Foundations of Machine Learning

Department of Computer Science, NYU

Homework assignment 1

Due: February 8, 2005

Problem 2: Bernstein's Inequality

The objective of this problem is to prove Bennett's and Berstein's inequalities.

(1) Show that for any t > 0, and any random variable X with E[X] = 0, $E[X^2] = \sigma^2$, and $X \le c$,

$$E[e^{tX}] \le e^{f(\sigma^2/c^2)},$$

where

$$f(x) = \log(\frac{1}{1+x}e^{-ctx} + \frac{x}{1+x}e^{ct}).$$

- (2) Show that $f''(x) \leq 0$ for $x \geq 0$.
- (3) Using Chernoff's bounding technique, show that

$$\Pr\left[\frac{1}{m}\sum_{i=1}^{m}X_{i} \geq \epsilon\right] \leq e^{-tm\epsilon + \sum_{i=1}^{m}f(\sigma_{X_{i}}^{2}/c^{2})},$$

where $(\sigma_{X_i}^2)$ is the variance of X_i .

- (4) Show that $f(x) \le f(0) + xf'(0) = (e^{ct} 1 ct)x$.
- (5) Using the bound derived in (4), find the optimal value of t.
- (6) Bennett's inequality. Let X_1, \ldots, X_m be independent real-valued random variables with zero mean such that for $i = 1, \ldots, m, X_i \leq c$. Let $\sigma^2 = \frac{1}{m} \sum_{i=1}^m \sigma_{X_i}^2$. Show that

$$\Pr\left[\frac{1}{m}\sum_{i=1}^{m}X_{i} > \epsilon\right] \leq \exp\left(-\frac{m\sigma^{2}}{c^{2}}\theta\left(\frac{\epsilon c}{\sigma^{2}}\right)\right),$$

where $\theta(x) = (1+x)\log(1+x) - x$.

(7) Berstein's inequality. Show that under the same conditions as Bennett's inequality

$$\Pr\left[\frac{1}{m}\sum_{i=1}^{m}X_{i} > \epsilon\right] \le \exp\left(-\frac{m\epsilon^{2}}{2\sigma^{2} + 2c\epsilon/3}\right).$$

Hint: show that for all $x \ge 0$, $\theta(x) \ge h(x) = \frac{3}{2} \frac{x^2}{x+3}$.

(8) Write Hoeffding's inequality assuming the same conditions. For what values of σ is Bernstein's inequality better than Hoeffding's inequality?

Problem 3: Two-Oracle Variant of PAC model

Assume that positive and negative examples are now drawn from two separate distributions D_+ and D_- . For an accuracy $(1 - \epsilon)$, the learning algorithm must find a hypothesis h such that:

$$\Pr_{x \sim D_+}[h(x) = 0] \le \epsilon \text{ and } \Pr_{x \sim D_-}[h(x) = 1] \le \epsilon$$

Thus, the hypothesis must have a small error on both distributions.

Let C be any concept class and H be any hypothesis space. Let h_0 and h_1 represent the identically 0 and identically 1 functions, respectively. Prove that C is efficiently PAC-learnable using H in the standard (one-oracle) PAC model if and only if it is efficiently PAC-learnable using $H \cup \{h_0, h_1\}$ in this two-oracle PAC model.