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ABSTRACT
We study the value of data privacy in a game-theoretic
model of trading private data, where a data collector pur-
chases private data from strategic data subjects (individu-
als) through an incentive mechanism. The private data of
each individual represents her knowledge about an underly-
ing state, which is the information that the data collector
desires to learn. Different from most of the existing work on
privacy-aware surveys, our model does not assume the data
collector to be trustworthy. Then, an individual takes full
control of its own data privacy and reports only a privacy-
preserving version of her data.

In this paper, the value of ε units of privacy is measured
by the minimum payment of all nonnegative payment mech-
anisms, under which an individual’s best response at a Nash
equilibrium is to report the data with a privacy level of ε.
The higher ε is, the less private the reported data is. We
derive lower and upper bounds on the value of privacy which
are asymptotically tight as the number of data subjects be-
comes large. Specifically, the lower bound assures that it is
impossible to use less amount of payment to buy ε units of
privacy, and the upper bound is given by an achievable pay-
ment mechanism that we designed. Based on these funda-
mental limits, we further derive lower and upper bounds on
the minimum total payment for the data collector to achieve
a given learning accuracy target, and show that the total
payment of the designed mechanism is at most one individ-
ual’s payment away from the minimum.

1. INTRODUCTION
From the monetary coupons offered for revealing opinions

of a product to the large-scale trade of personal information
by data brokers such as Acxiom [20], the commoditization
of private data has been trending up when big data analyt-
ics is playing a more and more critical role in advertising,
scientific research, etc. However, in the wake of a number of
recent scandals, such as the Netflix data breach and the Vet-
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erans Affairs data theft, data privacy is emerging as one of
the most serious concerns of big data analytics. This raises
a fundamental question “whether big-data and privacy can
go hand-by-hand or giving up our privacy is inevitable in
the big-data era.” One common practice of collecting pri-
vate data is called informed consent. With information on
“who is collecting the data, what data is collected, and how
the data will be used,” data subjects decide upon whether
to report data or not. The data collector is supposed to
use the data only in the manner disclosed to data subjects.
This practice, however, has two fundamental issues: (i) data
subjects have no control of data privacy after transferring
private data to the data collector; and (ii) the data collec-
tor has to take full responsibility of protecting users’ private
data, which not only costs significant investment on infras-
tructure and maintenance, but also may lead to reputation
damage if data breach occurs. In some applications, such as
collecting certain browsing history records to enhance the
phishing and malware protection of web browsers [10, 11],
the data collectors prefer to avoid holding individuals’ raw
data for subpoena concerns.

Taking a forward-looking view, we envisage a market model
for private data analytics such that private data is treated as
a commodity and traded in the market. In particular, the
data collector will use an incentive mechanism to pay (or
reward) individuals for reporting informative data, and in-
dividuals control their own data privacy by reporting noisy
data with the appropriate level of privacy protection (or
level of noise added) being strategically chosen to maximize
their payoffs. A distinctive merit of this privacy protec-
tion approach is that data subjects take full control of their
own privacy and the data collector gets informative data but
does not need to bear the responsibility of protecting data
privacy. This differentiates our approach from the existing
work [15, 12, 22, 26, 13, 24, 14], where the data collector
is assumed to be a trustworthy entity who is willing to and
has the capability to protect users’ privacy.

One significant challenge of the proposed paradigm is that
the data collector has no direct control (perhaps no informa-
tion either) over the quality of reported data. To tackle this
challenge, we cast the problem into a game-theoretic setting,
which allows us to quantify two fundamental tradeoffs: the
tradeoff between cost and accuracy from the data collector’s
perspective, and the tradeoff between reward and privacy
from an individual’s perspective (the value of privacy for a
data subject). In return, with the reward (incentive) as the
bridge, it establishes the tradeoff of data privacy concerned
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by an individual versus data quality concerned by the data
collector.

Specifically, we consider a game-theoretic model of col-
lecting private data in hypothesis testing, where the data
collector is interested in learning information from a pop-
ulation of N individuals. An illustration of our model is
shown in Figure 1. The information is represented by a bi-
nary random variable W , which is called the state. Each
individual i possesses a binary signal Si, which is her pri-
vate data, representing her knowledge about the state W .
Conditional on the state W , the signals are independently
generated such that the probability for each signal Si to be
the same as W is θ, where 0.5 < θ < 1. To protect her pri-
vacy, an individual reports only a privacy-preserving version
of her signal, denoted by Xi, or chooses to not participate
after considering both the payment from the data collector
and the loss of privacy. The data collector needs to decide
the amount of payment and the payment mechanism to get
informative reports, i.e., not completely random data. In-
tuitively, the higher the payment is, the more informative
the reported data should be. We will answer the following
fundamental questions in this paper: What is the minimum
payment needed from the data collector to obtain reported
data with a privacy level ε? Which payment mechanism can
be used to collect private data with minimum cost? This set-
ting without accounting for data privacy has garnered much
attention in the literature (see, e.g., [23, 1, 21]), including
the application of estimating the underlying value of a new
technology by eliciting opinions from individuals.

Intuitively, the data collector can purchase more informa-
tive data (so higher privacy) by offering higher payment.
However, the strategic behavior of the privacy-aware indi-
viduals makes this more complicated. Due to privacy con-
cerns, an individual’s action/strategy is the conditional dis-
tributions of the reported data given the realizations of the
signal. But the actions of the individuals are not observable
to the data collector. Instead, what the data collector re-
ceives is the reported data, generated randomly according to
the individuals’ strategies, so the payments can only be de-
signed based on the reported data. This differs our problem
from the conventional mechanism design.

Furthermore, the privacy-aware individuals weigh the pri-
vacy loss against the payment to choose the best quantity
of privacy to trade. To make an individual willing to trade
ε level of privacy, the data collector needs to make sure do-
ing this benefits the individual most. We reiterate that the
data collector has access only to the reported data instead
of the individuals’ actions. Note that only compensating
the privacy cost incurred is not sufficient. The payment
mechanism needs to ensure that ε is the best privacy level
such that when an individual uses a less-private strategy,
the decrease in her payment is faster than the decrease in
her privacy cost, and similarly, when an individual uses a
more-private strategy, the increase in her payment is slower
than the increase in her privacy cost. In other words, with
a game-theoretic approach, we consider an individual’s best
response in a Nash equilibrium, and the value of data pri-
vacy is measured by the minimum payment that makes this
equilibrium strategy have a privacy level of ε, which repre-
sents the monetary value of data privacy in a market for
private data.

Summary of Main Results
It is assumed that individuals use the celebrated notion
of differential privacy [8, 7] to evaluate their data privacy.
When an individual i uses an ε-differentially private random-
ization strategy to generate Xi, the privacy loss incurred is
ε, and the individual’s cost of privacy loss is a function of
ε, whose form is assumed to be publicly known. The value
of ε units of privacy, denoted by V (ε), is measured by the
minimum payment of all nonnegative payment mechanisms
under which an individual’s best response in a Nash equi-
librium is to report the data with privacy level ε, where
nonnegativity ensures that individuals would not be charged
for reporting data. We are interested in the range that ε > 0,
simply because when ε = 0, the reported data is indepen-
dent of the private data and thus would be of no use for data
analysis. Our contributions are summarized as follows:

1. We establish a lower bound on V (ε). First we charac-
terize the strategies of individuals at a Nash equilibrium
to prove that from a payment perspective, it suffices to
focus on nonnegative payment mechanisms at which the
best response of an individual in a Nash equilibrium is
a symmetric randomized response with a privacy level of
ε. This strategy generates the reported data by flipping
the signal with probability 1

eε+1
: for convenience, this is

called the ε-strategy. Next we prove that the expected
payments resulting from any Nash equilibrium of any
payment mechanism can be “replicated” by a genie-aided
payment mechanism, where the payments are determined
with the aid of a genie who knows the underlying state
W . This makes the analysis of the Nash equilibria more
tractable by decoupling the individuals in the payments.
The lower bound is then given by necessary conditions
for ε to be the best privacy level in the genie-aided mech-
anism. We remark that although the genie-aided mecha-
nism that achieves the lower bound is not implementable,
it can be well-approximated, when the number of individ-
uals is large, by the feasible payment mechanism that we
design to establish the upper bound.

