On the Duality of Dataintensive File System Design: Reconciling HDFS and PVFS

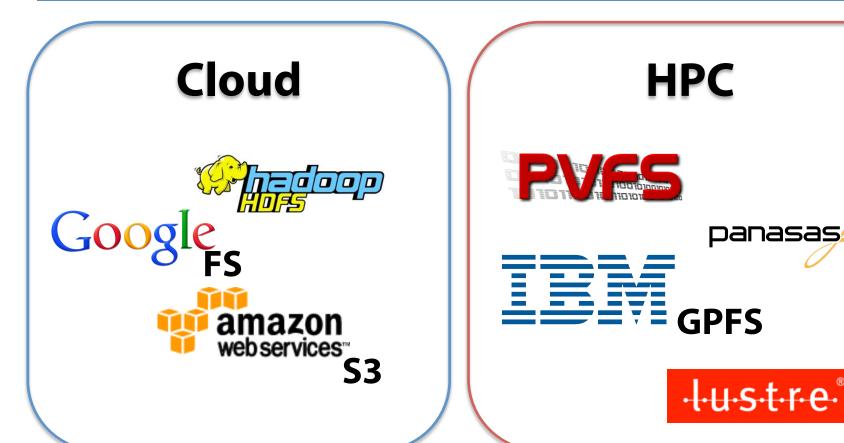
Wittawat Tantisiriroj

Swapnil Patil, Garth Gibson (CMU) Seung Woo Son, Samuel J. Lang, Robert B. Ross (ANL)

Motivation

- Cloud workloads
 - Large input data set (e.g. the entire web)
 - Distributed, parallel application execution
- HPC: tightly coupled tasks
 - Low latency, high bisection bandwidth networking
 - Separation of compute and storage nodes
- Cloud: loosely coupled tasks
 - More loosely networking
 - Collocation of compute and storage nodes
 - Many new specialized distributed file systems

File systems for data-intensive workloads



Is there a key difference between these two types?

Carnegie Mellon Parallel Data Laboratory

In this work ...

- Puts parallel FS into cloud framework and runs cloud workload (Hadoop)
 - PVFS: parallel file system
 - HDFS: file system designed for Hadoop

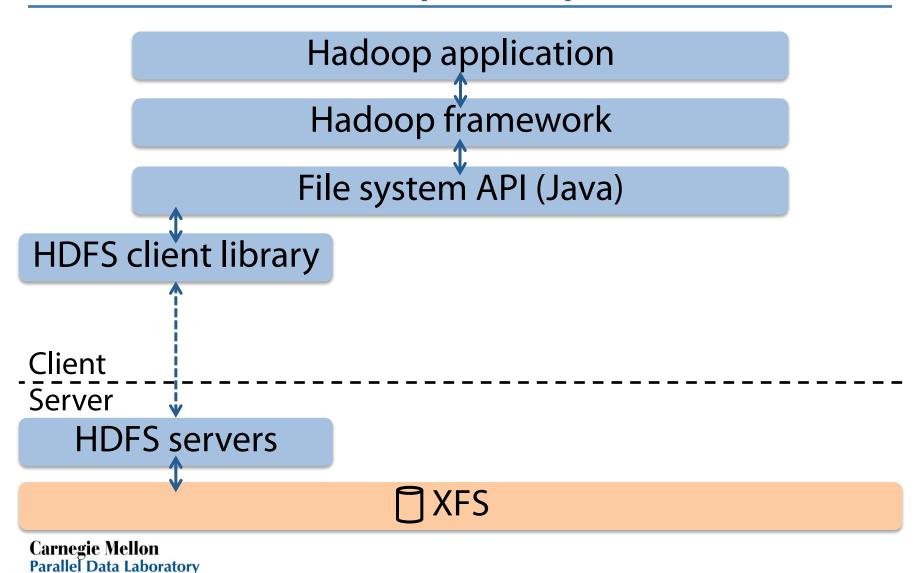
 Tells a story of making a parallel file system work well in a cloud workload

