h \in H} \widehat{R}(h) + \lambda ||h||^{2}.$$

This Lecture

- Basic definitions and concepts.
- Introduction to the problem of learning.
- Probability tools.

Basic Properties

- Union bound: $Pr[A \lor B] \le Pr[A] + Pr[B]$.
- Inversion: if $\Pr[X \ge \epsilon] \le f(\epsilon)$, then, for any $\delta > 0$, with probability at least 1δ , $X \le f^{-1}(\delta)$.
- Jensen's inequality: if f is convex, $f(E[X]) \le E[f(X)]$.
- Expectation: if $X \ge 0$, $\mathrm{E}[X] = \int_0^{+\infty} \Pr[X > t] \, dt$.

Basic Inequalities

 \blacksquare Markov's inequality: if $X \ge 0$ and $\epsilon > 0$, then

$$\Pr[X \ge \epsilon] \le \frac{\mathrm{E}[X]}{\epsilon}$$
.

 \blacksquare Chebyshev's inequality: for any $\epsilon > 0$,

$$\Pr[|X - \mathrm{E}[X]| \ge \epsilon] \le \frac{\sigma_X^2}{\epsilon^2}.$$

Hoeffding's Inequality

Theorem: Let X_1, \ldots, X_m be indep. rand. variables with the same expectation μ and $X_i \in [a, b]$, (a < b). Then, for any $\epsilon > 0$, the following inequalities hold:

$$\Pr\left[\mu - \frac{1}{m} \sum_{i=1}^{m} X_i > \epsilon\right] \le \exp\left(-\frac{2m\epsilon^2}{(b-a)^2}\right)$$

$$\Pr\left[\frac{1}{m}\sum_{i=1}^{m}X_{i}-\mu>\epsilon\right]\leq \exp\left(-\frac{2m\epsilon^{2}}{(b-a)^{2}}\right).$$

McDiarmid's Inequality

(McDiarmid, 1989)

Theorem: let X_1, \ldots, X_m be independent random variables taking values in U and $f: U^m \to \mathbb{R}$ a function verifying for all $i \in [1, m]$,

$$\sup_{x_1,\ldots,x_m,x_i'} |f(x_1,\ldots,x_i,\ldots,x_m) - f(x_1,\ldots,x_i',\ldots,x_m)| \le c_i.$$

Then, for all $\epsilon > 0$,

$$\Pr\left[\left|f(X_1,\ldots,X_m)-\mathrm{E}[f(X_1,\ldots,X_m)]\right|>\epsilon\right]\leq 2\exp\left(-\frac{2\epsilon^2}{\sum_{i=1}^m c_i^2}\right).$$

Appendix

Markov's Inequality

■ Theorem: let X be a non-negative random variable with $\mathrm{E}[X] < \infty$, then, for all t > 0,

$$\Pr[X \ge t \mathbb{E}[X]] \le \frac{1}{t}.$$

Proof:

$$\Pr[X \ge t \, \mathrm{E}[X]] = \sum_{x \ge t \, \mathrm{E}[X]} \Pr[X = x]$$

$$\le \sum_{x \ge t \, \mathrm{E}[X]} \Pr[X = x] \frac{x}{t \, \mathrm{E}[X]}$$

$$\le \sum_{x} \Pr[X = x] \frac{x}{t \, \mathrm{E}[X]}$$

$$= \mathrm{E}\left[\frac{X}{t \, \mathrm{E}[X]}\right] = \frac{1}{t}.$$

Chebyshev's Inequality

■ Theorem: let X be a random variable with $Var[X] < \infty$, then, for all t > 0,

$$\Pr[|X - E[X]| \ge t\sigma_X] \le \frac{1}{t^2}.$$

Proof: Observe that

$$\Pr[|X - \mathrm{E}[X]| \ge t\sigma_X] = \Pr[(X - \mathrm{E}[X])^2 \ge t^2\sigma_X^2].$$

The result follows Markov's inequality.

Weak Law of Large Numbers

■ Theorem: let $(X_n)_{n\in\mathbb{N}}$ be a sequence of independent random variables with the same mean μ and variance $\sigma^2 < \infty$ and let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, then, for any $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr[|\overline{X}_n - \mu| \ge \epsilon] = 0.$$

Proof: Since the variables are independent,

$$\operatorname{Var}[\overline{X}_n] = \sum_{i=1}^n \operatorname{Var}\left[\frac{X_i}{n}\right] = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}.$$

Thus, by Chebyshev's inequality,

$$\Pr[|\overline{X}_n - \mu| \ge \epsilon] \le \frac{\sigma^2}{n\epsilon^2}.$$

Concentration Inequalities

- Some general tools for error analysis and bounds:
 - Hoeffding's inequality (additive).
 - Chernoff bounds (multiplicative).
 - McDiarmid's inequality (more general).

Hoeffding's Inequality

Corollary: for any $\epsilon > 0$, any distribution D and any hypothesis $h: X \to \{0,1\}$, the following inequalities hold:

$$\Pr[\widehat{R}(h) - R(h) \ge \epsilon] \le e^{-2m\epsilon^2}$$

$$\Pr[\widehat{R}(h) - R(h) \le -\epsilon] \le e^{-2m\epsilon^2}.$$

- Proof: follows directly Hoeffding's theorem.
- Combining these one-sided inequalities yields

$$\Pr\left[\left|\widehat{R}(h) - R(h)\right| \ge \epsilon\right] \le 2e^{-2m\epsilon^2}.$$

Chernoff's Inequality

- Theorem: for any $\epsilon > 0$, any distribution D and any hypothesis $h: X \rightarrow \{0,1\}$, the following inequalities hold:
- Proof: proof based on Chernoff's bounding technique.

$$\Pr[\widehat{R}(h) \ge (1+\epsilon)R(h)] \le e^{-mR(h)\epsilon^2/3}$$

$$\Pr[\widehat{R}(h) \le (1 - \epsilon)R(h)] \le e^{-mR(h)\epsilon^2/2}.$$

McDiarmid's Inequality

(McDiarmid, 1989)

■ Theorem: let X_1, \ldots, X_m be independent random variables taking values in U and $f: U^m \to \mathbb{R}$ a function verifying for all $i \in [1, m]$,

$$\sup_{x_1,\ldots,x_m,x_i'} |f(x_1,\ldots,x_i,\ldots,x_m) - f(x_1,\ldots,x_i',\ldots,x_m)| \le c_i.$$

Then, for all $\epsilon > 0$,

$$\Pr\left[\left|f(X_1,\ldots,X_m)-\mathrm{E}[f(X_1,\ldots,X_m)]\right|>\epsilon\right]\leq 2\exp\left(-\frac{2\epsilon^2}{\sum_{i=1}^m c_i^2}\right).$$

Comments:

- Proof: uses Hoeffding's lemma.
- Hoeffding's inequality is a special case of McDiarmid's with

$$f(x_1, \dots, x_m) = \frac{1}{m} \sum_{i=1}^m x_i$$
 and $c_i = \frac{|b_i - a_i|}{m}$.

Jensen's Inequality

Theorem: let X be a random variable and f a measurable convex function. Then,

$$f(E[X]) \le E[f(X)].$$

Proof: definition of convexity, continuity of convex functions, and density of finite distributions.