2. We observe that the equilibrium strategies exhibit some
interesting characteristics: the strategy of an individual
in a Nash equilibrium is either a symmetric randomized
response, which treats the realizations of the private sig-
nal symmetrically, or a non-informative strategy, where
the reported data is independent of the signal. This char-
acterization holds regardless of the prior distribution of
the state, and it also holds for more general probability
models of the signals. This characterization advances our
understanding of the behavior of privacy-aware individu-
als. It is worth pointing out that finding an equilibrium
strategy of a privacy-aware individual under some pay-
ment mechanism involves non-convex optimization.

3. We prove an upper bound on V (ε) by designing a pay-

ment mechanism R(N,ε), in which the strategy profile
consisting of ε-strategies constitutes a Nash equilibrium.
The expected payment to each individual at this equilib-
rium gives an upper bound on V (ε). This upper bound
converges to the lower bound exponentially fast as the
number of individuals N becomes large, which indicates
that the lower and upper bounds are asymptotically tight.

4. The above fundamental bounds on the value of privacy
can be further used to study the payment–accuracy prob-



lem, where the data collector aims to minimize the total
payment while achieving an accuracy target in learning
the state W . Given an accuracy target τ , which can be
regarded as the maximum allowable error, let F (τ) de-
note the minimum total payment for achieving τ . We
obtain lower and upper bounds on F (τ) based on the
lower and upper bounds on the value of privacy. The
upper bound is given by the designed mechanism R(N,ε)

with properly chosen parameters, which shows that the
total payment of the designed mechanism is at most one
individual’s payment away from the minimum.

2. RELATED WORK
Most existing work on privacy-aware surveys [15, 12, 22,

26, 13, 24, 14] assumes that there is a trusted data curator
or data collector. The private data is either already kept by
the data collector, or is elicited using mechanisms that are
designed with the aim of truthfulness. What the data collec-
tor purchases is the “right” of using individuals’ data in an
announced way. Our work differs from the existing work by
considering a data collector who is not trusted by individ-
uals. In this scenario, the data collector directly purchases
the private data, in which privacy is embedded.

In the seminal work by Ghosh and Roth [15], individuals’
data is already known to the data collector, and individuals
bid their costs of privacy loss caused by data usage, where
each individual’s privacy cost is modeled as a linear function
of ε if her data is used in an ε-differentially private manner.
The goal of the mechanism design is to elicit truthful bids of
individuals’ cost functions, i.e., the coefficients. Subsequent
work [12, 22, 26, 24] explores various models for individuals’
valuation of privacy, especially the correlation between the
coefficients and the private bits.

This line of work has been extended to the scenario that
the data is not available yet and needs to be reported by
the individuals to the data collector, but the data collector
is still trusted [13, 33, 3, 14]. Notably, Ghosh, Ligett and
Roth [14] study the model in which the collected data is
non-verifiable. The goal of the mechanism design there is
to incentivize truthful data reporting (without adding any
noise) from individuals. For more work on the interplay
between differential privacy and mechanism design, Pai and
Roth [25] give a comprehensive survey.

The local model of differential privacy, which is a gener-
alization of randomized response [32] and is formalized in
[19], has been studied in the literature [8, 7, 16, 6, 9, 18,
29, 30, 2, 27]. The hypothesis testing formulation in our pa-
per is similar to a setting in [18], where the authors find an
optimal mechanism that maximizes the statistical discrimi-
nation of the hypotheses subject to local differential privacy
constraint. In practice, Google’s Chrome web browser has
implemented the RAPPOR mechanism [10, 11] to collect
users’ data, which guarantees that only limited privacy will
be leaked by using randomized response in a novel manner.
However, users may still not be willing to report data in the
desired way due to the lack of an incentive mechanism.

3. SYSTEM MODEL
We consider a single-bit learning problem with privacy-

aware individuals as shown in Figure 1. Recall that the
data collector is interested in learning the state W , which
is a binary random variable. For example, the state W can

S1 S2

X2X1 …

…

W

Individual i

Signals

Reported
Data

State

Si

Xi
…

…

Figure 1: Information structure of the model: The
data collector is interested in the state W , which is a
binary random variable. Each individual i possesses
her private data, which is a binary signal Si. Con-
ditioned on W , S1, S2, . . . , SN are i.i.d. Individual i’s
reported data is Xi, which is generated based on Si
using a randomized strategy.

describe the underlying value of some new technology. Let
PW denote the prior PMF of W . We assume that PW (1) > 0
and PW (0) > 0.

Individuals and Strategies. Consider a population of
N individuals and denote the set of individuals by N =
{1, 2, . . . , N}. Denote all individuals other than some given
individual i by “−i.” Each individual i possesses a binary
signal Si, which is her private data, reflecting her knowl-
edge about the state W . For example, Si can represent
individual i’s opinion towards the new technology. Let S =
(S1, S2, · · · , SN ). Conditional on the state W , the signals
S1, S2, . . . , SN are i.i.d. with the following conditional dis-
tributions:

P(Si = 1 |W = 1) = θ, P(Si = 0 |W = 1) = 1− θ,
P(Si = 0 |W = 0) = θ, P(Si = 1 |W = 0) = 1− θ,

where the parameter θ with 0.5 < θ < 1 is called the quality
of signals.

Let Xi denote the data reported by individual i and let
X = (X1, X2, . . . , XN ). The acceptable values for reported
data are 0, 1, and “nonparticipation.” So Xi takes values
in the set X = {0, 1,⊥}, where ⊥ indicates that individ-
ual i declines to participate. A strategy of individual i
for data reporting is a mapping σi : {0, 1} → D(X ), where
D(X ) is the set of probability distributions on X . Let σ =
(σ1, σ2, . . . , σN ). The strategy σi prescribes a distribution to
Xi for each possible value of Si, which defines the conditional
distribution of Xi given Si. Since we will discuss different
strategies of individual i, we let Pσi(Xi = xi | Si = si)
with xi ∈ X and si ∈ {0, 1} denote the conditional prob-
abilities defined by strategy σi. If a strategy σi satisfies
that Pσi(Xi = 1 | Si = 1) = Pσi(Xi = 0 | Si = 0) and
Pσi(Xi = ⊥ | Si = 1) = Pσi(Xi = ⊥ | Si = 0) = 0, we
say σi is a symmetric randomized response. If a strategy σi
makes Xi and Si independent, we say σi is non-informative;
otherwise we say σi is informative.

Mechanism. The data collector uses a payment mech-
anism R : XN → RN to determine the amount of payment
to each individual, where Ri(x) is the payment to individ-
ual i when the reported data is X = x. We are interested
in payment mechanisms in which the payment to each in-
dividual is nonnegative, i.e., Ri(x) ≥ 0 for any individual i
and any x ∈ XN , which we call nonnegative mechanisms.



This constraint is motivated by the fact that in many prac-
tical applications such as surveys, the data collector has no
means to charge users and can only use payments to incen-
tivize user participation.