Outline

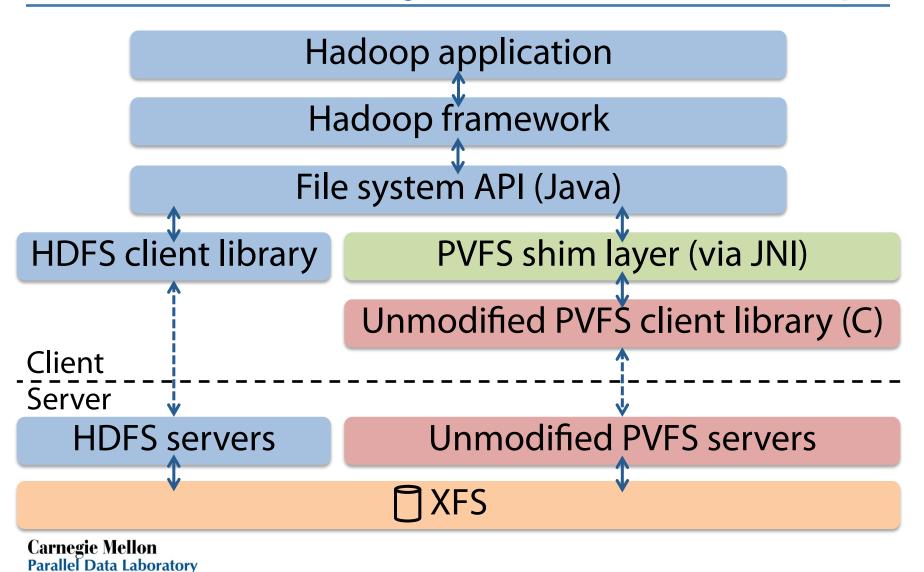
- Shim layer & vanilla PVFS
- Extra performance via shim layer
- Replication in shim layer

Evaluation

Hadoop I/O path



PVFS shim layer under Hadoop

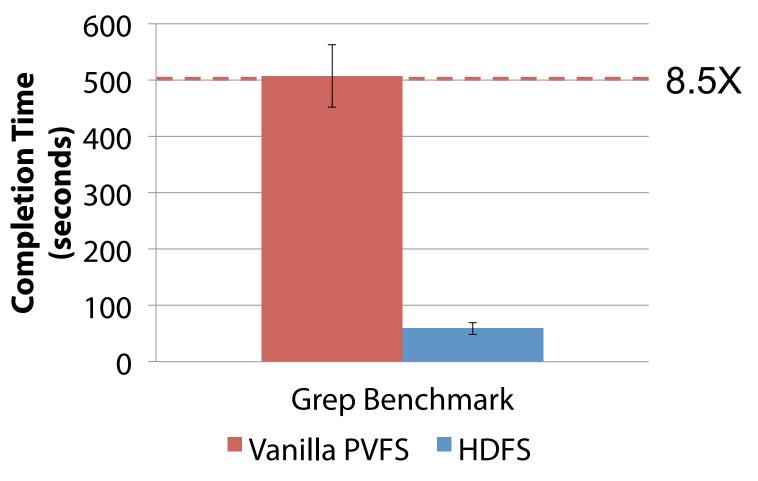


Preliminary evaluation

- Text search ("grep")
 - Common workload in Hadoop applications

- Searchs for rare pattern in 100-byte records
 - 50GB dataset
 - 50 nodes
 - Each node serves as storage and compute nodes

Vanilla PVFS* is disappointing



* with 64MB chunk size to match HDFS'

