
Data Locality in MapReduce: A Network Perspective

Weina Wanga,∗, Lei Yinga

aSchool of Electrical, Computer and Energy Engineering, Arizona State University
Tempe, AZ 85281, USA

Abstract

Data locality, a critical consideration for the performance of task scheduling in
MapReduce, has been addressed in the literature by increasing the number of
locally processed tasks. In this paper, we view the data locality problem from a
network perspective. The key observation is that if we make appropriate use of
the network to route the data chunk to the machine where it will be processed
in advance, then processing a remote task is the same as processing a local
task. However, to benefit from such a strategy, we must (i) balance the tasks
assigned to local machines and those assigned to remote machines, and (ii) de-
sign the routing algorithm to avoid network congestion. Taking these challenges
into consideration, we propose a scheduling/routing algorithm, named the Joint
Scheduler, which utilizes both the computing resources and the communication
network efficiently. We prove that the Joint Scheduler is throughput optimal;
i.e., it supports any load that is supportable by any other algorithm. Simulation
results demonstrate that with popularity skew, the Joint Scheduler improves the
throughput and delay performance significantly compared to the Hadoop Fair
Scheduler with delay scheduling, which is the de facto industry standard.

Keywords: MapReduce, Data locality, Scheduling, Routing, Throughput

1. Introduction

The MapReduce framework [1] has been widely deployed in large computing
clusters for the growing need of big data analysis. Hadoop is one of the most
popular implementations of the MapReduce framework and has been adopted
by various organizations.

The MapReduce framework is implemented on top of distributed file systems
such as the Google File System (GFS) and the Hadoop Distributed File System
(HDFS) [2], which divide large datasets into data chunks and store multiple
replicas of each chunk on different machines. MapReduce jobs are submitted to
request data processing and each job is divided into a number of map tasks and
reduce tasks. A map task reads one data chunk and processes it to generate

∗Corresponding author, phone number: +1 515-509-5697.
Email addresses: weina.wang@asu.edu (Weina Wang), lei.ying.2@asu.edu (Lei Ying)

Preprint submitted to Elsevier December 4, 2015

intermediate results. Reduce tasks fetch these intermediate results and conduct
further computations to get the final results.

Map tasks and reduce tasks are assigned to machines according to a schedul-
ing algorithm. During task scheduling, an important consideration is to place
computation near data, i.e., to assign a task on or close to the machine that
stores its input data on local disks. This is commonly referred to as the data lo-
cality problem. The data locality problem is particularly crucial for map tasks
since they read data from the distributed file system and map functions are
data-parallel. Besides, according to an empirical trace study from a production
MapReduce cluster [3], the majority of jobs are map-intensive, and many of
them are map-only. Therefore we focus on data locality in map task schedul-
ing algorithms and assume that reduce tasks are not the bottleneck of the job
processing or the communication network.

We call a machine a local machine for a map task if it has the input data
chunk of this task on its local disks, and we call this map task a local task on this
machine; otherwise, the machine is called a remote machine for this map task
and this map task is called a remote task on the machine. We also use the term
locality to refer to the fraction of tasks that are executed on local machines.
In most of the existing work, launching a map task on a remote machine is
considered to be inefficient, since a remote machine needs to first retrieve the
input data from other machines through the communication network before
processing it, which introduces an additional delay to the task execution. So
local and remote tasks are often modeled with different processing times.

This view of data locality in MapReduce is arguable. If the communication
network that connects the machines had infinite capacity and could transfer data
instantaneously, then there would be no difference between assigning a task to
its local machines or to other machines. Thus the time of processing a remote
task depends on the capacity of the communication network and the scheduling
algorithm that allocates tasks. If data can be routed in advance so that machines
do not spend time on waiting for input data before executing tasks, then even
though the network capacity is finite, we can still achieve the same throughput
as if all tasks are local. Inspired by this intuition, we study the data locality
problem from a network perspective beyond just abstracting the effect of the
communication network as a “longer processing time”. We adopt an approach
that explicitly takes account of the structure of the communication network
and quantify fundamental limits on the capacity of a MapReduce cluster with
network constraints. Then we explore joint scheduling and routing algorithms
to fully exploit the system capacity.

To optimize the performance, we face the following challenges: how to strike
the right balance between local and remote tasks, and how to route the traffic in
the network appropriately to avoid congestion. Failure to meet these challenges
may result in slow data transmission and a waste of computing resources and
may even harm the throughput performance. These challenges are more pro-
nounced when data are not ideally uniformly distributed across the cluster [4],
in which case placing all the computation near data results in heavy load on
some machines while leaving other machines lightly utilized or idle.

2

In this paper, we first quantify fundamental limits on the capacity of a
MapReduce cluster with network constraints by characterizing its capacity re-
gion, which consists of arrival rate vectors of tasks for which there exists a
scheduling/routing algorithm that stabilizes the system. Then we propose a
queueing architecture that enables us to jointly design the scheduling and rout-
ing algorithm with the above challenges taken into consideration to achieve
throughput optimality, i.e., to stabilize the system for any arrival rate vector
strictly within the capacity region. We call our scheduling/routing algorithm
the Joint Scheduler. Our contributions are summarized as follows.

• We advocate studying the data locality problem from a network perspective.
We propose to route the input data of tasks in advance through the commu-
nication network. Joint task scheduling and routing, taking communication
network constraints into consideration, should be designed to fully exploit
the system capacity.

• We propose a queueing architecture that captures both the data transmis-
sion in the communication network and the task execution by machines.
This queueing architecture makes accurate status information of the net-
work traffic and the workload of machines available, and thus enables joint
scheduling and routing according to the information.

• Based on the proposed queueing architecture, we develop a task scheduling/
routing algorithm, named the Joint Scheduler, that uses join the shortest
queue policy (with blocking under some conditions) to assign incoming tasks
to machines and route tasks in the communication network.

• We characterize the capacity region of a MapReduce cluster with data local-
ity and communication network constraints. Then we prove that the Joint
Scheduler is throughput optimal; i.e., it stabilizes the system for any ar-
rival rate vector strictly within the capacity region. Therefore, the Joint
Scheduler utilizes the computing resources efficiently by balancing the tasks
assigned to local machines and those assigned to remote machines, and ex-
ploits the communication network capacity by balancing the traffic load to
avoid congestion.

Note that although the Joint Scheduler is in spirit similar to a MaxWeight/
backpressure algorithm [5], the coupling between a task and its input data
sets the scheduling/routing problem in a MapReduce cluster apart from a
traditional network scheduling problem, in which a packet that arrives at a
service node becomes ready for the service immediately.

The rest of this paper is organized as follows. Section 2 discusses the related
work in literature. Section 3 introduces the system model. Section 4 presents
the design of our Joint Scheduler and Section 5 establishes the throughput opti-
mality. Simulation results are given in Section 6 to compare the Joint Scheduler
and the Hadoop Fair Scheduler. The paper is concluded in Section 7.

3

... ...

... rack switches

cluster switch

machines

...

Figure 1: Hierarchical network architecture.

2. Related Work

The data locality problem has been intensively studied in the literature of
task scheduling in MapReduce [1, 6, 7, 8, 9, 4, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19]. The Fair Scheduler in Hadoop is the de facto standard [6], in which
the delay scheduling technique is used to improve locality. Quincy [7] uses
the amount of data transfer as the measure of locality and makes scheduling
decisions by solving a classic min-cost flow problem. Scheduling algorithms with
formal theoretical throughput performance guarantee have also been developed
[12, 15, 19]. However, the above existing approaches all use the request-and-
wait procedure to obtain input data before processing the task. As we argued,
this may lead to underutilization on both the computing resources and the
communication network capacity.

Most related to our work is the prefetching idea [8, 17]. However, the
prefetching schemes developed in these papers are based on heuristics. The
performance regarding load balancing and congestion in the network is not an-
alyzed theoretically.