Privacy Cost. We quantify the privacy loss incurred
when a strategy is in use by the level of (local) differential
privacy [8, 7, 19, 9] of the strategy, defined as follows.

Definition 1. The level of (local) differential privacy, or
simply the privacy level, of a strategy σi, denoted by ζ(σi),
is defined to be

ζ(σi) = max

{
ln

(
Pσi(Xi ∈ E | Si = si)

Pσi(Xi ∈ E | Si = 1− si)

)
:

E ⊆ {0, 1,⊥}, si ∈ {0, 1}
}
,

where we follow the convention that 0/0 = 1, and the strategy
σi is said to be ζ(σi)-differentially private.

The level of differential privacy quantifies the indistin-
guishablity between the conditional distributions of the re-
ported data given different values of the signal, therefore
measuring how disclosive the strategy is. Note that the
amount of privacy leakage quantified by differential privacy
is “in addition” to what the adversaries already know. We
refer the reader to [8] for more semantic implications of dif-
ferential privacy.

The privacy loss causes a cost to an individual. We as-
sume that when using strategies with the same privacy level,
individuals experience the same cost of privacy. Thus, we
model each individual’s cost of privacy by a function g of
the privacy level. We call g the cost function and the cost
the privacy cost. Our results can be extended to the case
where the cost functions are heterogeneous (see the discus-
sion in Section 4.3). We assume that the form of g is publicly
known (Ghosh and Roth [15] and subsequent work study the
scenario that cost functions are private and design truthful
mechanisms to elicit them).

We say the cost function g is proper if it satisfies the fol-
lowing three conditions:

g(ξ) ≥ 0, ∀ξ ≥ 0, (1)

g(0) = 0, (2)

g is non-decreasing, (3)

where (1) follows from the fact that a privacy cost is non-
negative, (2) indicates that the privacy cost is 0 when the
reported data is independent of the private data, and (3)
means that the privacy cost will not decrease when the pri-
vacy loss becomes larger. In this paper, we will focus on a
proper cost function that is convex, continuously differen-
tiable, and g(ξ) = 0 only for ξ = 0. With a little abuse of
notation, we also use g(σi) to denote g(ζ(σi)), which is the
privacy cost to individual i when the strategy σi is used.

Game Formulation and Nash Equilibrium. In this
market model, the data collector first announces a payment
mechanism. Then this mechanism induces a strategic form
game where the individuals are the players. The utility of
each individual is the difference between her payment and
her privacy cost. We assume that the individuals are risk
neutral, i.e., they are interested in maximizing their ex-
pected utility. In this game, the prior distribution PW , the
signal quality parameter θ, the form of the payment mecha-
nism R and the cost function g are common knowledge.

We focus on Nash equilibria of a payment mechanism,
where each individual has no incentive to unilaterally change
her strategy given other individuals’ strategies. Formally, a
Nash equilibrium in our model is defined as follows.

Definition 2. A strategy profile σ is a Nash equilibrium
in a payment mechanism R if for any individual i and any
strategy σ′i,

Eσ[Ri(X)− g(σi)] ≥ E(σ′i,σ−i)
[Ri(X)− g(σ′i)],

where the expectation is over the reported data X, and the
subscripts σ and (σ′i,σ−i) indicate that X is generated by
the strategy profile σ and (σ′i,σ−i), respectively.

4. THE VALUE OF DATA PRIVACY
We say that the data collector obtains ε units of privacy

from an individual i in a payment mechanism if individ-
ual i’s best response in a Nash equilibrium of the mechanism
is to report data with a privacy level of ε. Recall that we
are interested in the regime ε > 0 since the data collector
wants the reported data to be useful for data analysis. Let
R(i; ε) denote the set of nonnegative payment mechanisms
in which the data collector obtains ε units of privacy from
individual i. Then we measure the value of ε units of privacy
by the minimum payment to individual i of all mechanisms
in R(i; ε). Note that this measure does not depend on the
specific identity of i due to the symmetry across individu-
als. For any mechanism R ∈ R(i; ε), let σ(R;ε) denote the
corresponding Nash equilibrium. Then, formally, the value
of ε units of privacy is measured by

V (ε) = inf
R∈R(i;ε)

Eσ(R;ε) [Ri(X)]. (4)

In this section, we first derive a lower bound on V (ε) by
characterizing the Nash equilibria and replicating mecha-
nisms in R(i; ε) by genie-aided mechanisms. We then design
a payment mechanism in R(i; ε), and consequently the equi-
librium payment to individual i in this mechanism serves as
an upper bound of V (ε). The gap between the lower and
upper bounds diminishes to zero exponentially fast as the
number of individuals becomes large, which indicates that
the lower and upper bounds are asymptotically tight.

4.1 Lower Bound
We present a lower bound on V (ε) in Theorem 1 below.

For convenience, we define

VLB(ε) = g′(ε)
eε + 1

eε

(
θ

2θ − 1
(eε + 1)− 1

)
, (5)

where g′ is the derivative of the privacy cost function of an
individual and θ is the quality of signals.

Theorem 1. The value of ε units of privacy measured
in (4) for any ε > 0 is lower bounded as V (ε) ≥ VLB(ε).
Specifically, for any nonnegative payment mechanism R, if
the strategy of an individual i in a Nash equilibrium has a
privacy level of ε with ε > 0, then the expected payment to
individual i at this equilibrium is lower bounded by VLB(ε).

We remark that the lower bound in Theorem 1 can be
achieved by a hypothetical payment mechanism in which a
genie who knows the realization of the underlying state W
guides the data collector on how much to pay each indi-
vidual. Intuitively, the knowledge of the state W provides



more information about the system, which helps the data
collector to obtain privacy with less payment. While it may
sound like a chicken-and-egg problem as the data collector’s
sole purpose of paying individuals for their private data is to
learn the state W , it will become clear that the philosophy
carries over and the data collector should utilize the best
estimate of W in the payment mechanism to minimize the
payment. The insight we gain from this mechanism sheds
light on the asymptotically tight upper bound on the value
of privacy in Section 4.2.

This genie-aided payment mechanism, denoted by R̂(ε),
determines the payment to each individual i based on her
own reported data Xi and the state W as follows:

R̂
(ε)
i (Xi,W ) =

g′(ε)(eε + 1)2

2eε
ÂXi,W , (6)

where

Â1,1 =
1

(2θ − 1)PW (1)
, Â0,0 =

1

(2θ − 1)PW (0)
,

Â0,1 = Â1,0 = 0.

In this mechanism, it can be proved that the best response of
individual i is the following symmetric randomized response,

denoted by σ
(ε)
i , which is ε-differentially private:

P
σ
(ε)
i

(Xi = 1 | Si = 1) = P
σ
(ε)
i

(Xi = 0 | Si = 0) =
eε

eε + 1
,

P
σ
(ε)
i

(Xi = 1 | Si = 0) = P
σ
(ε)
i

(Xi = 0 | Si = 1) =
1

eε + 1
,

P
σ
(ε)
i

(Xi = ⊥ | Si = 1) = P
σ
(ε)
i

(Xi = ⊥ | Si = 0) = 0.

For convenience, we will refer to this strategy as the ε-
strategy. The expected payment to individual i at this strat-
egy equals to the lower bound in Theorem 1.

Next we sketch the proof of Theorem 1. We first give three
lemmas that form the basis of the proof, and then present
the proof based on that. The proofs of these lemmas can be
found in our technical report [31].

