Foundations of Machine Learning

Courant Institute of Mathematical Sciences

Homework assignment 2

Due: February 21, 2006

Problem 1: VC dimension

- (1) Show that the VC dimension of the class C of halfspaces over \mathbb{R}^n is n+1. To do that, proceed as follows.
 - (a) Show that $VCdim(C) \ge n + 1$.
 - (b) Use Radon's theorem: Any set of n+2 points $X \subset \mathbb{R}^n$ can be partitioned in two subsets X_1 and X_2 such that the convex hulls of X_1 and X_2 intersect. to show that $\operatorname{VCdim}(C) \leq n+1$.
 - (c) Prove Radon's theorem.
- (2) Consider now the class C_k of convex intersections of k halfspaces. Give lower and upper bounds estimates for $VCdim(C_k)$.
- (3) Let A and B be two sets of functions mapping from X into $\{0,1\}$, and assume that both A and B have finite VC dimension, with VCdim $(A) = d_A$ and VCdim $(B) = d_B$. Let $C = A \cup B$ be the union of A and B.
 - (a) Prove that for all m, $\Pi_C(m) \leq \Pi_A(m) + \Pi_B(m)$.
 - (b) Use Sauer's lemma to show that for $m \ge d_A + d_B + 2$, $\Pi_C(m) < 2^m$, and give a bound on the VC dimension of C.

Problem 2: Sample complexity

A function $h: \{0,1\}^n \to \{0,1\}$ is *symmetric* if its value is uniquely determined by the number of 1's in the input. Let C denote the set of all symmetric functions.

- (a) Determine the VC dimension of C.
- (b) Give lower and upper bounds on the sample complexity of any consistent PAC learning algorithm for C.

(c) Note that any hypothesis $h \in C$ can be represented by a vector $(y_0, y_1, ..., y_n) \in \{0, 1\}^{n+1}$, where y_i is the value of h on examples having precisely i 1's. Devise a consistent learning algorithm for C based on that representation.