Although we focus on addressing the data locality problem within the MapRe-
duce framework, we note that approaches from the distributed file system side
have also been proposed. The authors of [4, 10] exploit the variance in data pop-
ularity and access patterns and present algorithms named Scarlett and DARE,
respectively, to replicate data chunks based on their data access patterns. These
algorithms share the same spirit with ours in that we both make popular data
accessible to more machines.

3. System Model

We consider a MapReduce computing cluster with M machines, which will
be referred to by their indices 1, 2, · · · ,M . The cluster adopts a multi-level hier-
archical network architecture depicted in Figure 1, where machines are grouped
into R racks of machines at the lowest level, and one or more levels of aggre-
gation switches connect the racks. This hierarchical network architecture is
commonly used by data centers [20, 21, 1, 6].

Jobs come in stochastically, and when a job comes in, it brings a random
number of map tasks, which need to be served by the machines. We assume
that data chunks have the same fixed size (e.g., 128 MB), and each data chunk

4

is replicated and placed at three different machines, which is the default config-
uration of HDFS. Therefore, each task is associated with three local machines.
When a task is launched on a remote machine, the machine cannot start pro-
cessing the task until the necessary data arrives. According to the associated
local machines, tasks can be classified into types denoted by

~L = (m1
~L
,m2

~L
,m3

~L
),

where mi
~L
, i = 1, 2, 3 are the indices of the three local machines, in increasing

order. For example, if the data chunk associated with a task is stored at ma-
chines 1, 21 and 23 then ~L = (1, 21, 23). We assume machine m1

~L
is in rack r1

~L
,

and machine m2
~L

and m3
~L

are in the same rack r2
~L

according to Hadoop’s data

replication policy [2].

3.1. Arrivals and Service

We consider a time-slotted system. Let A~L(t) denote the number of type ~L
tasks arriving at the beginning of time slot t. We assume that {A~L(t), t ≥ 0}
is an i.i.d. sequence with arrival rate E[A~L(t)] = λ~L and the second moment
E[(A~L(t))2] is finite. We assume that there is a positive probability that there
is no arrival at a time slot.

Let λ = (λ~L : ~L ∈ L) be the arrival rate vector, where L is the set of task

types with arrival rates greater than zero; i.e., L = {~L : λ~L > 0}.
The service/processing time of each task is assumed to follow a geometric

distribution with parameter ϕ, where 0 < ϕ < 1.
The following notation is used throughout this paper:

- Mr: the set of machines in rack r.

- rm: the index of the rack that machine m is in.

- For each task type ~L, the set of local machines is denoted by

M~L = {m1
~L
,m2

~L
,m3

~L
}.

- For each machine m, the set of types such that tasks of these types are
local on machine m is denoted by

Lm = {~L ∈ L : m ∈M~L}.

3.2. Network Queueing Model

In the considered hierarchical network architecture, a set of machines are
mounted within a rack and interconnected by a rack switch. These rack switches
have a number of uplink connections to the cluster switch, which can use 1-Gbps
or 10-Gbps links. For economic considerations, the design of the network con-
nections usually introduces oversubscription since all the interrack traffic needs
to go through the cluster switch. For example, in the network that 40 servers
in the same rack connect to the rack switch by 1-Gbps ports, rack switches may

5

machines

...
...

...

rack switches

cluster switch

task arrivals ...

...

rack incoming queues

rack outgoing
queue

machine incoming
queues

machine outgoing
queue

processing
queue

Qm,2

�m,2

Qm,0 Qm,1

Figure 2: Network queueing model.

have between four and eight 1-Gbps uplinks to the cluster switch, correspond-
ing to an oversubscription factor between 5 and 10 for communication across
racks [21]. Therefore the cluster-level bandwidth resource is relatively scarce
compared with the rack-level.

Data transmission in the network consumes bandwidth. Since each machine
connects to the network through the rack switch, the bandwidth between the
machine and the rack switch constrains the incoming and outgoing data trans-
mission rates of the machine. When there is a large amount of data that needs
to be sent or received by a machine, the unfinished data will be backlogged at
some queues. Let this constraint on the incoming and outgoing data transmis-
sion rates of each machine be B1 data chunks per time slot. For the interrack
traffic, due to oversubscription, the machines in one rack cannot communicate
with machines in other racks at their full bandwidth simultaneously. There are
constraints on the overall incoming and outgoing data transmission rates of the
rack. Let this constraint be B2 data chunks per time slot. This rack bandwidth
is shared by machines in the same rack.

Based on the network hierarchy, the communication network in the cluster
is modeled as depicted in Figure 2. For each machine m, Qm,1 and Qm,2 are the
queues for the outgoing traffic and incoming traffic of the machine, respectively.
Therefore, at most B1 data chunks depart from each queue during one time slot.
Similarly, for each rack r, Xr,1 and Xr,2 are the queues for the outgoing traffic
and incoming traffic of the rack, respectively, and at most B2 data chunks depart
from each queue during one time slot. We call Qm,1 and Qm,2 the machine
outgoing queue and the machine incoming queue, and we call Xr,1 and Xr,2 the
rack outgoing queue and the rack incoming queue. The queue Qm,0 and other
labels will be introduced in Section 4.1 and Section 5.2, respectively. Machine m
communicates with machine a in the same rack through the path (Qm,1, Qa,2).
An example is shown in Figure 2 for m = 1, a = 2 with corresponding path
(Q1,1, Q2,2). Machine m communicates with machine b in another rack through

6

the path (Qm,1, Xrm,1, Xrb,2, Qb,2), as shown in Figure 2 for m = 1, b = 20
with path (Q1,1, X1,1, Xr,2, Q20,2). Since each map task is associated with a
data chunk and the network is used to transfer the data chunks to be processed
remotely, B1 and B2 can also be viewed as number of tasks per time slot. The
phrases transmitting tasks and transmitting data are used interchangeably in
the context of communication. The lengths of the queues are counted as the
number of tasks that have input data chunks in the queues.

Remark 1. We assume without loss of generality that B1 is larger than or
equal to 1 since otherwise we can rescale the duration of the time slot. The rack
switches usually use 1-Gbps uplinks. This transmission rate is usually larger
than the data processing rate performed by map functions. So we assume a
service rate ϕ smaller than 1 after rescaling. The rate B2 is larger than B1 and
smaller than R ·B1 due to oversubscription.

4. Map Task Scheduling/Routing

In this section, we present a new algorithm that performs task scheduling
and routing jointly. We call this scheduler the Joint Scheduler, which is also
referred to as JS in this paper. This algorithm includes two parts: the first
part assigns incoming tasks to some machines to serve or to the communication
network to transmit as tasks arrive at the cluster; the second part routes the
tasks in the communication network.

Before we describe our algorithm in detail, we first further elaborate on our
queueing architecture of the cluster. We have derived the queueing model of
the communication network in Section 3.2. Now we introduce the architecture
of the processing queues in JS. For each machine m, the scheduler maintains
a processing queue Qm,0 to buffer the tasks assigned to machine m for local
processing and the tasks whose data have been transferred to machine m for
remote processing. Therefore, the tasks in Qm,0 all have the corresponding data
on machine m, and thus are ready for the processing.

4.1. Task Scheduling/Routing Algorithm

As discussed in the introduction, the low efficiency of remote task processing
can be ascribed to the underutilization of machines while waiting for input data.
Our algorithm addresses data locality by intelligently routing data in advance,
which reduces the idling time of machines without causing network congestion.

For each queue Q in the communication network, the set of queues that can
receive data directly from Q is called the set of candidate destinations of Q and
is denoted by D(Q). These sets represent the connectivity of the system, which
is illustrated in Figure 2. We describe this candidate destination set for each
queue as follows.

• For each machine m, the machine outgoing queue Qm,1 can send data to the
rack outgoing queue and to the machine incoming queues in the same rack,
so

D(Qm,1) = {Xrm,1} ∪ {Qm′,2 | m′ ∈Mrm}.

7

Algorithm 1 The Joint Scheduler

at time slot t

for task in incoming tasks do
find the task type ~L
assign the task to the shortest queue in Q~L

for Q in the communication network do
find the shortest queue Dt

Q in D(Q)

if Dt
Q(t) < Q(t) then

send data to Dt
Q

else
block the outgoing traffic from Q

• The machine incoming queue Qm,2 can only send data to the processing
queue Qm,0, so

D(Qm,2) = {Qm,0}.