4.1.1 Characterization of Nash Equilibria
We first characterize individuals’ behavior in a Nash equi-

librium. In general, an ε-differentially private strategy has
uncountably many possible forms. However, provided that
the strategy is part of a Nash equilibrium (i.e., a best re-
sponse of an individual), the following lemma substantially
reduces the space of possibilities. We remark that a simi-
lar phenomenon for privacy-aware individuals has been ob-
served in [4] in a different setting.

Lemma 1. In any nonnegative payment mechanism, an
individual’s strategy in a Nash equilibrium is either a sym-
metric randomized response, or a non-informative strategy.

We remark that Lemma 1 holds for more general proba-
bility models of the signals. The proof carries over as long
as the support of the joint distribution of the signals is the
entire domain {0, 1}N .

By Lemma 1, if an individual’s strategy in a Nash equilib-
rium has a privacy level of ε, where ε > 0, this equilibrium
strategy is either the ε-strategy or the (−ε)-strategy. The
following lemma says that from the payment perspective, it
suffices to further focus on the case that it is the ε-strategy.

Lemma 2. For any nonnegative payment mechanism R

in which the strategy profile (σ
(−ε)
i ,σ−i) with some ε > 0 is a

Nash equilibrium, there exists another nonnegative payment

mechanism R′ in which (σ
(ε)
i ,σ−i) is a Nash equilibrium,

and the expected payment to each individual at these two
equilibria of the two mechanisms are the same.

This lemma is proved by considering the payment mecha-
nism R′ that is constructed by applying R on the reported
data after modifying Xi to 1−Xi.

4.1.2 Genie-Aided Payment Mechanism
A genie-aided payment mechanism R̂ : XN ×{0, 1} → RN

determines the payment to an individual based on not only
the reported data X but also the underlying state W . Com-
pared with a standard payment mechanism, a genie-aided
mechanism is hypothetical since the data collector has ac-
cess to the underlying state, as if she were aided by a genie.
We consider nonnegative genie-aided payment mechanisms

where R̂i(X,W ), the payment to individual i, depends on
only her own reported data Xi and the underlying state W .

We write R̂i(Xi,W ) to represent R̂i(X,W ) for conciseness.
Therefore, for each individual i, a genie-aided mechanism
makes use of the information of W but discards the informa-
tion in X−i. The following lemma shows that the expected
payments resulting from any Nash equilibrium of any pay-
ment mechanism can be replicated by a genie-aided payment
mechanism with the same Nash equilibrium. Thus we can
restrict our attention to genie-aided mechanisms to obtain
a lower bound on the value of privacy.

Lemma 3. For any nonnegative payment mechanism R
and any Nash equilibrium σ of it, there exists a nonnegative

genie-aided mechanism R̂, such that σ is also a Nash equi-

librium of R̂ and the expected payment to each individual at

this equilibrium is the same under R and R̂.

This lemma is proved by constructing the following genie-

aided payment mechanism R̂ according to the desired equi-
librium σ: for any individual i and any xi ∈ X , w ∈ {0, 1},

R̂i(xi, w) = Ri(xi;w) ..= Eσ[Ri(X) | Xi = xi,W = w].

Our intuition is as follows. A genie-aided mechanism can
use the state W to generate an incentive to individual i,
which “mimics” the incentive provided by the reported data
X−i of others. The above genie-aided payment mechanism

R̂ is constructed such that no matter what strategy individ-

ual i uses, her expected utility is the same under R and R̂.
Since an individual calculates her best response according to
the expected utility, her equilibrium behavior and expected

payment are the same under R̂ and R. We remark that the
Nash equilibria of a genie-aided mechanism are much easier
to analyze since the individuals are decoupled in the pay-
ments and thus an individual’s strategy does not have an
influence on other individuals’ utility.

Let R̂(i; ε) denote the set of nonnegative genie-aided pay-
ment mechanisms in which the ε-strategy is an individual i’s

strategy in a Nash equilibrium, and let σ
(ε)
i denote the ε-

strategy. Consider

V̂ (ε) = inf
R̂∈R̂(i;ε)

E
σ
(ε)
i

[
R̂i(Xi,W )

]
,



which is a definition similar to the value of ε units of privacy,

V (ε), measured in (4). Then V̂ (ε) ≤ V (ε) for the following
reasons. Consider any R ∈ R(i; ε), i.e., any nonnegative
payment mechanism R in which individual i’s strategy in a
Nash equilibrium has a privacy level of ε. With Lemma 1
and 2, we can assume without loss of generality that this
equilibrium strategy is the ε-strategy. Then by Lemma 3,

we can map R to a R̂ ∈ R̂(i; ε), such that

Eσ(R;ε) [Ri(X)] = E
σ
(ε)
i

[
R̂i(Xi,W )

]
.

Therefore, the infimum over R̂(i; ε) is no greater than the

infimum over R(i; ε), i.e., V̂ (ε) ≤ V (ε).

4.1.3 Proof of Theorem 1
With Lemma 1, 2 and 3, we can prove the lower bound

in Theorem 1 by focusing on the genie-aided mechanisms in

R̂(i; ε). Then there is no need to consider the strategies of
individuals other than individual i since a genie-aided mech-
anism pays individual i only according to Xi and W . A nec-
essary condition for the ε-strategy to be a best response of
individual i is that ε yields no worse expected payment than
other privacy levels. We utilize this necessary condition to
obtain a lower bound on the expected payment to individ-

ual i, which gives a lower bound on V̂ (ε) and further proves
the lower bound in Theorem 1.

Proof of Theorem 1. By Lemma 1, 2 and 3, it suffices
to focus on nonnegative genie-aided payment mechanisms
in which the ε-strategy is an individual i’s strategy in a

Nash equilibrium, i.e., mechanisms in R̂(i; ε). Consider any

R̂ ∈ R̂(i; ε) and denote the ε-strategy by σ
(ε)
i . Consider

the ξ-strategy of individual i with any ξ ≥ 0 and denote

it by σ
(ξ)
i . Then the expected utility of individual i at the

strategy σ
(ξ)
i can be written as

E
σ
(ξ)
i

[
R̂i(Xi,W )

]
− g(σ

(ξ)
i )

=
∑

xi,si,w

P
σ
(ξ)
i

(Xi = xi | Si = si)P(Si = si,W = w)R̂i(xi, w)

− g(ξ),

= K1
eξ

eξ + 1
+K0

1

eξ + 1
+K − g(ξ),

where

K1 = {R̂i(1, 1)PW (1)θ + R̂i(1, 0)PW (0)(1− θ)}

− {R̂i(0, 1)PW (1)θ + R̂i(0, 0)PW (0)(1− θ)},

K0 = {R̂i(1, 1)PW (1)(1− θ) + R̂i(1, 0)PW (0)θ}

− {R̂i(0, 1)PW (1)(1− θ) + R̂i(0, 0)PW (0)θ},

K = R̂i(0, 1)PW (1) + R̂i(0, 0)PW (0).

It can be seen that K1, K0 and K do not depend on ξ. Let
this expected utility define a function f of ξ; i.e.,

f(ξ) = K1
eξ

eξ + 1
+K0

1

eξ + 1
− g(ξ) +K.

Then a necessary condition for the ε-strategy to be an equi-
librium strategy is that ε maximizes f(ξ), which implies that
f ′(ε) = 0 since ε > 0. Since

f ′(ξ) = (K1 −K0)
eξ

(eξ + 1)2
− g′(ξ),

setting f ′(ε) = 0 yields that

K1 −K0 = g′(ε)
(eε + 1)2

eε
. (7)

Now we calculate the expected payment to individual i at
the ε-strategy:

E
σ
(ε)
i

[
R̂i(Xi,W )

]
= −(K1 −K0)

1

eε + 1
+ (K1 +K).