Carnegie Mellon Parallel Data Laboratory

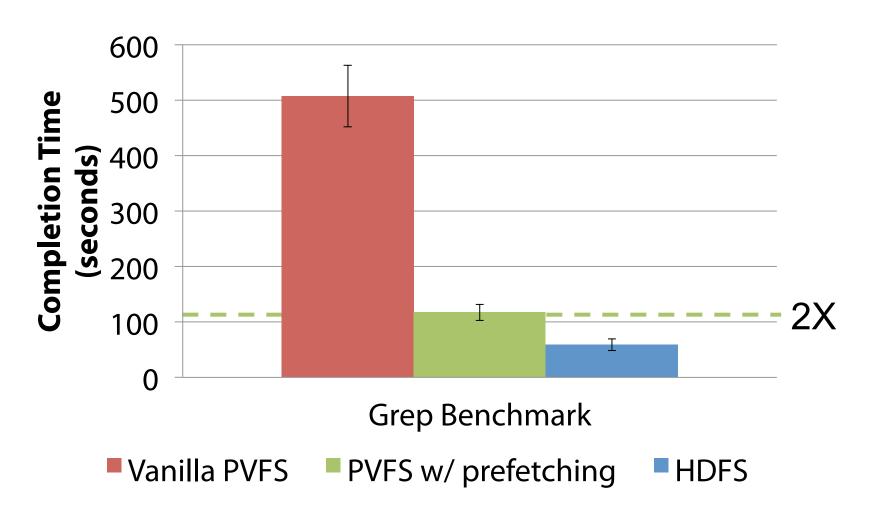
Outline

- Shim layer & vanilla PVFS
- Extra performance via shim layer
 - Prefetching
 - File layout information
- Replication in shim layer
- Evaluation

Prefetching is useful for Hadoop

- Typical Hadoop workload:
 - Small read (less than 128KB)
 - Sequential through entire chunk (64MB)
- HDFS prefetches whole chunks
 - In Hadoop, file becomes immutable after closed
- PVFS: no need for prefetching
 - Apps do large reads
 - Simple: no cache coherence mechanism
- Prefetching added in shim layer

Improving but still 2X slower



Carnegie Mellon Parallel Data Laboratory

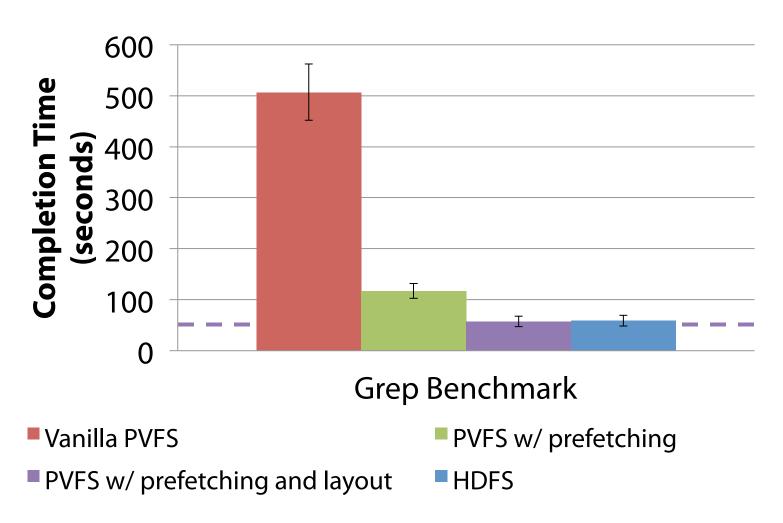
Collocation in Hadoop

- Ships computation to where data is located
 - Helps reduce network traffic

- Requires file layout information
 - Describes where chunks are located

- Already available at PVFS client for direct I/O
 - No standard POSIX call to expose this info
 - Exposes this info to Hadoop in shim layer

Now, comparable performance



Carnegie Mellon Parallel Data Laboratory

Outline

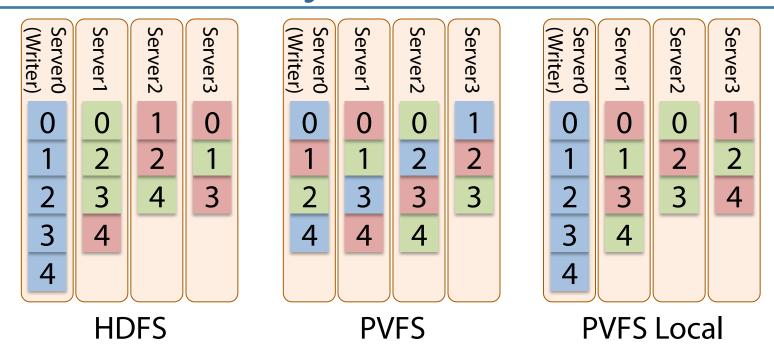
- Shim layer & vanilla PVFS
- Extra performance via shim layer
- Replication in shim layer