• For each rack r, the rack outgoing queue Xr,1 can send data to the rack
incoming queues of all the racks, so

D(Xr,1) = {Xr′,2 | r′ = 1, · · · , R}.

• The rack incoming queue Xr,2 can send data to the machine incoming queues
in its own rack, so

D(Xr,2) = {Qm,2 | m ∈ Rr}.

Now we present the Joint Scheduler as follows. The pseudocode is shown in
Algorithm 1 and a toy example illustrating the procedure of the algorithm is
shown after.

• Task Assignment for New Tasks. When a type ~L task comes in, the
scheduler assigns it to the shortest queue inQ~L = {Qm,i | m ∈M~L, i = 0, 1}.
Note that if a task is assigned to Qm,0, it means that the task will be
processed at local machine m; if it is assigned to Qm,1, it means machine
m needs to transmit the data chunk associated with the task to another
(remote) machine to process.

• Routing in the Communication Network. For each queue in the com-
munication network, we use a join the shortest queue algorithm with blocking
to route tasks: each queue Q in the communication network first finds the
shortest queue in the candidate destination set D(Q), denoted by Dt

Q; then

it compares the queue length Dt
Q(t) with Q(t). If Dt

Q(t) < Q(t), Q sends

data to Dt
Q; otherwise Q does not send any data. If Q is the machine incom-

ing queue or machine outgoing queue, then by the bandwidth constraint it
can send at most B1 data chunks during each time slot; similarly, if Q is the
rack incoming queue or rack outgoing queue, then it can send at most B2

data chunks during each time slot according to the bandwidth constraint.

8

Q1,0(t) = 4

Q1,1(t) = 3

Q2,0(t) = 2

Q2,1(t) = 1 Q3,1(t) = 2

Q3,0(t) = 2

Q1,2(t) = 3 Q2,2(t) = 4

X1,1(t) = 2

rack switches

machines

a task of type (1, 2, 3) arrives

Figure 3: A toy example illustrating the Joint Scheduler.

A Toy Example. We use a toy example shown in Figure 3 to illustrate the
procedure of the Joint Scheduler. For the first step, a task of type ~L = (1, 2, 3)
arrives at the system. The scheduler assigns it to Q2,1, which is the shortest
queue in Q(1,2,3) = {Q1,0, Q1,1, Q2,0, Q2,1, Q3,0, Q3,1}. For the second step, we
use Q1,1 and Q2,1 to explain. The candidate destination set of Q1,1 is

D(Q1,1) = {Q1,2, Q2,2, X1,1}.

At time slot t, the shortest queue in this set is X1,1(t) = 2, and since Q1,1(t) =
3 > X1,1(t), Q1,1 sends B1 data chunks to X1,1. For Q2,1, the shortest queue
in D(Q2,1) is also X1,1. However, since Q2,1(t) = 1 < X1,1(t), Q2,1 blocks the
outgoing traffic and does not send any data at the current time slot.

The Joint Scheduler balances the usage of the computing resources and the
network resources by starting routing some of the data chunks as the corre-
sponding tasks arrive. The tasks that have their input data stored on the same
machine compete for the resources of this local machine. The scheduler assigns
some of these tasks to the local machine and spreads other tasks to remote ma-
chines in advance. Since these tasks cannot be all launched on the local machine
eventually, this foresight of routing reduces the waiting time of remote machines
and improves the throughput.

The implementation complexity of the Joint Scheduler in each time slot is
determined as follows. In the task assignment step, the scheduler compares six
queue lengths for each incoming task. In the routing step, for each queue in the
communication network, the scheduler finds the shortest queue in the candidate
destination set. The size of a candidate destination set is one of the following
values: 1, the number of machines in a rack, the number of racks.

4.2. Queue Dynamics

Scheduling decisions are made at the beginning of each time slot t and the
service is performed after arrivals. For each queue Q in the system with arrival

9

process A and service process S, the queue dynamics is expressed by the Lindley
equation:

Q(t+ 1) = (Q(t) +A(t)− S(t))+. (1)

Next we describe the arrival and service processes for each queue in the system.
At each time slot t, the type ~L tasks that arrive exogenously to the system

are assigned to queues in Q~L, where the number of the arrivals assigned to
Qm,i ∈ Q~L with m ∈M~L and i ∈ {0, 1} is denoted by A~L,m,i(t). Other arrivals
in the system are internal arrivals, which are the departures of some other queues
at the last time slot. Notation for those arrivals is as follows:

- Am,1: arrivals coming from Qm,1 to Xrm,1;

- AQm′,m: arrivals coming from Qm′,1 to Qm,2;

- AXr′,r: arrivals coming from Xr′,1 to Xr,2;

- Am,2: arrivals coming from Xrm,2 to Qm,2;

- Am,0: arrivals coming from Qm,2 to Qm,0.

Under the bandwidth constraints, the service processes of the queues in the
communication network are defined as follows:

- For each machine m, the service processes of Qm,1 and Qm,2 are denoted
by {Sm,1(t), t ≥ 0} and {Sm,2(t), t ≥ 0}, respectively, which are defined as

Sm,i(t) =

{
B1 if Qm,i(t) > Dt

Qm,i
(t),

0 otherwise.

- For each rack r, the service processes of Xr,1 and Xr,2 are denoted by
{SXr,1(t), t ≥ 0} and {SXr,2(t), t ≥ 0}, respectively, which are defined as

SXr,i(t) =

{
B2 if Xr,i(t) > Dt

Xr,i
(t),

0 otherwise.

The service process of each processing queue Qm,0 is denoted by {Sm(t), t ≥
0}. If machine m has been working on a task during time slot t, i.e., Qm,0(t) > 0,
let Sm(t) = 1 if the service is completed at the end of time slot t and let
Sm(t) = 0 otherwise. If machine m is idle during time slot t, i.e., Qm,0(t) = 0,
let Sm(t) be a Bernoulli random variable with parameter ϕ that is independent of
other random variables. Since the service time of each task is assumed to follow
a geometric distribution with parameter ϕ, the service process {Sm(t), t ≥ 0}
is temporally i.i.d. with each Sm(t) being a Bernoulli random variable with
parameter ϕ. We remark that Sm(t) is the potential service since it is also
defined for idle queue, instead of the actual service.

Notice that the relations between internal arrivals and service are

Sm,1(t− 1) ≥ Am,1(t) +
∑

m′∈Mrm

AQm,m′(t) (2a)

10

SXr,1(t− 1) ≥
∑
r′

AXr,r′(t) (2b)

SXr,2(t− 1) ≥
∑

m∈Mr

Am,2(t) (2c)

Sm,2(t− 1) ≥ Am,0(t). (2d)

We assemble all the queue lengths into a vector

Z = (Qm,i, Xr,j : m = 1, · · · ,M, i = 0, 1, 2, r = 1, · · · , R, j = 1, 2).

Then under the statistical assumptions we have made and the Joint Scheduler,
the queueing process {Z(t), t ≥ 0} is a Markov chain. We assume that the state
space S consists of all the states which can be reached from the zero vector.

Remark 2. This Markov chain {Z(t), t ≥ 0} is irreducible and aperiodic for the
following reasons. For any state Z in the state space, since the queue lengths in
the system are integers, the Markov chain can reach the zero state from Z within
a finite number of time slots when there are a positive number of departures
but no arrivals at each time slot. This probability is positive, so Z can reach
the zero state and hence the Markov chain is irreducible. We can also see that
the transition probability from the zero state to itself is positive, so the Markov
chain is also aperiodic.