By definition,

K1 +K = R̂i(1, 1)PW (1)θ + R̂i(1, 0)PW (0)(1− θ)

+ R̂i(0, 1)PW (1)(1− θ) + R̂i(0, 0)PW (0)θ,

and

K1 −K0 =
(
R̂i(1, 1)− R̂i(0, 1)

)
PW (1)(2θ − 1)

+
(
R̂i(0, 0)− R̂i(1, 0)

)
PW (0)(2θ − 1).

Therefore,

K1 +K =
θ

2θ − 1
(K1 −K0)

+ R̂i(1, 0)PW (0) + R̂i(0, 1)PW (1)

≥ θ

2θ − 1
(K1 −K0)

= g′(ε)
(eε + 1)2

eε
θ

2θ − 1
,

where we have used the nonnegativity of R̂. Then the ex-
pected payment to individual i is bounded as follows:

E
σ
(ε)
i

[
R̂i(Xi,W )

]
= −(K1 −K0)

1

eε + 1
+ (K1 +K)

≥ g′(ε)e
ε + 1

eε

(
θ

2θ − 1
(eε + 1)− 1

)
, (8)

which proves the lower bound.

Now beyond the proof, we take a moment to check when
this lower bound can be achieved. To achieve the lower
bound, we need the equality in (8) to hold and the equa-
tion (7) to be satisfied, which is equivalent to the following
conditions:

R̂i(1, 0) = 0, (9)

R̂i(0, 1) = 0, (10)

(2θ − 1)
(
R̂i(1, 1)PW (1) + R̂i(0, 0)PW (0)

)
= g′(ε)

(eε + 1)2

eε
. (11)

It is easy to check that the genie-aided payment mechanism

R̂(ε) defined in (6) is in R̂(i; ε) and satisfies (9)–(11), and
therefore achieves the lower bound. Can this lower bound be
achieved by a standard nonnegative payment mechanism?
Consider any payment mechanism R ∈ R(i; ε). Following
similar arguments, we can prove that to achieve the lower



bound, R needs to satisfy the following conditions:

Ri(1; 0) = 0, (12)

Ri(0; 1) = 0, (13)

(2θ − 1)
(
Ri(1; 1)PW (1) +Ri(0; 0)PW (0)

)
= g′(ε)

(eε + 1)2

eε
, (14)

where recall that Ri(xi;w) = Eσ(R,ε) [Ri(X) | Xi = xi,W =
w] for xi, w ∈ {0, 1}. It can be proved that if R satisfies
(12) and (13), then Ri(x) = 0 for any x ∈ XN , which con-
tradicts (14). Therefore, no standard nonnegative payment
mechanism can achieve the lower bound. However, as will be
shown in the next section, we can design a class of standard
nonnegative payment mechanisms such that the expected
payment approaches the lower bound as the number of indi-
viduals increases. The design follows the insights indicated

by the genie-aided mechanism R̂(ε): to minimize the pay-
ment, the data collector should utilize the best estimate of
W in the payment mechanism based on the noisy reports.

4.2 Upper Bound
We present an upper bound on V (ε) in Theorem 2 below.

For convenience, we define

d =
1

2
ln

(eε + 1)2

4(θeε + 1− θ)((1− θ)eε + θ)
, (15)

where θ is the quality of signal. Note that d > 0 for any
ε > 0. Recall that VLB(ε) is the lower bound in Theorem 1.

Theorem 2. The value of ε units of privacy measured in
(4) is upper bounded as V (ε) ≤ VLB(ε) + O(e−Nd), where
the O(·) is for N →∞. Specifically, there exists a nonnega-

tive payment mechanism R(N,ε) in which the strategy profile
σ(ε) consisting of ε-strategies is a Nash equilibrium, and the
expected payment to each individual i at this equilibrium is
upper bounded by VLB(ε) +O(e−Nd).

Comparing this upper bound with the lower bound VLB(ε)
in Theorem 1 we can see that the gap between the lower and
upper bounds is just the term O(e−Nd), which diminishes
to zero exponentially fast as N goes to infinity.

We present the payment mechanismR(N,ε) in Section 4.2.1.
We will show that under R(N,ε), the strategy profile σ(ε)

consisting of ε-strategies is a Nash equilibrium. Therefore,
R(N,ε) is a member of R(i; ε), and the payment to individ-

ual i at σ(ε) gives an upper bound on the value of privacy.
The design of R(N,ε) is enlightened by the hypothetical

payment mechanism R̂(ε) defined in (6). But without direct

access to the state W , the mechanism R(N,ε) relies on the
reported data from an individual i’s peers, i.e., individuals
other than individual i, to obtain an estimate of W . We
borrow the idea of the peer-prediction method [23], which
rewards more for the agreement between an individual and
her peers to encourage truthful reporting. However, unlike
the peer-prediction method, the individuals here have pri-
vacy concerns and they will weigh the privacy cost against
the payment to choose the best privacy level. We modify the

payments in R̂(ε) to ensure that the ε-strategy is still a best
response of each individual in R(N,ε), given that other in-
dividuals also follow the ε-strategy, which yields the desired
Nash equilibrium σ(ε).

The equilibrium payment to each individual inR(N,ε) con-
verges to the lower bound in Theorem 1 as the number of
individuals N goes to infinity. The intuition behind is that
as the number of individuals N goes to infinity, the majority
of the reported data from other individuals converges to the
underlying state W , and thus R(N,ε) works similar as the

genie-aided mechanism R̂(ε), whose equilibrium payment to
each individual equals to the lower bound in Theorem 1.

4.2.1 A Payment Mechanism R(N,ε)

The payment mechanismR(N,ε) is designed for purchasing
private data from N privacy-aware individuals, parameter-
ized by a privacy parameter ε, where N ≥ 2 and ε > 0.

1. Each individual reports her data (which can be the de-
cision of not participating).

2. The data collector counts the number of participants,
which is denoted by n.

3. For non-participating individuals, the payment is zero.

4. If there is only one participant, pay zero to this par-
ticipant. Otherwise, for each participating individual i,
the data collector computes the variable

M−i =


1 if

∑
j : Xj 6=⊥,j 6=i

Xj ≥
⌊n− 1

2

⌋
+ 1,

0 otherwise,

which is the majority of the other participants’ reported
data. Then the data collector pays individual i the
following amount of payment according to her reported
data Xi and M−i:

R
(N,ε)
i (X) =

g′(ε)(eε + 1)2

2eε
AXi,M−i ,

where the parameters A1,1, A0,0, A0,1, A1,0 are defined
in Section 4.2.2.

4.2.2 Payment Parameterization
Let

α = θ
eε

eε + 1
+ (1− θ) 1

eε + 1
.

The physical meaning of α can be seen by considering the
strategy profile σ(ε), where given the state W , the reported
data X1, X2, . . . , XN are i.i.d. with

P
σ
(ε)
i

(Xi = 1 |W = 1) = P
σ
(ε)
i

(Xi = 0 |W = 0) = α.

Given that the number of participants is n with n ≥ 2,
define the following quantities. Consider a random variable
that follows the binomial distribution with parameters n−1
and α. Let β(n) denote the probability that this random
variable is greater than or equal to bn−1

2
c+ 1. Let

γ(n) =

1−

(
n− 1
n−1
2

)
α
n−1
2 (1− α)

n−1
2 if n− 1 is even,

1 if n− 1 is odd.