Evaluation

Replication vs RAID

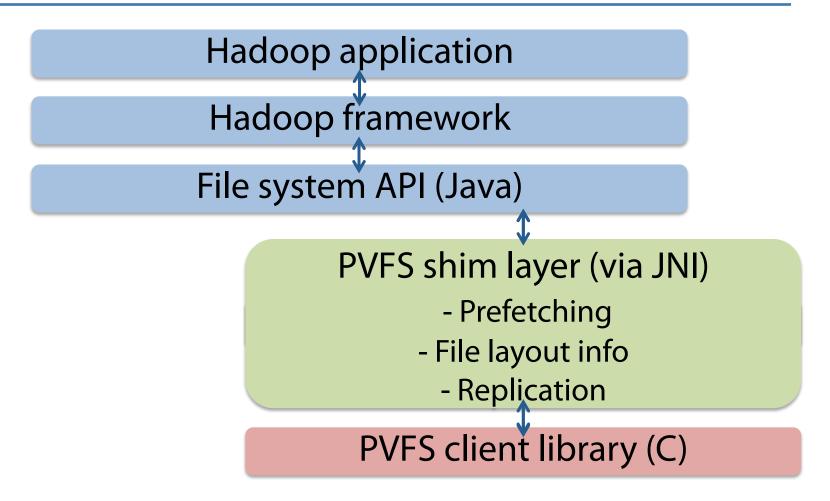
- HDFS: software-based replication
 - 1 local copy on writer's disks, 2 copies random
- PVFS: hardware-based RAID
 - Specialized hardware (RAID controller)
- PVFS with software-based replication
 - Implemented in shim layer
 - Demonstrate PVFS performance for comparison
 - Prototype has no error detection or repair process

Data layout schemes



- HDFS: 1 copy on writer's disks, 2 copies random
- PVFS: 3 copies striped in file (straightforward way)
- PVFS Local: 1 copy on writer's disks, 2 striped
 - Small change and only change we made in PVFS server

Shim layer with 3 extensions



Outline

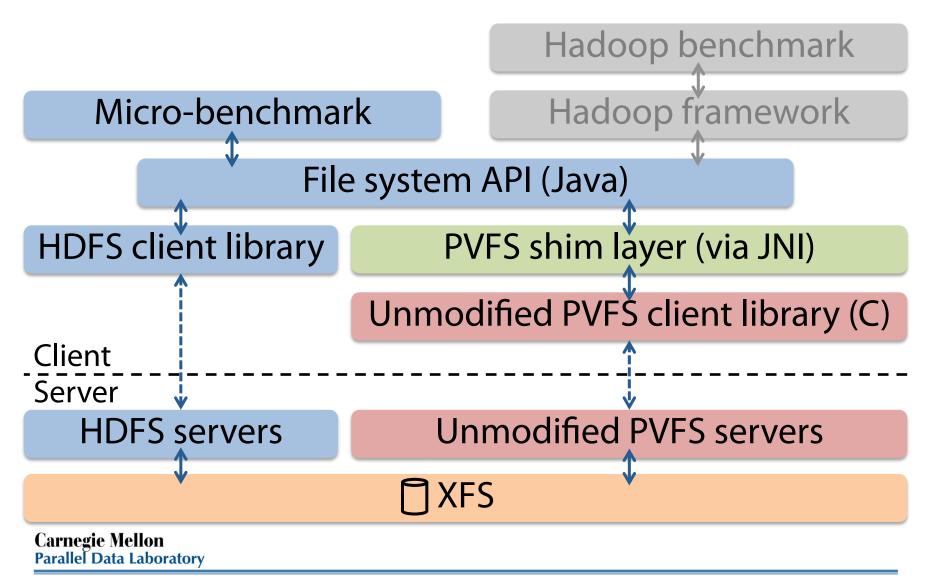
- Shim layer & vanilla PVFS
- Extra performance via shim layer

- Replication in shim layer
- Evaluation
 - Micro-benchmark
 - Hadoop benchmark

Micro-benchmark setting

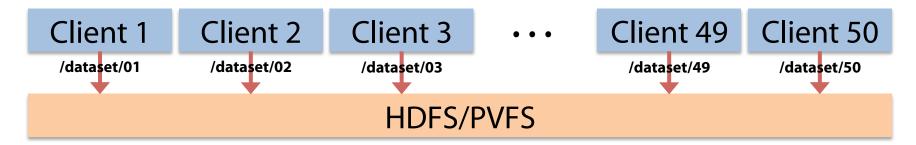
- Cluster configuration
 - 1 master nodes + 50 slave nodes
 - Pentium Xeon 2.8 GHz dual quad core
 - 16 GB Memory
 - One 7200 rpm SATA 160 GB (XFS)
 - 10 Gigabit Ethernet (60Gbps bisection bandwidth)