5. Throughput Optimality

The throughput performance of a scheduling/routing algorithm is character-
ized by its stability region [5], i.e., the set of arrival rate vectors for which this
scheduling/routing algorithm stabilizes the system. The system is stable if the
number of backlogged tasks does not explode to infinity. Formally, the system
is said to be stable if the number of backlogged tasks, denoted by {Φ(t), t ≥ 0},
satisfies [22]

lim
C→∞

lim
t→∞

Pr(Φ(t) > C) = 0. (3)

5.1. Capacity Region

The capacity region is defined to be the maximum stability region, i.e., the
set of arrival rate vectors for which there exists a scheduling/routing algorithm
that stabilizes the system. A scheduling/routing algorithm assigns incoming
tasks to machines for processing or for data transmission and routes tasks in the
communication network. A scheduling/routing algorithm is said to be through-
put optimal if its stability region contains the interior of the capacity region;
i.e., the scheduling/routing algorithm stabilizes the system for any arrival rate
vector strictly within the capacity region [23].

11

5.2. Characterization of the Capacity Region

Let C denote the capacity region of the system. We characterize C by first
considering some necessary conditions for an arrival rate vector λ to be in C.

We say f is a λ-admissible flow vector, if an arrival rate vector λ has the
following decomposition:

λ~L =
∑

m∈M~L

λ~L,m,0 +
∑

m∈M~L

λ~L,m,1 (4a)

∑
~L∈Lm

λ~L,m,1 = λm,1 +
∑

m′∈Mrm

αm,m′ (4b)

∑
m∈Mr

λm,1 =
∑
r′

ηr,r′ (4c)

∑
r′∈R

ηr′,r =
∑

m∈Mr

λm,2 (4d)

∑
m′∈Mrm

αm′,m + λm,2 = µm, (4e)

where f denotes the vector consisting of all the rates in the decomposition, i.e.,
f = (λ~L,m,0, λ~L,m,1, λm,1, αm,m′ , ηr,r′ , λm,2, µm)~L∈L,m,m′∈{1,...,M},r,r′∈{1,...,R}).

These rates in f can be interpreted as the rates of the following processes,
if they exist, under some scheduling algorithm that stabilizes the system:

- λ~L,m,i: the rate of {A~L,m,i(t), t ≥ 0}, i = 0, 1;

- λm,i: the rate of {Am,i(t), t ≥ 0}, i = 1, 2;

- αm′,m: the rate of {AQm′,m(t), t ≥ 0};

- ηr′,r: the rate of {AXr′,r(t), t ≥ 0};
- µm: the rate of {Am,0(t), t ≥ 0}.

They are labeled in Figure 2 for an illustration. Let Fλ be the set of all λ-
admissible flow vectors.

A flow vector f is said to be supportable if the corresponding arrival rate to
each queue is less than the potential service rate of that queue; i.e., for each
machine m and each rack r,∑

~L∈Lm

λ~L,m,1 ≤ B1,
∑

m′∈Mrm

αm′,m + λm,2 ≤ B1, (5a)

∑
m∈Mr

λm,1 ≤ B2,
∑
r′∈R

ηr′,r ≤ B2, (5b)

∑
~L∈Lm

λ~L,m,0 + µm ≤ ϕ. (5c)

Let Λ = {λ | there exists a f ∈ Fλ that is supportable}. Then it can be
proved that no scheduling/routing algorithm can stabilize the system for an

12

arrival rate vector that is not in Λ. The proof is similar to the proof of Theo-
rem 5.3.1 in [22], which is based on the strict separation theorem and strong law
of large numbers. Consider any arrival rate vector that is not in Λ. Rearranging
the total departures of the system, we can obtain a supportable flow vector and
its corresponding vector in Λ. Then the strict separation theorem gives a gap
between this vector and the arrival rate vector, which together with the strong
law of large numbers results in queues exploding to infinity. We omit the details
of this proof here for conciseness. Therefore, a necessary condition for an arrival
rate vector λ to be in the capacity region C is that it should be in Λ. Thus Λ
gives an outer bound of C; i.e., C ⊆ Λ.

5.3. Achievability

Theorem 1 (Throughput Optimality). The Joint Scheduler stabilizes the
system for any arrival rate vector strictly within Λ. Specifically, let Λo denote
the interior of Λ and CJS denote the stability region of the Joint Scheduler.
Then Λ characterizes the capacity region in the following sense

Λo ⊆ CJS ⊆ C ⊆ Λ.

Hence the Joint Scheduler is throughput optimal.

Consider any arrival rate vector strictly within Λ. As pointed out in Re-
mark 2, the Markov chain {Z(t), t ≥ 0} is irreducible and aperiodic. If {Z(t), t ≥
0} is also positive recurrent, it will converge to its stationary distribution. In
this case, the number of backlogged tasks Φ(t) is the sum of all the queue lengths
in Z(t), so {Φ(t), t ≥ 0} will also converge to a stationary distribution, which
implies the stability defined in (3). Therefore, to show that the system is stable,
it suffices to show that {Z(t), t ≥ 0} is positive recurrent.

We prove that the Markov chain {Z(t), t ≥ 0} is positive recurrent by con-
sidering the following quandratic Lyapunov function:

V (Z(t)) =

M∑
m=1

2∑
i=0

(Qm,i(t))
2 +

R∑
r=1

2∑
j=1

(Xr,j(t))
2.

Then according to an extension of the Foster-Lyapunov theorem [22], it suffices
to find a positive integer T such that the T time slot Lyapunov drift is bounded
within a finite subset of the state space and negative outside this subset. The
details of the proof are provided in the appendix.

Note that the proposed queueing architecture plays an important role for
the Joint Scheduler to achieve throughput optimality and allows us to use the
Lyapunov technique for the proof. In the proposed queueing architecture, a task
in the processing queue of a machine has its input data on that machine once
it is assigned to that machine. In other words, task assignment and data trans-
mission are coordinated in this queueing architecture. This enables us to use
pressure-based scheduling/routing to achieve optimal throughput. In addition,

13

with this queueing architecture, the service times of the tasks in a process-
ing queue are i.i.d. random variables following the same geometric distribution,
which facilitates the usage of the Lyapunov technique and simplifies the proof.
In general, with other queueing architectures, a task in a queue may have its
data at another place, which makes the queue lengths inaccurate information
of the load, and thus a pressure-based algorithm and the Lyapunov technique
may not be applicable.

6. Simulations

In this section we use simulations to compare the performance of the Joint
Scheduler (JS) and the Hadoop Fair Scheduler (HFS) with delay scheduling. We
mainly focus on the throughput performance and demonstrate that JS achieves
the maximum capacity region while HFS cannot. Even though JS has not been
fine-tuned to decrease task delay, the simulation results show delay reduction
under JS compared to HFS with moderate to heavy load.

Settings. We simulate a MapReduce computing cluster with two hundred ma-
chines organized into ten racks. A distributed database is stored on machines
in the cluster, with three replicas of each data chunk, and jobs are submitted
to process part of the data. This mimics the scenario that data chunks form
a database like the user profile database of Facebook, and each job is some
manipulation of the data like searching for some user.

We scale the time slot in the system such that transmitting one data chunk
between machines in the same rack takes one time slot; i.e., B1 = 1. For the
interrack traffic, we assume an oversubscription factor 4; i.e., B2 = 5. The
service rate is set to ϕ = 0.25 since typically processing a data chunk is slower
than transmitting it. With this processing capability, the total arrival rate λΣ

of map tasks should be no larger than 200 × ϕ = 50. We run the simulations
for the two algorithms under several total arrival rates. For each arrival rate we
run the simulation for 106 time slots and evaluate the performance using results
from the last 5 × 104 time slots, during which the system is either unstable or
in the steady state. Job sizes are generated following the analysis of workload
from [4], which shows that the number of tasks in a job follows a power-law
distribution. To make a fair comparison, we let JS prioritize jobs in the same
way as HFS. Note that the job-level scheduling does not affect our analysis of
the throughput performance.

We consider two different data access patterns for the task arrival processes.
The first pattern accesses data uniformly from all the machines, and the second
pattern accesses data from half of the racks more frequently than from the other
half, which mimics the scenario with popularity skew.