(16)

To see the physical meaning of β(n) and γ(n), still consider
σ(ε), where the number of participants is n = N . Then for
an individual i,

Pσ(ε)(M−i = 1 |W = 1) = β(N),

Pσ(ε)(M−i = 1 |W = 0) = γ(N) − β(N).



With the introduced notation, the parameters A1,1, A0,0,
A0,1, A1,0 used in the payment mechanismR(N,ε) are defined
as follows:

A1,1 =
PW (1)(1− β(n)) + PW (0)(1− (γ(n) − β(n)))

(2β(n) − γ(n))(2θ − 1)PW (1)PW (0)
,

A0,0 =
PW (1)β(n) + PW (0)(γ(n) − β(n))

(2β(n) − γ(n))(2θ − 1)PW (1)PW (0)
,

A0,1 = 0,

A1,0 = 0.

It is easy to verify that these parameters are nonnegative.
Thus R(N,ε) is a nonnegative payment mechanism. The
proof of the equilibrium properties of R(N,ε) in Theorem 2
is given below.

4.2.3 Proof of Theorem 2

Proof. It suffices to prove that the strategy profile σ(ε)

is a Nash equilibrium in R(N,ε) and the expected pay-
ment to each individual i at this equilibrium satisfies that

Eσ(ε)

[
R

(N,ε)
i (X)

]
≤ VLB(ε) + O(e−Nd), where recall that

VLB(ε) is defined in (5). For conciseness, in the remainder
of this proof, we suppress the explicit dependence on N and
ε, and write R and σ to represent R(N,ε) and σ(ε), respec-
tively.

We first prove that the strategy profile σ is a Nash equi-
librium in R; i.e., for any individual i, the ε-strategy is a
best response of individual i when other individuals follow
σ−i. Following the notation in the proof of Lemma 1, for
any individual i we consider any strategy σ′i of individual i
and let

p1 = Pσ′i(Xi = 1 | Si = 1), q1 = Pσ′i(Xi = 0 | Si = 1),

p0 = Pσ′i(Xi = 1 | Si = 0), q0 = Pσ′i(Xi = 0 | Si = 0).

Then by the proof of Lemma 1, the best response satisfies
either p1 = p0, q1 = q0, or p1 = q0, p0 = q1, p1 + q1 = 1, de-
pending on the form of the utility function Ui(p1, p0, q1, q0),
which is the expected utility of individual i at the strategy σ′i
when other individuals follow σ−i. Thus, we derive the form
of Ui(p1, p0, q1, q0) next. Recall that we let Ri(xi;w) denote
E(σ′i,σ−i)

[Ri(X) | Xi = xi,W = w] for xi, w ∈ {0, 1}. Then

Ui(p1, p0, q1, q0)

= E(σ′i,σ−i)
[Ri(X)− g(ζ(σ′i))]

= K1p1 +K0p0 + L1q1 + L0q0 − g(ζ(p1, p0, q1, q0)),

with

K1 = {Ri(1; 1)PW (1)θ +Ri(1; 0)PW (0)(1− θ)},
K0 = {Ri(1; 1)PW (1)(1− θ) +Ri(1; 0)PW (0)θ},
L1 = {Ri(0; 1)PW (1)θ +Ri(0; 0)PW (0)(1− θ)},
L0 = {Ri(0; 1)PW (1)(1− θ) +Ri(0; 0)PW (0)θ}.

In the designed mechanismR, the payment to individual i
only depends on Xi and M−i. Thus we write Ri(Xi;M−i) =
Ri(X). Then the value of Ri(xi;w) is calculated as follows:

Ri(1; 1) = E(σ′i,σ−i)
[Ri(X) | Xi = 1,W = 1]

= β(N)Ri(1; 1),

Ri(1; 0) = E(σ′i,σ−i)
[Ri(X) | Xi = 1,W = 0]

= (γ(N) − β(N))Ri(1; 1),

Ri(0; 1) = E(σ′i,σ−i)
[Ri(X) | Xi = 0,W = 1]

= (1− β(N))Ri(0; 0),

Ri(0; 0) = E(σ′i,σ−i)
[Ri(X) | Xi = 0,W = 0]

= (1− (γ(N) − β(N)))Ri(0; 0),

and it can be verified that K1, K0, L1 and L0 are all positive.
Therefore, by the proof of Lemma 1, the possibility for the
best response to be p1 = p0, q1 = q0, 0 < p1 + q1 < 1 can be
eliminated and the best response strategy must be in one of
the following three forms:

p1 = p0 = q1 = q0 = 0, (17)

p1 = p0, q1 = q0, p1 + q1 = 1, (18)

p1 = q0, p0 = q1, p1 + q1 = 1. (19)

The strategy in (17) is to always not participate, which
yields an utility of zero. For strategies in the form of (18)
or (19), we can write the expected utility as a function of p1
and p0 as follows:

U i(p1, p0) = K1p1 +K0p0 +K − g(ζ(p1, p0)),

whereK1 = K1−L1, K0 = K0−L0, K = L1+L0, and with a

little abuse of notation, ζ(p1, p0) = max

{∣∣∣∣ln p1
p0

∣∣∣∣, ∣∣∣∣ln 1−p1
1−p0

∣∣∣∣}.

Inserting the value of Ri(Xi;M−i) gives

K1 =
g′(ε)(eε + 1)2

2eε
, K0 = −g

′(ε)(eε + 1)2

2eε
.

Then a strategy in the form of (18) yields an utility ofK > 0.
A strategy in the form of (19) can be written as

p1 = q0 =
eξ

eξ + 1
, p0 = q1 =

1

eξ + 1
.

Then the expected utility can be further written as a func-
tion f of ξ as follows:

f(ξ) = K1
eξ

eξ + 1
+K0

1

eξ + 1
− g(|ξ|) +K.

Therefore, to prove that the ε-strategy is a best response of
individual i, it suffices to prove that ε maximizes f(ξ) and
f(ε) ≥ K. For any ξ < 0, it is easy to see that

K1
eξ

eξ + 1
+K0

1

eξ + 1
< 0 < K1

e−ξ

e−ξ + 1
+K0

1

e−ξ + 1
.

Thus f(ξ) achieves its maximum value at some ξ ≥ 0. For
any ξ ≥ 0,

f ′(ξ) = (K1 −K0)
eξ

(eξ + 1)2
− g′(ξ),

f ′′(ξ) = −(K1 −K0)
eξ(eξ − 1)

(eξ + 1)3
− g′′(ξ) ≤ 0,

where the second inequality is due to the convexity of the
cost function g. Therefore, f is concave. Since f ′(ε) = 0, ε
maximizes f(ξ). The optimal value is

f(ε) = g′(ε)
eε − e−ε

2
− g(ε) +K.

By the convexity of g, g(ε) ≤ g′(ε)ε ≤ g′(ε) e
ε−e−ε

2
. Thus

f(ε) ≥ K, which completes the proof for the ε-strategy to
be a best response of individual i.



Next we calculate the expected payment to individual i
at σ, which can be written as

Eσ[Ri(X)] = −(K1 −K0)
1

eε + 1
+K1 +K.

By definitions,

K1 +K

=
g′(ε)(eε + 1)2

2eε
1

(2β(N) − γ(N))(2θ − 1)

·
(

2
(
β(N))2 + (4θ − 2− 2γ(N))β(N)

+ 2(1− θ)γ(N) + β(N)(1− β(N))
PW (1)

PW (0)

+ (γ(N) − β(N))(1− (γ(N) − β(N)))
PW (0)

PW (1)

)
=:

g′(ε)(eε + 1)2

2eε
h(β(N)).

