Convergence 10/36-705 Intermediate Statistics Lecture Notes 3

Xuezhe Ma

1 Introduction

The most important aspect of probability theory concerns the behavior of sequence of randoms. This part of probability is called **large sample theory**, or **limit theory**, or **asymptotic theory**. The basic question is: what can we say about the limiting behavior of a sequence of random variables X_1, X_2, X_3, \ldots ? In this lecture, we will briefly discuss different types of convergence and introduce two fundamentally important theorems: the **law of large numbers** and the **central limit theorem**.

1.1 Random Samples

Let's first review some definitions of random samples.

Let $X_1, \ldots, X_n \sim P$. A **statistic** is any function $T_n = g(X_1, \ldots, X_n)$.

The sample mean is

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

and sample variance is

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Let $\mu = \mathrm{E}[X_i]$ and $\sigma^2 = \mathrm{Var}[X_i]$. Recall that

$$E[\overline{X}_n] = \mu, \quad Var[\overline{X}_n] = \frac{\sigma^2}{n}, \quad E[S_n^2] = \sigma^2.$$

Note that a statistic T_n is unnecessarily to be a single random variable, but to be a sequence of random variables. See the following example,

Example 1. Let $X_{(1)}, \ldots, X_{(n)}$ denoted the ordered values:

$$X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}$$
.

Then $T_n = (X_{(1)}, \dots, X_{(n)})$ is called the order statistic.

Lemma 1. If $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, then $\overline{X}_n \sim N(\mu, \frac{\sigma^2}{n})$.

Proof. We know that the mgf of X_i is $M_{X_i}(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$. We have,

$$\begin{split} M_{\overline{X}_n}(t) &= & \mathrm{E}[e^{t\overline{X}_n}] = \mathrm{E}[e^{\frac{t}{n}\sum_{i=1}^n X_i}] \\ &= & (\mathrm{E}[e^{tX_i/n}])^n = (M_{X_i}(t/n))^n = e^{\mu t + \frac{\sigma^2}{2}t^2} \end{split}$$

which is the mgf of a random variable $X \sim N(\mu, \sigma^2/n)$.

2 Convergence

The four main types of convergence are defined as follows.

Definition 1 (almost surely convergence).

 X_n converges almost surely to X, written $X_n \stackrel{a.s.}{\to} X$, if for every $\epsilon > 0$,

$$\mathbb{P}\left(\lim_{n\to\infty}|X_n - X| < \epsilon\right) = 1\tag{1}$$

 X_n converges almost surely to a constant c, written $X_n \stackrel{a.s.}{\to} c$, if for every $\epsilon > 0$,

$$\mathbb{P}\left(\lim_{n\to\infty}|X_n-c|<\epsilon\right)=1\tag{2}$$

Note that the definition of *almost surely convergence* relies on the definition of *limit of a sequence of events* which is beyond the scope of this course. More information can be found in the course of **36-752 Advanced Probability Theory**. In this course, we are interested in the following three types of convergences.

Definition 2 (in probability convergence).

 X_n converges in probability to X, written $X_n \stackrel{P}{\to} X$, if for every $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left(|X_n - X| > \epsilon\right) = 0 \tag{3}$$

 X_n converges in probability to a constant c, written $X_n \stackrel{P}{\to} c$, if for every $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left(|X_n - c| > \epsilon\right) = 0. \tag{4}$$

Definition 3 (in quadratic convergence).

 X_n converges in quadratic to X, written $X_n \stackrel{qm}{\to} X$, if

$$\lim_{n \to \infty} E[(X_n - X)^2] = 0$$
 (5)

 X_n converges in quadratic to a constant c, written $X_n \stackrel{qm}{\to} c$, if

$$\lim_{n \to \infty} E[(X_n - C)^2] = 0.$$
 (6)

Definition 4 (in distribution convergence).

 X_n converges in distribution to X, written $X_n \rightsquigarrow X$, if at all $t \in \mathcal{R}$ where F is continuous,

$$\lim_{n \to \infty} F_n(t) = F(t) \tag{7}$$

where F_n and F are cdf of X_n and X, respectively.

 X_n converges in distribution to a constant c, written $X_n \leadsto c$, if for all $t \neq c$,

$$\lim_{n \to \infty} F_n(t) = \delta_c(t) \tag{8}$$

where $\delta_c(t) = 0$ if t < c and $\delta_c(t) = 1$ if $t \ge c$.

The relationships between the types of convergence can be summarized as follows: Make sure you can prove the above implications. In general, none of the reverse

q.m.
$$\downarrow$$
 a.s. \rightarrow prob \rightarrow distribution

implications hold except a special case introducing in the following theorem.

Theorem 2. If $X_n \leadsto c$, then $X_n \stackrel{P}{\to} c$, where c is a constant real number.