Using file system API directly

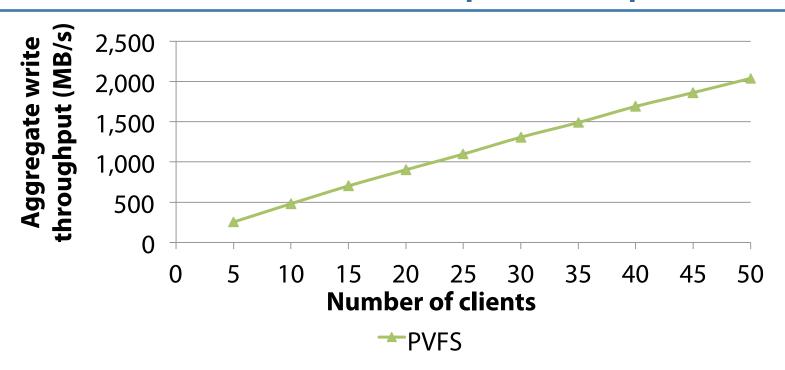


Write benchmark

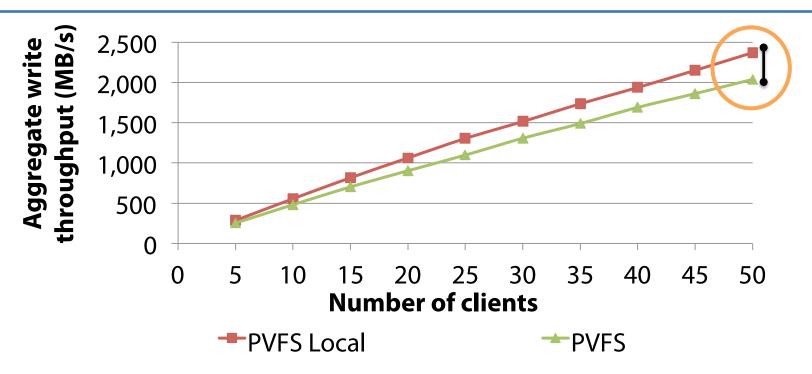
1. 5,10,..., or 50 clients write to 50 data servers



PVFS: linear speed up

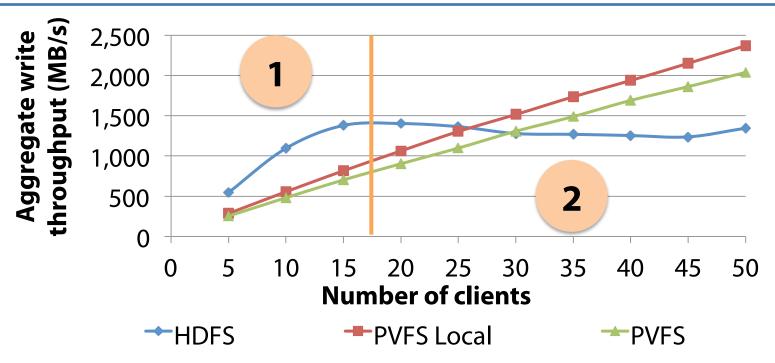


PVFS Local: 20% faster writes



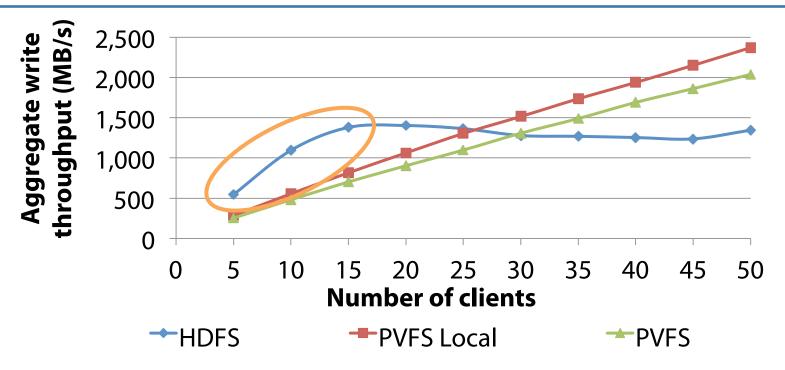
- Reduces network traffic by 33%
 - 3 remote copies vs 2 remote copies