6.1. Uniform Data Access

HFS performs well under the arrivals with uniform data access patterns since
most machines can easily find a local task to serve. In this scenario, JS and

14

24 27 30 33 36 39 42 45 480

10

20

30

40

50

60

Total Arrival Rate (tasks/time slot)

Av
er

ag
e

Ta
sk

 D
el

ay
 (t

im
e

sl
ot

s)

Joint Scheduler
Hadoop Fair Scheduler

(a) Throughput performance.

24 27 30 33 36 39 42 45 480

500

1000

1500

2000

2500

3000

Total Arrival Rate (tasks/time slot)

Av
er

ag
e

Ta
sk

 B
ac

kl
og

Joint Scheduler
Hadoop Fair Scheduler

(b) Task delay performance.

Figure 4: Performance under uniform data access.

24 27 30 33 36 39 42 45 480

5

10

15x 104

Total Arrival Rate (tasks/time slot)

Av
er

ag
e

Ta
sk

 B
ac

kl
og

Joint Scheduler
Hadoop Fair Scheduler

(a) Throughput performance.

24 27 30 33 36 39 42 45 480

20

40

60

80

100

120

Total Arrival Rate (tasks/time slot)

Av
er

ag
e

Ta
sk

 D
el

ay
 (t

im
e

sl
ot

s)

Joint Scheduler
Hadoop Fair Scheduler

(b) Task delay performance.

Figure 5: Performance under data access with popularity skew.

HFS perform similarly in throughput performance. Figure 4a shows the average
number of backlogged tasks in the last 5× 104 time slots. The system is stable
under both algorithms for all the arrival rates shown in the figure. Figure 4b
shows the average task delay in steady state, from which we can see that the
task delay performance is very similar (HFS is slightly better than JS).

6.2. Data Access with Popularity Skew

This is the scenario where JS benefits from routing in advance under mod-
erate to heavy load, since many tasks need to be launched on remote machines
under HFS in this case. The average number of backlogged tasks in the last
5 × 104 time slots is shown in Figure 5a. Under HFS, the average number of
backlogged tasks shows a sudden increase at the total arrival rate λΣ = 39 tasks
per time slot, which indicates that the system is unstable at arrival rates greater
than that, while under JS the system remains stable for all the total arrival rates
shown in the figure.

The average task delay is shown in Figure 5b. When the total arrival rate is
small, the task delay performance is still similar (HFS is slightly better than JS).

15

As the arrival rate increases, the task delay performance under HFS becomes
worse. The average task delay under HFS becomes larger than that under JS
when the arrival rate is greater than 35 tasks per time slot. For arrival rate
greater than 39 tasks per time slot, the average task delay under HFS becomes
very large (it is already over 2000 for λΣ = 39) due to instability. Thus to get a
clear comparison figure, we did not show the average task delay under HFS for
arrival rate larger than 38 tasks per time slot. Overall, JS significantly reduces
the task delay under moderate to heavy load.

7. Conclusions and Future Work

We addressed the data locality problem in task scheduling by routing data
in advance through the communication network in a MapReduce computing
cluster. Taking both load balancing and network capacity into consideration,
we proposed a scheduling/routing algorithm, named the Joint Scheduler, that
maximizes the throughput of the system. The Joint Scheduler can be extended
immediately to the case that tasks have different number of local machines and
to communication networks with more levels of hierarchy. The Joint Scheduler
requires control of the queues on switches. Such control is not available under the
current Hadoop implementation, but is possible by using the emerging software-
defined networking (SDN) technology [24]. Another limitation of this work is
that we focused on the throughput performance of the system and have not put
much effort on integrating job-level scheduling. A simple approach is to integrate
it in the routing step: when a queue sends data out, it selects data based on the
job information of the corresponding tasks. However, more delicate approaches
can be explored to achieve different performance goals such as fairness.

With the proposed network perspective of the data locality problem, an ex-
citing direction for future work is to consider more general network architectures.
The structure of the connections between machines may not be a hierarchical
one, and the bandwidths of different links can be heterogeneous.

8. Acknowledgement

This work was supported in part by NSF Grant ECCS-1255425.

References

[1] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large
clusters, ACM Commun. 51 (1) (2008) 107–113.

[2] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The Hadoop distributed file
system, in: IEEE Symp. Mass Storage Systems and Technologies (MSST),
Incline Villiage, NV, 2010, pp. 1–10.

16

[3] S. Kavulya, J. Tan, R. Gandhi, P. Narasimhan, An analysis of traces from
a production MapReduce cluster, in: Proc. IEEE/ACM Int. Conf. Cluster,
Cloud and Grid Computing (CCGRID), Melbourne, Australia, 2010, pp.
94–103.

[4] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,
D. Harlan, E. Harris, Scarlett: coping with skewed content popularity in
MapReduce clusters, in: Proc. European Conf. Computer Systems (Eu-
roSys), Salzburg, Austria, 2011, pp. 287–300.

[5] L. Tassiulas, A. Ephremides, Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio
networks, IEEE Trans. Autom. Control 4 (1992) 1936–1948.

[6] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, I. Sto-
ica, Delay scheduling: a simple technique for achieving locality and fair-
ness in cluster scheduling, in: Proc. European Conf. Computer Systems
(EuroSys), Paris, France, 2010, pp. 265–278.

[7] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, A. Goldberg,
Quincy: fair scheduling for distributed computing clusters, in: Proc. ACM
Symp. Operating Systems Principles (SOSP), Big Sky, MT, 2009, pp. 261–
276.

[8] S. Seo, I. Jang, K. Woo, I. Kim, J.-S. Kim, S. Maeng, HPMR: Prefetch-
ing and pre-shuffling in shared MapReduce computation environment, in:
IEEE Int. Conf. Cluster Computing (CLUSTER), New Orleans, LA, 2009,
pp. 1–8.

[9] J. Jin, J. Luo, A. Song, F. Dong, R. Xiong, Bar: An efficient data lo-
cality driven task scheduling algorithm for cloud computing, in: Proc.
IEEE/ACM Int. Conf. Cluster, Cloud and Grid Computing (CCGRID),
Newport Beach, CA, 2011, pp. 295–304.

[10] C. Abad, Y. Lu, R. Campbell, DARE: Adaptive data replication for efficient
cluster scheduling, in: IEEE Int. Conf. Cluster Computing (CLUSTER),
Austin, TX, 2011, pp. 159–168.

[11] Q. Xie, Y. Lu, Degree-guided map-reduce task assignment with data lo-
cality constraint, in: Proc. IEEE Int. Symp. Information Theory (ISIT),
Cambridge, MA, 2012, pp. 985–989.

[12] W. Wang, K. Zhu, L. Ying, J. Tan, L. Zhang, Map task scheduling in
MapReduce with data locality: throughput and heavy-traffic optimality,
in: Proc. IEEE Int. Conf. Computer Communications (INFOCOM), Turin,
Italy, 2013, pp. 1609–1617.

[13] J. Tan, X. Meng, L. Zhang, Coupling task progress for MapReduce
resource-aware scheduling, in: Proc. IEEE Int. Conf. Computer Communi-
cations (INFOCOM), Turin, Italy, 2013, pp. 1618–1626.

17

[14] X. Bu, J. Rao, C.-Z. Xu, Interference and locality-aware task scheduling
for MapReduce applications in virtual clusters, in: Proc. ACM Int. Symp.
High-Performance Parallel and Distributed Computing (HPDC), New York
City, NY, 2013, pp. 227–238.

[15] W. Wang, K. Zhu, L. Ying, J. Tan, L. Zhang, MapTask scheduling in
MapReduce with data locality: Throughput and heavy-traffic optimality,
IEEE/ACM Trans. Netw.To be published.

[16] K. Wang, X. Zhou, T. Li, D. Zhao, M. Lang, I. Raicu, Optimizing load
balancing and data-locality with data-aware scheduling, in: Proc. IEEE
Int. Conf. Big Data (Big Data), Washington DC, 2014, pp. 119–128.

[17] M. Sun, H. Zhuang, X. Zhou, K. Lu, C. Li, HPSO: Prefetching based
scheduling to improve data locality for MapReduce clusters, in: Int. Conf.
Algorithms and Architectures for Parallel Processing (ICA3PP), Vol. 8631
of Lecture Notes in Comput. Sci., Springer, 2014, pp. 82–95.