Then

Eσ[Ri(X)] =
g′(ε)(eε + 1)

eε

(
1

2
h(β(N))(eε + 1)− 1

)
= VLB(ε) +

g′(ε)(eε + 1)2

2eε

(
h(β(N))− 2θ

2θ − 1

)
.

To derive an upper bound on the expected payment, we
first analyze the function h. Rearranging terms gives

h(β(N)) =
1

2θ − 1

1

2β(N) − γ(N)

·

(
(2− t)

(
β(N))2 +

(
4θ − 2− 2γ(N) +

PW (1)

PW (0)

+ (2γ(N) − 1)
PW (0)

PW (1)

)
β(N)

+ 2(1− θ)γ(N) + γ(N)(1− γ(N))
PW (0)

PW (1)

)
,

where t = (PW (1))2+(PW (0))2

PW (1)PW (0)
≥ 2. Taking derivative yields

h′(β(N)) =
1

2θ − 1

1

(2β(N) − γ(N))2

·
(

2(2− t)
(
β(N) − γ(N)

2

)2
−
(
γ(N))2

− γ(N)t

2
(2− γ(N))− 2γ(N)(1− γ(N))

)
.

Therefore, h′(β(N)) ≤ 0 and h is a non-increasing function.

Next we derive a lower bound on β(N). Let Y1, Y2, . . . , YN−1

be i.i.d. Bernoulli random variables with parameter α. Then
by the definition of β(N):

β(N) = P

(
N−1∑
l=1

Yl ≥
⌊
N − 1

2

⌋
+ 1

)

= γ(N) − P

(
N−1∑
l=1

(1− Yl) ≥ N − 1−
⌈
N − 1

2

⌉
+ 1

)

≥ γ(N) − P

(
N−1∑
l=1

(1− Yl) ≥
N − 1

2

)

≥ γ(N) − e−(N−1)d,

where d = 1
2

ln 1
4α(1−α) > 0 is the parameter defined in (15)

and the last inequality follow from the Chernoff bound [28].
By the monotonicity of h,

h(β(N))− 2θ

2θ − 1

≤ h
(
γ(N) − e−(N−1)d

)
− 2θ

2θ − 1

=
1

2θ − 1

1

γ(N) − 2e−(N−1)d

·

(
(2− t)e−2(N−1)d +

(
2(1− γ(N)) + 2γ(N)t

− PW (1)

PW (0)
− (2γ(N) − 1)

PW (0)

PW (1)

)
e−(N−1)d

+ γ(N)PW (1)

PW (0)
+
(
γ(N))2PW (0)

PW (1)
−
(
γ(N))2t)

≤ 1

2θ − 1

1

γ(N) − 2e−(N−1)d

·
(

(2− t)e−2(N−1)d + (2(1− γ(N)) + t)e−(N−1)d

+ γ(N)(1− γ(N))
PW (1)

PW (0)

)
.

Recall the definition of γ(N) in (16). Then when N − 1 is

odd, γ(N) = 1, and when N − 1 is even,

1− γ(N) =

(
N − 1
N−1

2

)
α
N−1

2 (1− α)
N−1

2

= e−(N−1)d ·

(
N − 1
N−1

2

)
2−(N−1),

where limN→∞
(N−1
N−1

2

)
2−(N−1) = 0. Thus 1−γ(N) = O(e−Nd)

as N →∞.
Therefore,

Eσ[Ri(X)]

≤ VLB(ε) +
g′(ε)(eε + 1)2

2eε

(
h
(
γ(N) − e−(N−1)d

)
− 2θ

2θ − 1

)
≤ VLB(ε) +

g′(ε)(eε + 1)2

2eε
1

2θ − 1

1

γ(N) − 2e−(N−1)d

·
(

(2− t)e−2(N−1)d + (2(1− γ(N)) + t)e−(N−1)d +O(e−Nd)
)

= VLB(ε) +O(e−Nd),

as N →∞, which completes the proof.

4.3 Extension to Heterogeneous Cost Functions
Our results on the value of privacy are also valid in the

scenario where individuals’ privacy cost functions are het-
erogeneous and known. In this case, the value of ε units
of privacy is still measured by the minimum payment of all
nonnegative payment mechanisms under which an individ-
ual’s best response in a Nash equilibrium is to report the
data with a privacy level of ε. However, with heterogeneous
cost functions, this value differs from individual to individ-
ual. Following similar notation, we let Vi(ε) denote the value
of ε units of privacy to individual i, and let gi denote the



cost function of individual i. Then the following lower and
upper bounds, which are almost identical to those in The-
orem 1 and 2 except the heterogeneous cost function gi(ε),
hold

g′i(ε)
eε + 1

eε

(
θ

2θ − 1
(eε + 1)− 1

)
≤ Vi(ε)

≤ g′i(ε)
eε + 1

eε

(
θ

2θ − 1
(eε + 1)− 1

)
+O(e−Nd).

The lower bound above can be derived directly from the
proof of Theorem 1, since the proof does not depend on
whether the cost functions are homogeneous or not. The
upper bound above is given by a payment mechanism that

works similar to R(N,ε), with the g′ in R
(N,ε)
i replaced by g′i.

In this mechanism, the strategy profile σ(ε) is still a Nash
equilibrium, and the expected payment to individual i at
this equilibrium can still be upper bounded as in Theorem 2
but again with g′ replaced by g′i.

5. PAYMENT VS. ACCURACY
In this section, we apply the fundamental bounds on the

value of privacy to the payment–accuracy problem, where
the data collector aims to minimize the total payment while
achieving an accuracy target in learning the state. The solu-
tion of this problem can be used to guide the design of review
systems. For example, to evaluate the underlying value of a
new product, a review system can utilize the results in this
section to design a payment mechanism for eliciting infor-
mative feedback from testers.

5.1 Payment–Accuracy Problem
The data collector learns the state W from the reported

data X1, X2, . . . , XN , which is collected through some pay-
ment mechanism, by performing hypothesis testing between
the following two hypotheses:

H0 : W = 0,

H1 : W = 1.

The conditional distributions of the reported data given
the hypotheses are specified by the strategy profile in a
Nash equilibrium of the payment mechanism. According
to Lemma 1, we can write an equilibrium strategy pro-

file in the form of (σ
(εi)
i ) = (σ

(ε1)
1 , σ

(ε2)
2 , . . . , σ

(εN )
N ) with

εi ∈ R \ {0}∪ {⊥⊥}, where recall that σ
(εi)
i is the εi-strategy.

For ease of notation, a non-informative strategy is also called
an ε-strategy but with ε = ⊥⊥. Let R(ε1, ε2, . . . , εN ) denote

the set of nonnegative payment mechanisms in which (σ
(εi)
i )

is a Nash equilibrium.
We consider an information-theoretic approach based on

the Chernoff information [5] to measure the accuracy that
can be achieved in hypothesis testing. For each individual i,
let D(εi) denote the Chernoff information between the con-
ditional distributions of Xi given W = 1 and W = 0. The
larger D(εi) is, the more possible that the two hypotheses
can be distinguished. In later discussions we will see that the
Chernoff information is closely related to the best achievable
probability of error.

The data collector aims to minimize the total payment
while achieving an accuracy target. The design choices in-
clude the number of individualsN , the parameters ε1, ε2, . . . , εN ,
and the payment mechanism R in which the strategy profile

(σ
(εi)
i ) is a Nash equilibrium. Then we formulate the mecha-

nism design problem as the following optimization problem,
which we call the payment–accuracy problem:

min
N∈N, εi∈R\{0}∪{⊥⊥},∀i
R∈R(ε1,ε2,...,εN )

N∑
i=1

E
(σ

(εi)
i )

[Ri(X)]

subject to e−
∑N
i=1D(εi) ≤ τ,

where the accuracy target is represented by τ , which is re-
lated to the maximum allowable error. We focus on the
range τ ∈ (0, 1) for nontriviality. Let F (τ) denote the opti-
mal payment in this problem, i.e., the infimum of the total
payment while satisfying the accuracy target τ .