HDFS: two phases



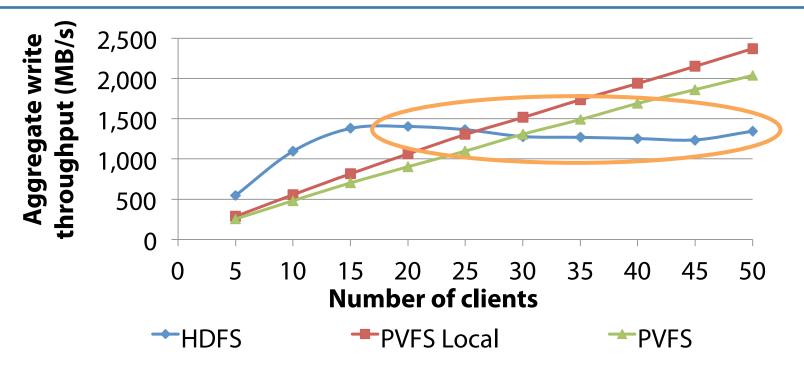
- 1 Faster writes
- ② Saturation

HDFS utilizes idle resource better



- HDFS pipelined replication improves parallelism
 - Better than client driven replication in PVFS

HDFS is surprisingly tied to disk performance

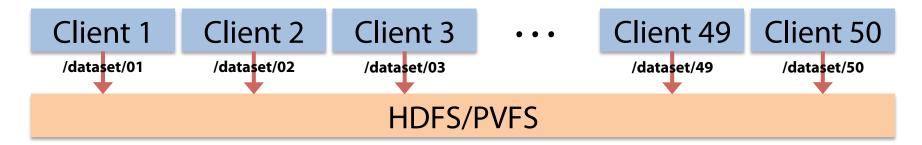


- Limited by synchronous chunk file creation
 - More metadata operation in HDFS
 - New chunk file for each 64MB
 - XFS: file creation queues behind large writes