[18] W. Wang, M. Barnard, L. Ying, Decentralized scheduling with data locality
for data-parallel computation on peer-to-peer networks, in: Proc. Ann.
Allerton Conf. Commununication, Control and Computing, Monticello, IL,
2015.

[19] Q. Xie, Y. Lu, Priority algorithm for near-data scheduling: Throughput
and heavy-traffic optimality, in: Proc. IEEE Int. Conf. Computer Commu-
nications (INFOCOM), Hong Kong, China, 2015, pp. 963–972.

[20] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center
network architecture, in: Proc. Ann. ACM SIGCOMM Conf., Seattle, WA,
2008, pp. 63–74.

[21] L. Barroso, U. Hölzle, The datacenter as a computer: An introduction to
the design of warehouse-scale machines, Synthesis Lectures on Comput.
Architecture 4 (1) (2009) 1–108.

[22] R. Srikant, L. Ying, Communication Networks: An Optimization, Control
and Stochastic Networks Perspective, Cambridge Univ. Press, New York,
2014.

[23] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar,
P. Whiting, Scheduling in a queueing system with asynchronously vary-
ing service rates, Probab. Eng. Inf. Sci. 18 (2) (2004) 191–217.

[24] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, OpenFlow: Enabling innovation in cam-
pus networks, ACM SIGCOMM Comput. Commun. Rev. 38 (2) (2008)
69–74.

18

Appendix A. Proof of Theorem 1

Proof. Consider the following Lyapunov function

V (Z(t)) =

M∑
m=1

2∑
i=0

(Qm,i(t))
2 +

R∑
r=1

2∑
j=1

(Xr,j(t))
2.

Then according to an extension of the Foster-Lyapunov theorem, it suffices to
prove that there exists a finite set B ⊆ S and two constants δ and C with δ > 0
such that for some positive integer T ≥ 1,

E
[
V (Z(t0 + T))− V (Z(t))

∣∣ Z(t0) = Z
]
≤ −δ if Z ∈ Bc,

E
[
V (Z(t0 + T))− V (Z(t))

∣∣ Z(t0) = Z
]
≤ C if Z ∈ B.

For each arrival rate vector λ ∈ Λo, we show that the queueing process {Z(t), t ≥
0} satisfies these two conditions. For each λ ∈ Λo, since Λo is an open set, there
exists 0 < ε < 1 such that λ′ = (1 + ε)λ ∈ Λo. By the definition of Λ, there
exists a supportable λ′-admissible flow vector f ′. Let f = f ′/(1 + ε). Then f
satisfies the equations in (4), and the inequalities in (5) become∑

~L∈Lm

λ~L,m,1 ≤
B1

1 + ε
(A.1a)

∑
m∈Mr

λm,1 ≤
B2

1 + ε
(A.1b)

∑
r′∈R

ηr′,r ≤
B2

1 + ε
(A.1c)

∑
m′∈Mrm

αm′,m + λm,2 ≤
B1

1 + ε
(A.1d)

∑
~L∈Lm

λ~L,m,0 + µm ≤
ϕ

1 + ε
. (A.1e)

If machine m is not local for any task type in L, the states in S all have Qm,1 = 0.
Thus we do not need to consider Qm,1. For such m, we also have λ~L,m,1 = 0,

λm,1 = 0, and αm,m′ = 0 for any m′. Therefore we do not consider such m
when we write these rates in the rest of this paper. Similarly if the machines in
rack r are not local for any task type in L, Xr,1 is always zero and ηr,r′ = 0 for
any r′. We do not consider these terms either. Then we can find f ′ such that
other terms in the equalities in (A.1) are all positive since λ′ is in the open set
Λo. Let M denote the set of machines that are local machines for some task
type and R denote the set of racks that have local machines for some task type.

By the queue dynamics, the T time slot Lyapunov drift can be calculated as

E
[
V (Z(t0 + T))− V (Z(t))

∣∣ Z(t0)
]

19

= E

[
t1∑
t=t0

(
M∑
m=1

2∑
i=0

(
(Qm,i(t+ 1))2 − (Qm,i(t))

2
)

+

R∑
r=1

2∑
j=1

(
(Xr,j(t+ 1))2 − (Xr,j(t))

2
)) ∣∣∣∣ Z(t0)

]

≤ E

[∑
t

(∑
m

(∑
~L∈Lm

A~L,m,1(t)− Sm,1(t)
)2

+
∑
m

(∑
~L∈Lm

A~L,m,0(t) +Am,0(t)− Sm(t)
)2

+
∑
m

(
Am,2(t) +

∑
m′∈Mrm

AQm′,m(t)− Sm,2(t)
)2

+
∑
r

(∑
m∈Mr

Am,1(t)− SXr,1(t)
)2

+
∑
r

(∑
r′∈R

AXr′,r(t)− SXr,2(t)
)2
) ∣∣∣∣ Z(t0)

]

+ 2E
[∑

t

(∑
m

Qm,1(t)
(∑
~L∈Lm

A~L,m,1(t)− Sm,1(t)
)

+
∑
m

Qm,0(t)
(∑
~L∈Lm

A~L,m,0(t) +Am,0(t)− Sm(t)
)

+
∑
m

Qm,2(t)
(
Am,2(t) +

∑
m′∈Mrm

AQm′,m(t)− Sm,2(t)
)

+
∑
r

Xr,1(t)
(∑
m∈Mr

Am,1(t)− SXr,1(t)
)2

+
∑
r

Xr,2(t)
(∑
r′∈R

AXr′,r(t)− SXr,2(t)
)) ∣∣∣ Z(t0)

]
, (A.2)

where t1 = t0 +T −1 and the summation ranges may be omitted when they are
clear from context. The first expectation term in the right-hand side of (A.2)
can be bounded for all states Z(t0) by a constant, say C1, since the arrival
processes have finite second moments and the service processes are bounded.
For the second expectation term in the right-hand side of (A.2), we denote it
by 2E

[
H|Z(t0)

]
and rewrite H as follows.

H =
∑
t

∑
m

∑
~L∈Lm

(
Qm,1(t)A~L,m,1(t) +Qm,0(t)A~L,m,0(t)

)
(A.3)

+
∑
t

(∑
r

Xr,1(t)
∑

m∈Mr

Am,1(t)

20

+
∑
m

Qm,2(t)
∑

m′∈Mrm

AQm′,m(t)

−
∑
m

Qm,1(t)Sm,1(t)
)

(A.4)

+
∑
t

(∑
r

Xr,2(t)
∑
r′∈R

Ar′,r(t)−
∑
r

Xr,1(t)SXr,1(t)
)

(A.5)

+
∑
t

(∑
m

Qm,2(t)Am,2(t)−
∑
r

Xr,2(t)SXr,2(t)
)

(A.6)

+
∑
t

∑
m

(
Qm,0(t)Am,0(t)−Qm,2(t)Sm,2(t)

)
(A.7)

−
∑
t

∑
m

Qm,0(t)Sm(t). (A.8)

Next we take expectations and bound these terms.
For term (A.3), exchanging the order of summation yields∑

m

∑
~L∈Lm

(
Qm,1(t)A~L,m,1(t) +Qm,0(t)A~L,m,0(t)

)
=
∑
~L

∑
m∈M~L

(
Qm,1(t)A~L,m,1(t) +Qm,0(t)A~L,m,0(t)

)
According to the task assignment policy for new tasks, for each ~L, all the A~L(t)
arrivals are assigned to the shortest queue in Q~L. Denote this shortest queue
by Dt

~L
. Then∑

m∈M~L

(
Qm,1(t)A~L,m,1(t) +Qm,0(t)A~L,m,0(t)

)
= Dt

~L
(t)A~L(t).