5.2 Bounds on the Payment–Accuracy Prob-
lem

We present bounds on F (τ) in Theorem 3 below. For
convenience, we define

ε̃ = inf

{
arg max

{
D(ε)

VLB(ε)
: ε > 0

}}
, Ñ =

⌈
ln(1/τ)

D(ε̃)

⌉
,

(20)
where recall that VLB(ε) is the lower bound in Theorem 1.

Theorem 3. The optimal payment F (τ) in the payment–
accuracy problem for a given accuracy target τ ∈ (0, 1)

is bounded as: (Ñ − 1)VLB(ε̃) ≤ F (τ) ≤ ÑVLB(ε̃) +
O(τ ln(1/τ)), where the O(·) is for τ → 0.

The upper bound in Theorem 3 is given by the designed
mechanism R(N,ε) with parameters chosen as ε = ε̃ and N =

Ñ . Note that ε̃ can be proved to have a well-defined finite
value independent of τ . By the lower and upper bounds
on the value of privacy, the payment to each individual in

R(Ñ,ε̃) is roughly equal to the lower bound VLB(ε̃). Then
Theorem 3 indicates that the total payment of the designed

mechanism R(Ñ,ε̃) is at most one individual’s payment away
from the minimum, with the diminishing term O(τ ln(1/τ))
omitted. Figure 2 shows an illustration of the lower and
upper bounds.

Theorem 3 is proved by Lemma 4 and Lemma 5 below,
where the lower bound is given by the lower bound on the

value of privacy, and the upper bound is given by R(Ñ,ε̃).

5.2.1 Lower Bound
First, notice that it suffices to limit the choice of each εi

to (0,+∞) in the payment–accuracy problem, since when
εi = ⊥⊥, D(εi) = 0, and when εi < 0, D(εi) = D(|εi|)
and there exists another nonnegative payment mechanism
with the same payment property and a Nash equilibrium at

(σ
(|εi|)
i ) by Lemma 2.
Now we use the lower bound on the value of privacy to

prove the lower bound on F (τ). By Theorem 1,

inf
R∈R(ε1,ε2,...,εN )

N∑
i=1

E
(σ

(εi)
i )

[Ri(X)] ≥
N∑
i=1

VLB(εi).

Therefore, the optimal payment F (τ) is lower bounded by
the optimal value of the following optimization problem (P1):

min
N∈N, εi∈(0,+∞),∀i

N∑
i=1

VLB(εi)

subject to e−
∑N
i=1D(εi) ≤ τ.

(P1)
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Figure 2: Illustration of the lower and upper bounds
in Theorem 3 on the minimum total payment for
achieving an accuracy target τ , where the upper

bound is given by the designed mechanism R(Ñ,ε̃).
In this example, the prior PMF of the state is
PW (1) = 0.7, PW (0) = 0.3. The quality of signals is
θ = 0.8. The cost function is g(ε) = ε. The range of τ
shown in the figure is 0.001–0.4.

Lemma 4. Any feasible solution (N, ε1, ε2, . . . , εN ) of
(P1) satisfies

N∑
i=1

VLB(εi) ≥ (Ñ − 1)VLB(ε̃),

where ε̃ and Ñ are defined in (20).

Lemma 4 states that the total expected payment of the data

collector is at least (Ñ−1)VLB(ε̃). Note that the value given

by the genie-aided payment mechanism R̂(ε̃) for Ñ individ-

uals is ÑVLB(ε̃), which is at most one VLB(ε̃) away from the
optimal value of (P1). We can think of VLB(ε) as the price
for ε units of privacy and D(ε) as the quality that the data
collector gets from ε units of privacy due to its contribution

to the accuracy. Then the intuition for (Ñ , ε̃, . . . , ε̃) to be a
near-optimal choice is that the privacy level ε̃ gives the best

quality/price ratio and Ñ is the fewest number of individu-
als to meet the accuracy target. The proof of Lemma 4 is
presented in our technical report [31]. With this lemma, the
lower bound on F (τ) in Theorem 3 is straightforward.

5.2.2 Upper Bound

Lemma 5. Choose the parameters in the payment mecha-

nism R(N,ε) defined in Section 4.2.1 to be ε = ε̃ and N = Ñ ,

where ε̃ and Ñ are defined in (20). Then in the Nash equilib-

rium σ(ε̃) of R(Ñ,ε̃), the accuracy target τ can be achieved,
and the total expected payment is upper bounded as

Eσ(ε̃)

[
Ñ∑
i=1

R
(Ñ,ε̃)
i (X)

]
≤ ÑVLB(ε̃) +O(τ ln(1/τ)).

This lemma follows from Theorem 2 and we omit the proof
here. Since the payment mechanism R(N,ε) together with

ε = ε̃ and N = Ñ is a feasible solution of the payment–
accuracy problem, the upper bound in this lemma gives the
upper bound on F (τ) in Theorem 3.

5.3 Discussions on the Accuracy Metric
When we study the relation between payment and accu-

racy, the accuracy can also be measured by the best achiev-
able probability of error, defined as

pe = inf
ψ

P
(σ

(εi)
i )

(ψ(X) 6= W ),

where ψ(x) is a decision function, with ψ(x) = 0 imply-
ing that H0 is accepted and ψ(x) = 1 implying that H1 is
accepted. However, pe is difficult to deal with analytically
since its exact form in terms of ε1, ε2, . . . , εN is intractable.

We measure the accuracy based on the Chernoff informa-
tion, which is an information-theoretic metric closely related
to pe. It can be proved by the Bhattacharyya bound [17] that

at the strategy profile (σ
(εi)
i ),

pe ≤ e−
∑N
i=1D(εi). (21)

Therefore, if we want to guarantee that pe ≤ pmax
e for some

maximum allowable probability of error pmax
e , we can choose

τ = pmax
e in the payment–accuracy problem. In fact, the

metric based on the Chernoff information is very close to the
metric pe, since the upper bound (21) is tight in exponent
when all the εi are the same, i.e., when the reported data is
i.i.d. given the hypothesis.

6. CONCLUSIONS
In this paper, we studied “the value of privacy” under a

game-theoretic model, where a data collector pays strate-
gic individuals to buy their private data for a learning pur-
pose. The individuals do not consider the data collector to
be trustworthy, and thus experience a cost of privacy loss
during data reporting. The value of ε units of privacy is
measured by the minimum payment of all nonnegative pay-
ment mechanisms under which an individual’s best response
in a Nash equilibrium is to report the data with a privacy
level of ε. We derived asymptotically tight lower and upper
bounds on the value of privacy as the number of individuals
becomes large, where the upper bound was given by a de-
signed payment mechanismR(N,ε). We further applied these
fundamental limits to find the minimum total payment for
the data collector to achieve certain learning accuracy tar-
get, and derived lower and upper bounds on the minimum
payment. The total payment of the designed mechanism
R(N,ε) with properly chosen parameters is at most one in-
dividual’s payment away from the minimum. It would be
of great interest to study the value of privacy under (ε, δ)-
differential privacy, and to extend our results to more general
models of private and reported data, e.g., models with larger
alphabets for the state, the signals and the reported data.
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