Carnegie Mellon Parallel Data Laboratory

Read benchmark

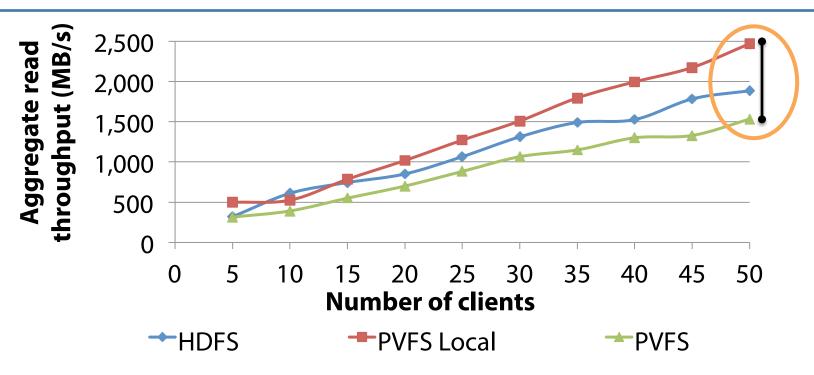
1. 50 clients write to 50 data servers



- 2. 5,10,..., or 50 clients read back
 - The same file each client creates

Carnegie Mellon Parallel Data Laboratory

PVFS Local: 60% faster reads



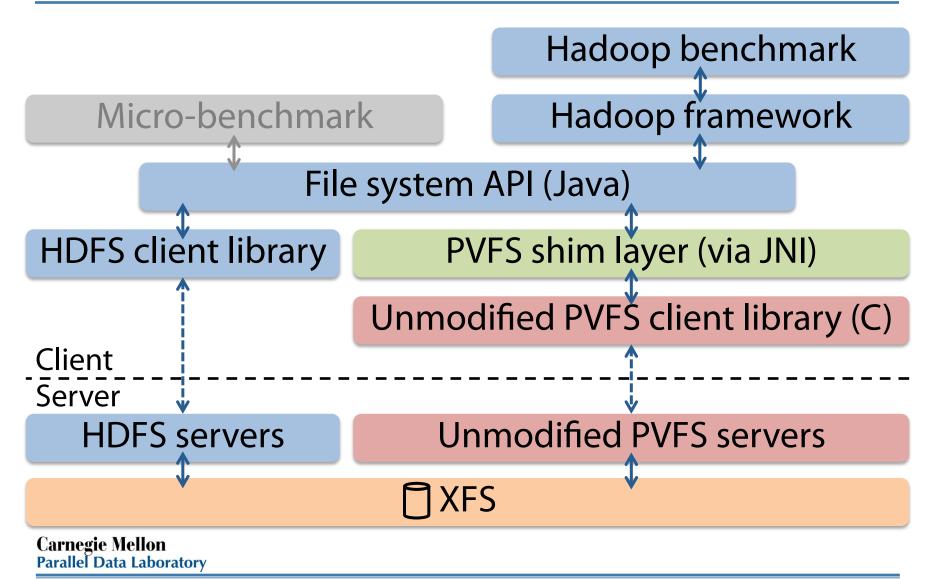
29

- Larger improvement than write
 - No network traffic at all

Hadoop benchmark setting

- Cluster configuration
 - 2 master nodes + 50 slave nodes
 - Pentium Xeon 2.8 GHz dual quad core
 - 16 GB Memory
 - One 7200 rpm SATA 160 GB (XFS)
 - 10 Gigabit Ethernet (60Gbps bisection bandwidth)

Using Hadoop scheduling



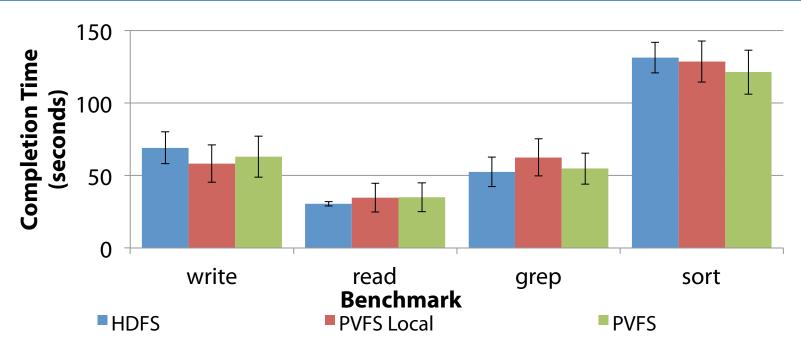
Hadoop benchmark

Dataset: 50GB of 100-byte records

Standard Hadoop benchmarks:

- Write: generate dataset
- Read: read with no computation
- **Grep**: search for rare pattern
- Sort: sort all records

Effect of Hadoop job scheduler



- Masks inefficiencies of PVFS w/o local copy
 - With collocation, most reads become local reads
 - Blocks often processed out of order

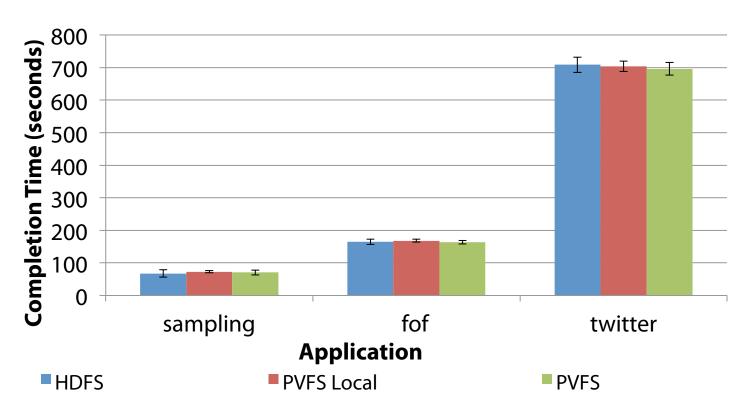
Scientific Hadoop applications

 Sampling: read 71GB astronomy dataset to determine partitions

 FoF: cluster & join astronomical objects of the same 71GB dataset

Twitter: process raw 24GB Twitter dataset into different format

Results



PVFS performance is comparable to HDFS

Summary

- Out-of-the box solution does not perform well
- Comparable performance after tuned
 - Prefetching + Collocation
- Key difference is in fault tolerance
 - Software replication vs hardware RAID
- Difference in performance
 - Significant in some use-cases (micro-benchmarks)
 - Little when using Hadoop scheduling
- Prototype available @ goo.gl/ooysb