Since {Z(t), t ≥ 0} is a Markov chain, we have

E
[∑
m

∑
~L∈Lm

(
Qm,1(t)A~L,m,1(t) +Qm,0(t)A~L,m,0(t)

) ∣∣∣∣ Z(t0)

]

= E

[
E
[∑
~L

Dt
~L

(t)A~L

∣∣∣∣ Z(t)

] ∣∣∣∣∣ Z(t0)

]

= E
[∑
~L

Dt
~L

(t)λ~L

∣∣∣∣ Z(t0)

]
(a)

≤ E
[∑
~L

∑
m∈M~L

(
Qm,1(t)λ~L,m,1 +Qm,0(t)λ~L,m,0

) ∣∣∣∣ Z(t0)

]

= E
[∑
m

∑
~L∈Lm

(
Qm,1(t)λ~L,m,1 +Qm,0(t)λ~L,m,0

) ∣∣∣∣ Z(t0)

]
, (A.9)

21

where (a) follows from flow conservation equation (4a) and the fact that Dt
~L

is
the shortest queue in Q~L at time slot t. The following two terms will be used
in the rest of the proof. ∑

t

∑
m

Qm,1(t)
∑
~L∈Lm

λ~L,m,1 (A.10a)

∑
t

∑
m

Qm,0(t)
∑
~L∈Lm

λ~L,m,0. (A.10b)

For term (A.4), first notice that∑
m

Qm,2(t)
∑

m′∈Mrm

AQm′,m(t)

=
∑
m′

∑
m∈Mr

m′

Qm,2(t)AQm′,m(t)

=
∑
m

∑
m′∈Mrm

Qm′,2(t)AQm,m′(t),

where we have changed the order of summation and swapped the names of
dummy variables m and m′. Then the arrival part can be written as∑

r

Xr,1(t)
∑

m∈Mr

Am,1(t) +
∑
m

Qm,2(t)
∑

m′∈Mrm

AQm′,m(t)

=
∑
m

(
Xrm,1(t)Am,1(t) +

∑
m′∈Mrm

Qm′,2(t)AQm,m′(t)
)
.

According to the routing policy, the departures of queue Qm,1 are all routed to
Dt−1
Qm,1

at time slot t, where Dt−1
Qm,1

is the shortest queue in DQm,1
at time slot

t− 1. By the relation (2a),∑
m

(
Xrm,1(t)Am,1(t) +

∑
m′∈Mrm

Qm′,2(t)AQm,m′(t)
)

≤
∑
m

Dt−1
Qm,1

(t)Sm,1(t− 1).

We bound this term as follows using Lemma 2 provided after this proof, which
results from the queue dynamics:∑

t

∑
m

Dt−1
Qm,1

(t)Sm,1(t− 1)

≤
∑
t

∑
m

Dt
Qm,1

(t)Sm,1(t) +B2

∑
m

Dt0
Qm,1

(t0)

+MB2T

t1∑
t=t0

∑
~L

A~L(t) + 2M2B2
2T

2

22

≤
∑
t

∑
m

Dt
Qm,1

(t)Sm,1(t) +B2

∑
r

Xr,1(t0)

+MB2T

t1∑
t=t0

∑
~L

A~L(t) + 2M2B2
2T

2,

Therefore

(A.4) ≤
∑
t

∑
m

(
Dt
Qm,1

(t)−Qm,1(t)
)
Sm,1(t)

+B2

∑
r

Xr,1(t0) + +MB2T

t1∑
t=t0

∑
~L

A~L(t) + 2M2B2
2T

2.

Next we combine (A.4) with (A.10a) and consider the following two cases. When
Dt
Qm,1

(t) < Qm,1(t), by queue dynamics Sm,1(t) = B1. Then(
Dt
Qm,1

(t)−Qm,1(t)
)
Sm,1(t) +Qm,1(t)

∑
~L∈Lm

λ~L,m,1

= Dt
Qm,1

(t)
1 + ε

1 + ε/2

∑
~L∈Lm

λ~L,m,1

+Dt
Qm,1

(t)
(
B1 −

1 + ε

1 + ε/2

∑
~L∈Lm

λ~L,m,1

)
−Qm,1(t)

(
B1 −

∑
~L∈Lm

λ~L,m,1

)
(a)
< Dt

Qm,1
(t)

1 + ε

1 + ε/2

∑
~L∈Lm

λ~L,m,1

+Qm,1(t)
(
B1 −

1 + ε

1 + ε/2

∑
~L∈Lm

λ~L,m,1

)
−Qm,1(t)

(
B1 −

∑
~L∈Lm

λ~L,m,1

)
= Dt

Qm,1
(t)

1 + ε

1 + ε/2

∑
~L∈Lm

λ~L,m,1

−Qm,1(t)
ε/2

1 + ε/2

∑
~L∈Lm

λ~L,m,1,

where (a) is true since Dt
Qm,1

(t) < Qm,1(t) and by (A.1a)

1 + ε

1 + ε/2

∑
~L∈Lm

λ~L,m,1 ≤
1

1 + ε/2
B1 < B1.

23

When Dt
Qm,1

(t) ≥ Qm,1(t), by definition Sm,1(t) = 0. Then(
Dt
Qm,1

(t)−Qm,1(t)
)
Sm,1(t) +Qm,1(t)

∑
~L∈Lm

λ~L,m,1

= Qm,1(t)
(1 + ε

1 + ε/2

∑
~L∈Lm

λ~L,m,1 −
ε/2

1 + ε/2

∑
~L∈Lm

λ~L,m,1

)
≤ Dt

Qm,1
(t)

1 + ε

1 + ε/2

∑
~L∈Lm

λ~L,m,1

−Qm,1(t)
ε/2

1 + ε/2

∑
~L∈Lm

λ~L,m,1.

In both cases we get the same upper bound. Further by the flow conservation
equation (4b) we have∑

m

Dt
Qm,1

(t)
1 + ε

1 + ε/2

∑
~L∈Lm

λ~L,m,1

=
1 + ε

1 + ε/2

∑
m

Dt
Qm,1

(t)
(
λm,1 +

∑
m′∈Mrm

αm,m′

)
≤ 1 + ε

1 + ε/2

∑
m

(
Xrm,1(t)λm,1 +

∑
m′∈Mrm

Qm′,2(t)αm,m′

)
=
∑
r

Xr,1(t)
1 + ε

1 + ε/2

∑
m∈Mr

λm,1

+
∑
m

Qm,2(t)
1 + ε

1 + ε/2

∑
m′∈Mrm

αm′,m.

Thus combining (A.4) with (A.10a) yields∑
t

(∑
m

Qm,1(t)
∑
~L∈Lm

λ~L,m,1 +
∑
r

Xr,1(t)
∑

m∈Mr

Am,1(t)

+
∑
m

Qm,2(t)
∑

m′∈Mrm

AQm′,m(t)−
∑
m

Qm,1(t)Sm,1(t)
)

≤
∑
t

∑
r

Xr,1(t)
1 + ε

1 + ε/2

∑
m∈Mr

λm,1 (A.11a)

+
∑
t

∑
m

Qm,2(t)
1 + ε

1 + ε/2

∑
m′∈Mrm

αm′,m (A.11b)

−
∑
t

∑
m

Qm,1(t)
ε/32

1 + ε/16

∑
~L∈Lm

λ~L,m,1 (A.11c)

+B2

∑
r

Xr,1(t0) +MB2T

t1∑
t=t0

∑
~L

A~L(t) + 2M2B2
2T

2, (A.11d)

24

where we have used the fact

ε/2

1 + ε/2
>

ε/32

1 + ε/16
.

For terms (A.5)–(A.7), we use similar techniques as we have used for term
(A.4). We omit the details and list the bounds as follows.