Proof.

$$\mathbb{P}(|X_n - c| > \epsilon) = \mathbb{P}(X_n < c - \epsilon) + \mathbb{P}(X_n > c + \epsilon)$$

$$= F_n(c - \epsilon) + 1 - F_n(c + \epsilon)$$

$$\xrightarrow{n \to \infty} \delta_c(c - \epsilon) + 1 - \delta_c(c + \epsilon)$$

$$= 0 + 1 - 1 = 0$$

Some convergence properties are preserved under transformations:

Theorem 3. (a). If $X_n \overset{P}{\to} X$ and $Y_n \overset{P}{\to} Y$, then $X_n + Y_n \overset{P}{\to} X + Y$. (b). If $X_n \overset{qm}{\to} X$ and $Y_n \overset{qm}{\to} Y$, then $X_n + Y_n \overset{qm}{\to} X + Y$. (c). If $X_n \overset{P}{\to} X$ and $Y_n \overset{P}{\to} Y$, then $X_n Y_n \overset{P}{\to} X Y$.

(c). If
$$X_n \stackrel{P}{\to} X$$
 and $Y_n \stackrel{P}{\to} Y$, then $X_n Y_n \stackrel{P}{\to} XY$

In general, $X_n \leadsto X$ and $Y_n \leadsto Y$ does not imply that $X_n + Y_n \leadsto X + Y$ or $X_nY_n \rightsquigarrow XY$. But there are cases when it does:

Theorem 4 (Slutzky's Theorem). If $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow c$, then

- (a). $X_n + Y_n \rightsquigarrow X + c$
- (b). $X_n Y_n \leadsto cX$

Theorem 5 (Continuous Mapping Theorem). *Let g be a continuous function.*

- (a). If $X_n \stackrel{P}{\to} X$, then $g(X_n) \stackrel{P}{\to} g(X)$.
- (b). If $X_n \rightsquigarrow X$, then $g(X_n) \rightsquigarrow g(X)$.

Proof. (a). Since g is a comtinuous function, we have that $\forall \epsilon > 0, \exists \delta$ s.t. $\forall |x - \theta|$ $|y| < \delta, |g(x) - g(y)| < \epsilon.$

Then we have $\forall \epsilon > 0$,

$$\mathbb{P}(|g(X_n) - g(X)| < \epsilon) \ge \mathbb{P}(|X_n - X| < \delta).$$

As $X_n \stackrel{P}{\to} X$, we have

$$\lim_{n \to \infty} \mathbb{P}(|g(X_n) - g(X)| < \epsilon) \ge \lim_{n \to \infty} \mathbb{P}(|X_n - X| < \delta) = 1.$$

So we have $g(X_n) \stackrel{P}{\to} g(X)$.

(b). From Portmanteau theorem, $X_n \rightsquigarrow X$ is equivalent to for every closed set F,

$$\limsup_{n \to \infty} \mathbb{P}(X_n \in F) \le \mathbb{P}(X \in F)$$

For closed set F, we denote $S = q^{-1}(F)$ as the pre-image of F under the mapping g. We first prove that S is a closed set when g is continuous.

Assume a sequence of points $x_1, \ldots, x_n \in S$ and $x_n \to x$. We have $g(x_1), \ldots, g(x_n) \in$ F. Since g is continuous, we have $g(x_n) \to g(x)$. As F is closed, $g(x) \in F$. Then $x \in S$. So we have proved that S is closed. Then,

$$\limsup_{n\to\infty} \mathbb{P}(g(X_n)\in F) = \limsup_{n\to\infty} \mathbb{P}(X_n\in S) \le \mathbb{P}(X\in S) = \mathbb{P}(g(X)\in F)$$

So we get
$$g(X_n) \leadsto g(X)$$
.

3 The Law of Large Numbers

The law of large numbers (LLN) says that the mean of a large sample is close to the mean of the distribution, i.e. the distribution of \overline{X}_n becomes more concentrated around its mean as n gets large.

Theorem 6 (The Weak Law of Large Numbers (WLLN)). If X_i, \ldots, X_n are iid, then $\overline{X}_n \stackrel{P}{\to} \mu$, where $\mu = E[X_i]$.

Proof. Here we only provide the proof for an easy case: the variance of X_i exists $(\operatorname{Var}[X_i] < \infty)$.

Assume that $\sigma^2 = \operatorname{Var}[X_i] < \infty$. Using Chebyshev's inequality,

$$\mathbb{P}(|\overline{X}_n - \mu| > \epsilon) \le \frac{\operatorname{Var}[\overline{X}_n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

which tends to 0 as $n \to \infty$.

We introduce the Strong Law of Large Numbers (SLLN), though it is beyound the scope of this course.

Theorem 7 (The Strong Law of Large Numbers (WLLN)). If X_i, \ldots, X_n are iid, then $\overline{X}_n \stackrel{as}{\to} \mu$, where $\mu = E[X_i]$.

4 The Central Limit Theorem