Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 4

Due: April 27, 2007

This is a shorter assignment to leave you more time to work on your project.

Boosting

Suppose we simplify AdaBoost by setting the parameter α_t to a fix value $\alpha_t = \alpha > 0$, independent of the boosting round t.

- 1. Let γ be such that $(\frac{1}{2} \epsilon_t) \ge \gamma > 0$ where ϵ_t is defined as in class. Find the best value of α as a function of γ by analyzing the empirical error.
- 2. For that value of α , does the algorithm assign the same probability mass to correctly classified and misclassified examples at each round? Which set is assigned a higher probability mass?
- 3. Using the previous value of α , give a bound on the empirical error of the algorithm that depends only on γ and the number of rounds of boosting T.
- 4. Using the previous bound, show that for $T > \frac{\log m}{2\gamma^2}$, the resulting hypothesis is consistent with the sample of size m.
- 5. Let s be the VC dimension of the base learners used. Give a bound on the generalization error of the consistent hypothesis obtained after $T = \left\lfloor \frac{\log m}{2\gamma^2} \right\rfloor + 1$ rounds of boosting (hint: you can use the fact that the VC dimension of the family of functions $\left\{ \operatorname{sgn}(\sum_{t=1}^T \alpha_t h_t) : \alpha_t \in \mathbb{R} \right\}$ is bounded by $2(s+1)T \log_2(eT)$). Suppose now that γ varies with m. Based on the bound derived, what can you say if $\gamma(m) = O(\sqrt{\frac{\log m}{m}})$?