(A.11a) + (A.5) ≤
∑
t

∑
r

Xr,2(t)
1 + ε/2

1 + ε/4

∑
r′∈R

ηr′,r (A.12a)

−
∑
t

∑
r

Xr,1(t)
ε/32

1 + ε/16

∑
m∈Mr

λm,1 (A.12b)

+B2

∑
r

Xr,2(t0) +RB2T

t1∑
t=t0

∑
~L

A~L(t) (A.12c)

+ 2RMB2
2T

2. (A.12d)

(A.12a) + (A.6) ≤
∑
t

∑
m

Qm,2(t)
1 + ε/4

1 + ε/8
λm,2 (A.13a)

−
∑
t

∑
r

Xr,2(t)
ε/32

1 + ε/16

∑
r′∈R

ηr′,r (A.13b)

+B2

∑
m

Qm,2(t0) +RB2T

t1∑
t=t0

∑
~L

A~L(t) (A.13c)

+ 2RMB2
2T

2. (A.13d)

(A.11b) + (A.13a) + (A.7) ≤
∑
t

∑
m

Qm,0(t)
1 + ε/8

1 + ε/16
µm (A.14a)

−
∑
t

∑
m

Qm,2(t)
ε/32

1 + ε/16

(
λm,2 +

∑
m′∈Mrm

αm′,m

)
(A.14b)

+B2

∑
m

Qm,0(t0) +MB2T

t1∑
t=t0

∑
~L

A~L(t) + 2M2B2
2T

2. (A.14c)

For the last term (A.8), we combine (A.10b) and (A.14a) with (A.8) and
take expectations as follows.

E
[
Qm,0(t)

(∑
~L∈Lm

λ~L,m,0 +
1 + ε/8

1 + ε/16
µm − Sm(t)

) ∣∣∣∣ Z(t0)

]

= E

[
E
[
Qm,0(t)

(∑
~L∈Lm

λ~L,m,0 +
1 + ε/8

1 + ε/16
µm

) ∣∣∣∣ Z(t)

]

25

− E
[
Qm,0(t)Sm(t)

∣∣∣∣ Z(t)

] ∣∣∣∣∣ Z(t0)

]

= E
[
Qm,0(t)

(∑
~L∈Lm

λ~L,m,0 +
1 + ε/8

1 + ε/16
µm − ϕ)

) ∣∣∣∣ Z(t0)

]

≤ −E
[
Qm,0(t)

1

1 + ε

1 + ε/8

1 + ε/16
ϕ

∣∣∣∣ Z(t0)

]
≤ −E

[
Qm,0(t)

ε/32

1 + ε/16
ϕ

∣∣∣∣ Z(t0)

]
. (A.15)

Let

ρ = min

{
ϕ,
{ ∑
~L∈Lm

λ~L,m,1

∣∣∣ m ∈M}
{ ∑
m∈Mr

λm,1

∣∣∣ r ∈ R}{∑
r′

ηr′,r

∣∣∣ r = 1, · · · , R
}

{
λm,2 +

∑
m′∈Mrm

αm′,m

∣∣∣ m = 1, · · · ,M
}}

.

Then by the selection of f we have ρ > 0. Finally combining all the terms yields

E[H | Z(t0)] ≤ − ε/32

1 + ε/16
ρ

t1∑
t=t0

E
[M∑
m=0

2∑
i=0

Qm,i(t)
∣∣∣ Z(t0)

]

− ε/32

1 + ε/16
ρ

t1∑
t=t0

E
[R∑
r=0

2∑
j=1

Xr,j(t)
∣∣∣ Z(t0)

]

+B2

(M∑
m=0

2∑
i=0

Qm,i(t0) +

R∑
r=0

2∑
j=1

Xr,j(t0)
)

+ 2(M +R)B2T

t1∑
t=t0

∑
~L

λ~L + 4(M +R)MB2
2T

2.

For each t0 ≤ t ≤ t1, due to the boundedness of departures of each queue,

Qm,i(t) ≥ Qm,i(t0)−B1T

Xr,j(t) ≥ Xr,j(t0)−B2T.

Therefore

E[H | Z(t0)] ≤
(
− ε/32

1 + ε/16
ρT +B2

)
26

·
(M∑
m=0

2∑
i=0

Qm,i(t0) +

R∑
r=0

2∑
j=1

Xr,j(t0)
)

+ C2,

where

C2 = 2(M +R)B2T

t1∑
t=t0

∑
~L

λ~L + 4(M +R)MB2
2T

2 + ρT (3MB1T + 2RB2T).

Let

T >
2B2(1 + ε/16)

ρε/32
.

Then

E[H|Z(t0)] ≤−B2

(M∑
m=0

2∑
i=0

Qm,i(t0) +

R∑
r=0

2∑
j=1

Xr,j(t0)
)

+ C2.

Hence

E
[
V (Z(t0 + T))− V (Z(t))

∣∣ Z(t0)
]

≤ −2B2

(M∑
m=0

2∑
i=0

Qm,i(t0) +

R∑
r=0

2∑
j=1

Xr,j(t0)
)

+ C1 + 2C2.

Pick δ > 0 and let

B =

{
Z
∣∣∣ M∑
m=0

2∑
i=0

Qm,i +

R∑
r=0

2∑
j=1

Xr,j <
δ + C1 + 2C2

2B2

}
,

and C = C1 + 2C2. Then B is a finite set and

E
[
V (Z(t0 + T))− V (Z(t))

∣∣ Z(t0) = Z
]
≤ −δ if Z ∈ Bc,

E
[
V (Z(t0 + T))− V (Z(t))

∣∣ Z(t0) = Z
]
≤ C if Z ∈ B,

which completes the proof.

Lemma 2. For any queue Q in the communication network, let Dt
Q be the

shortest queue in DQ at time slot t and S(t) be the service defined in queue
dynamics. Then

t1∑
t=t0

Dt−1
Q (t)S(t− 1) ≤

t1∑
t=t0

Dt
Q(t)S(t) +B2D

t0
Q (t0)

+B2T

t1∑
t=t0

∑
~L

A~L(t) + 2MB2
2T

2,

where t1 = t0 + T − 1.

27

Proof. The number of arrivals to any queue Q at any time slot t is upper
bounded by

∑
~LA~L(t). Due to the boundedness of departures, for any t such

that t0 ≤ t ≤ t1 we have

Dt−1
Q (t) ≤ Dt−1

Q (t− 1) +
∑
~L

A~L(t) +MB2 (A.16)

≤ Dt0
Q (t− 1) +

∑
~L

A~L(t) +MB2 (A.17)

≤ Dt0
Q (t0) +

t1∑
t=t0

∑
~L

A~L(t) +MB2T, (A.18)

where (A.17) is true since Dt−1
Q (t− 1) is the shortest queue in DQ at time slot

t− 1. Then∑
t

Dt−1
Q (t)S(t− 1) (A.19)

≤
∑
t

Dt0
Q (t0)S(t− 1) +B2T

t1∑
t=t0

∑
~L

A~L(t) +MB2
2T

2 (A.20)

= Dt0
Q (t0)

∑
t

S(t− 1) +B2T

t1∑
t=t0

∑
~L

A~L(t) +MB2
2T

2 (A.21)

≤ Dt0
Q (t0)

∑
t

S(t) +B2D
t0
Q (t0) +B2T

t1∑
t=t0

∑
~L

A~L(t) +MB2
2T

2, (A.22)

where (A.22) follows from that
∑
t S(t− 1) ≤

∑
t S(t) +B2. Similarly we have

the following inequalities for any t0 ≤ t ≤ t1:

Dt0
Q (t0) ≤ Dt

Q(t0) ≤ Dt
Q(t) +MB2T. (A.23)

Inserting the above inequality to (A.22) gives∑
t

Dt−1
Q (t)S(t− 1) ≤

∑
t

Dt
Q(t)S(t) +B2D

t0
Q (t0) (A.24)

+B2T

t1∑
t=t0

∑
~L

A~L(t) + 2MB2
2T

2, (A.25)

which completes the proof.

28

	Introduction
	Related Work
	System Model
	Arrivals and Service
	Network Queueing Model

	Map Task Scheduling/Routing
	Task Scheduling/Routing Algorithm
	Queue Dynamics

	Throughput Optimality
	Capacity Region
	Characterization of the Capacity Region
	Achievability

	Simulations
	Uniform Data Access
	Data Access with Popularity Skew

	Conclusions and Future Work
	Acknowledgement
	Proof of Theorem 1

